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Abstract: Recent studies on watermarking techniques based on image carriers have demonstrated new
approaches that combine adversarial perturbations against steganalysis with embedding distortions.
However, while these methods successfully counter convolutional neural network-based steganalysis,
they do not adequately protect the data of the carrier itself. Recognizing the high sensitivity of
Deep Neural Networks (DNNs) to small perturbations, we propose HAG-NET, a method based
on image carriers, which is jointly trained by the encoder, decoder, and attacker. In this paper, the
encoder generates Adversarial Steganographic Examples (ASEs) that are adversarial to the target
classification network, thereby providing protection for the carrier data. Additionally, the decoder
can recover secret data from ASEs. The experimental results demonstrate that ASEs produced by
HAG-NET achieve an average success rate of over 99% on both the MNIST and CIFAR-10 datasets.
ASEs generated with the attacker exhibit greater robustness in terms of attack ability, with an average
increase of about 3.32%. Furthermore, our method, when compared with other generative stego
examples under similar perturbation strength, contains significantly more information according to
image information entropy measurements.

Keywords: adversarial attack; watermarking; generative adversarial networks; deep learning; image
information entropy

1. Introduction

Conventional image-based watermarking techniques typically alter the pixel values
or structure of an image, potentially making the watermark detectable or modifiable by
attackers. In contrast, recent research introduces a method that incorporates adversarial
perturbations into watermark samples, enabling the watermark to disrupt the classification
process of the target neural network. This not only enhances the robustness and stealthiness
of the watermark but also safeguards the integrity and security of the image data. Conse-
quently, even if attackers attempt to manipulate the image to compromise the watermark,
it can effectively maintain the integrity and security of the image data, thus paving the
way for new possibilities in covert communication and watermarking. As a result, certain
watermarking techniques, such as ADV-EMB [1] and JAS [2], have been developed to
integrate adversarial perturbations, which are adversarial to steganalysis networks, with
embedding distortions.

Unfortunately, the aforementioned novel watermarking techniques primarily focus on
making the watermark resistant to detection by target steganalysis while neglecting the
need to protect the information of the carrier image itself. With the rapid development of
big data applications, a multitude of security risks for users have emerged. Image data,
being a pivotal component of big data, frequently harbor personal information such as
portraits, addresses, income, and interests. When identified by target classification networks
utilized in big data applications, it not only exposes the risk of personal information leakage
(including spam messages and telecom fraud) but also potentially jeopardizes user safety.
Hence, it becomes imperative to integrate watermarking with adversarial attack techniques.
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Therefore, we propose a novel dynamic data hiding method called HAG-NET (Hiding
data and Adversarial attacking with Generative adversarial Network), which is capable of
directly generating Adversarial Steganographic Examples (ASEs). In contrast to previous
approaches, the ASEs generated by HAG-NET can adversarially attack the target recogni-
tion network while concealing the secret information, as depicted in Figure 1. HAG-NET
employs three convolutional networks to generate ASEs. The encoder network takes the
cover image and secret message (random binary bit string) as input and outputs the ASEs.
Conversely, the decoder network accepts the ASEs and attempts to recover the embedded
secret message.

We summarize HAG-NET’s contributions as follows:

e In contrast to prior research, we propose a novel Generative Adversarial Network
(GAN) framework named HAG-NET, wherein a generator, discriminator, and an
attacker are trained jointly. Through co-training with the attacker, HAG-NET further
enhances the robustness of the watermark.

e  Building upon secret message embedding and resistance to steganalysis, HAG-NET
achieves protection against detection for the carrier data.

e  The information contained in the adversarial embedded disturbance generated by our
method is superior to those of others with the same intensity.

Cover Image Peturbation Encoded Image
D 10010111000101...
Wartermarking
» C DOG
D 10010111000101...
HAG-NET
C CAT
D 11000010010000...
Adversarial attack
C CAT

Figure 1. Schematic diagram illustrating the variance in perturbations generated by various gener-
ative methods. The string represented beneath these perturbations denotes the secret data or the
targeted class of the adversarial attack embedded within. D represents the decoder, responsible for
decoding the secret data, while its output represents the decoded secret information. C denotes the
target classification network, with its output indicating the classified prediction, and the red section
highlights inaccuracies in the prediction.

2. Related Work
2.1. Adversarial Examples

Adversarial Examples (AEs) possess the capability to significantly reduce the recog-
nition accuracy of target classification networks by introducing minimal perturbations
to the original image. This phenomenon was first identified by Christian et al. in [34].
Subsequently, various adversarial attack algorithms have been proposed, broadly catego-
rized into two groups: white-box attacks, where all data of the target model are known,
and black-box attacks, where the training process and parameters of the target model are
unknown. Among these, white-box attacks are most relevant to our proposed method.

Ian J Goodfellow et al. [4] introduced FGSM, which calculates gradients through
backpropagation to effectively generate perturbations. Madry et al. [5] proposed PGD
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based on FGSM, which updates the perturbations with a smaller step size in iterations,
resulting in steady loss reduction during the iteration process and yielding improved
attack effectiveness and visual quality. The Adversarial Examples generated by PGD
demonstrate outstanding attack capabilities across various undefended and defended
target classification networks.

In [6], an algorithm based on Zero-Order Optimization (ZOO) is proposed to ap-
proximate the gradient of the target model. Additionally, in [7], an optimization-based
C&W attack algorithm is introduced with the aim of optimizing the objective equation
[6]l, + c-f(x + &), where f(-) is the objective function measuring the attack effect, 5 rep-
resents the generated disturbance, c is a constant greater than 0 and p € (0,2, 00). The
disturbance 6 for optimal attack and visual quality is determined by optimizing the target
equation under the constraint of |-||,, and c.

2.2. Watermarking

The most relevant methods are as follows: (1) Least-Significant Bit (LSB) [8]: Informa-
tion hiding involves systematically modifying the least significant bits of selected pixels in
the cover image based on the secret information. Several watermarking methods based on
LSB are introduced in [9,10]. Although these methods ensure that perturbations caused by
pixel modifications are imperceptible to the naked eye and result in excellent visual quality
of stego examples, the systematic alteration of pixel values affects the image’s statistics,
making such stego examples easily identifiable [11]. (2) Other watermarking algorithms
differ in their approach to measuring minimum distortion during encoding. For example,
Highly Undetectable steganography (HUGO) [8] measures the distortion degree of the
encoded image by calculating the weights of local neighboring pixels of the cover image.
Wavelets Obtained Weight (WOW) [12] employs a bank of directional filters to penalize
distortion in predictable regions of the image. S-UNIWARD [13] resembles WOW but can
be utilized to embed in arbitrary domains.

2.3. Generative Approach

Generative networks have gained considerable popularity for data generation and
have witnessed significant advancements in recent years. Saeed et al. [14] introduced
the concept of generative adversarial perturbations utilizing U-Net [15] and ResNet [16],
laying the foundation for subsequent research in this domain. Expanding on their work,
Mao et al. [17] further improved the realism of generated Adversarial Examples (AEs),
enhancing their visual perception. Additionally, ADV-GAN in [18], achieved successful
targeted attacks on black-box models by incorporating distillation networks and dynamic
queries. AI-GAN [19] achieves adaptive attacks against arbitrary target classes.

Generative networks have also found application in watermarking, with prior works
typically integrating Deep Neural Networks (DNNs) as a specific component within the
overall process. In [20], DNNs were solely used to quantify the watermark strength of each
image region, while [21,22] employed DNNSs either as encoders or decoders. Reference [23]
introduced HiDDeN, the first to fully model the steganographic system using DNNs. Fan,
Zexin et al. [2] proposed Joint Adversarial Steganography (JAS), combining adversarial
steganography with handcrafted adjustment strategies to design a more secure embed-
ding distortion technique. Tang, Weixuan et al. [1] introduced ADV-EMB, which closely
resembles our approach. It adjusts modifications of carrier image units based on gradi-
ents propagated from the target steganalysis, deceiving the steganalysis while embedding
covert information. However, none of the aforementioned methods provide protection
for the carrier data while ensuring watermark security. Moreover, alternative forms of
watermarking methods have been explored. In [24], a generative network was trained to
conceal an entire image within another image. Uchida et al. [25] embedded watermarks
into the trained neural network weights, whereas Fang et al. [26] embedded messages into
text carriers using an LSTM network.
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HAG-NET adopts an end-to-end training approach, akin to the HiDDeN framework
proposed in [23] and based on GAN. In contrast to previous studies, HAG-NET operates
on a query attack and generative watermarking basis, facilitating both data hiding and
adversarial attack functionalities by adaptively generating ASE. This capability enables
the creation of adversarial steganography while simultaneously ensuring protection for
the carrier data. Adversarial Steganographic Examples generated by HAG-NET exhibit
excellent attack efficacy against both target and non-target adversaries. The framework of
HAG-NET is illustrated in Figure 2.
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Figure 2. The framework of HAG-NET: the encoder E receives the cover image Icp and the secret
message My to generate encoded image Ir; the decoder D recovers Mjy from Ir and outputs the
decoded message Moyt; the attacker generates adversarial example I4. The adversarial discriminator
A receives Ico or Iy and If to predict whether the input has been encoded; the target classifier C
predicts the classification of Ir. The loss function L is the pixel-level difference between Ir and I¢p;
the loss function L is used to optimize the ability to resist attacks. The loss function Lg provides
adversarial loss for E. The loss function Lp minimizes the difference between Mjy and Moyr. The
dashed line indicates that data are transferred according to the settings.

3. Our Approach
3.1. Problem Description

Consider a classification network, denoted as C, trained on dataset X € R", where
n represents the dimension of inputs. During non-target attacks, (x;,;) denotes the i'"
instance in the training data, where x; € X is a cover image generated from an unknown
distribution, and y; represents the correct classification of x;. Conversely, during target
attacks, (x;,t;) denotes the i instance in the training data, where t; represents the target
classification to be attacked for x;, and t; # y;. My € [0, 1]L be a binary secret message
of length L. An instance and a secret message (M]y) are used to generate an Adversarial
Steganographic Example (ASE), denoted as E((x;,y;), Miy) = Ig or ((x;,t;), MiN) = IE,
which resembles x; based on a certain distance measure and is adversarial to C. The decoder
D attempts to recover My from the received Adversarial Steganographic Example (Ig) as
the decoded message (Moyr). We aim for classification C to produce incorrect predictions
when the Bit Error Rate between Moy and My is below a certain threshold.

1. When the inputis (x;,y;), making C(E((x;,vi), Min)) # yi, namely C(Ig) # y;, itis
referred to as the non-target attack;

2. When the inputis (x, t;), making C(E((x; t;), Min)) = t;, namely C(Ig) = t;, itis
referred to as the target attack.
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3.2. Loss Functions

As illustrated in Figure 1, the HAG-NET network consists entirely of Deep Neural
Networks (DNNs). Its main components include the following: encoder Ey, decoder Dy,
adversarial discriminator A, attacker, and target classifier Cﬁ, where 6, @, and y represent
the trainable parameters in Eg, Dy, and A, respectively, and B denotes the pre-trained
parameters of Cg. To facilitate the mathematical description of the loss function, in the
remainder of this article, we use the symbol Icp instead of x; and the symbol T instead
of Yi, ti/ namely TCO =Yy;or TCO = ti'

The Encoder Ey receives Ico, Tco and My € [0, 1}L to generate Ig. The Adversarial
Steganographic Example (Ir) generated by Eg aims to resemble I or I4 as closely as

possible. We employ the L, norm distance to quantify the difference between I € {Ico, Ir}

(when attackers are not involved in the training process) or I € {I4, Ir} (when attackers
are involved in the training process), denoted as Lg(-), namely:

N\ _ o — Iell3 A\ A= I3
LE<I)(cxHxW)orLE D) = exmxw) @

The variables W and H represent the pixel width and pixel height of the cover im-
age respectively, while ¢ denotes the number of channels in the cover image. Therefore,
c x H x W denotes the total number of pixels in the carrier 1mage

The Adversarial Discriminator A, takes as input the sample Ie {Ico, I} or Ie {Ia, I}
and predicts whether the input image is encoded. The prediction result of A, denoted
as A(-) € [0,1], indicates the confidence with which A, considers the input sample to be
Ir. Here, we employ Binary Cross-Entropy (BCE) to measure this classification loss Ly,
expressed as follows:

La(A(L,), Allg)) = log (1~ (1+¢740)) ) ttog( (1 +e400) ™
< or ) < ) ()

La(AU 0, Al) = lag (1= (1+¢400) ™) ttog (14 ¢-40) ™)

And the adversarial loss L from A, is

Le(A(Ig)) = log (1 - (1 + e—AUE))l) 3)

The Decoder Dg receives Ir and then outputs Moyt € [0, 1]L, which is decoded from
Ir. It is important to note that the lengths of My and Moyt should be the same. Similar
to Lg, we also employ the L, norm distance to measure the bit-level difference between
Min and Mgpyt. The loss function Lp is defined as follows:

LD(Minr Mout) = ||Min - MoutH%/L (4)

Target Classification Network Cg will classify Ir and obtain the classification prediction

P; € [0, 1]10, where P; represents the classification prediction of the ith example in the
current batch. Depending on the attack mode (target attack or non-target attack), Cg will
receive different T values (Tco = y; or Tco = t;) to calculate Lc and the loss function L¢
is divided into two situations as follows:

1.  Non-target attack: In this scenario, the content of Tcp is y;, which represents the
correct classification of Icp. Let P, be equal to the yi”‘ dimensional vector in P;, and
let Py, be the vector in vectors in P; excluding the yi”’ dimensional vector. Therefore,
Pyeq1 represents the confidence level of that Cg in considering I to belong to the y;th
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class. Conversely, P, represents the confidence level of all other classes in P; except
the ;" class, Thus, we have

LC(IE/ Tco) = max(Preal - max(Pother)/ 0) ()

2. Target attack: In this scenario, the content of Tc( is t;, which represents the target
classification of attack. Let Piyrqer be equal to the t;!" dimensional vector in P;, and
let Pysper be the vector in P; excluding the tith dimensional vector. Therefore, Prarget
represents the confidence level of that Cg in considering Ir to belong to the t;t class.
Conversely, P, represents the confidence level of all other classes in P; except the
t;'" class, Thus, we have

LC(IE/ TCO) = max (max(Pother) - Ptarget/ O) (6)

Our objective is to maximize the effectiveness of the attack during embedding. To
achieve this, we employ Stochastic Gradient Descent (SGD) to minimize the objective
function by optimizing 6 and & based on the distribution of Icp, My, and T¢p, namely

minimize EICO/Mianco l:LD(MIN’ Mour) + AeLg (I) + AcgLg(Ip) + )Lch(IE, Tco)
subject to Lp(Mn, Mour) < d

(7)

where Ag, Ag and Ac € [0, 1] are hyperparameters controlling the weights of different losses.
The constant d is a small number, set to 10~3. Following the GAN concept, we concurrently
train the parameter y. The adversarial discriminator A, aims to minimize the L4 loss on

the same distribution:
minimize Ej, m;, T., [LA (A <I> )} )

subject to Lp(Mjn, Moyr) < d

3.3. Architecture of HAG-NET

The Encoder Ejy: Initially, Eg use a convolutional layer to downsample the data from
Ico and subsequently generates intermediate layer data. Before passing the data to the
next layer, the secret message M|y is expanded to match the size of the intermediate layer
data and is connected to the data based on channel dimensions. This process ensures
that each convolutional layer’s filter in the subsequent stages has complete access to My,
enabling the encoder Icp to embed M|y into any spatial position of Icp. Following the
upsampling operation of the subsequent convolutional layers, the data are transformed to
match the size of Icp. To ensure that Ir closely resembles Icp and is distinguishable from
an autoencoder primarily focused on dimensionality reduction and I-p reconstruction,
we bypass and link Icp with the data prior to the output layer. The schematic diagram
illustrating this process is depicted in Figure 3.

The Decoder Dy and The Adversarial Discriminator A: In contrast to the encoder
Ey, the channels of intermediate data generated by Dy and A, have the same length L.
Following global spatial pooling and prediction with fully connected linear prediction
layers, the output Moy;1 of Dy matches the size of the secret message Mjy. The output of
A, is a value indicating the likelihood that A, considers the input sample to be I.

Target Classification Network C: We pre-trained some classification networks on
CIFAR-10 and MINST datasets, including Model A [22], Model B [6], ResNet32 [22], Wide
ResNet34 (WRN34), and the All-Convolution Network [24]. To achieve higher classification
accuracy, we made some modifications to the ResNet32 and WRN34, based on their original
network architectures. The network architectures are presented in Table 1 below.
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Figure 3. Schematic diagram of the skip connection of the secret message in middle layers, where

skip connect Middle Layers Data

secret message is My, cover image is Icp, and the expanded secret message will be the same size as
Ico and the middle layers data.

Table 1. The network frameworks of ResNet32 and WRIN34.

WRN 34

conv2d layer(kernel = 3, stride = 1, depth = 16)
basic block layerl = basic block(16, 160) x 5
(basic block:

ResNet 32

conv2d layer(kernel = 3, stride = 1, depth = 16)
basic block layerl = basic block(16) x 5
(basic block(16,16):

conv2d layer(kernel = 3, stride = 1, depth = 16)
batch norm layer(eps = 0.00001, depth = 16)
conv2d layer(kernel = 3, stride = 1, depth = 16)
batch norm layer(eps = 0.00001, depth = 16)
shortcut)
basic block layer2 = basic block(32) x 5
basic block layer3 = basic block(64) x 5
average pooling layer(kernel- = 6, stride = 1)

batch norm layer(eps = 0.00001, depth = 16)
conv2d layer(kernel = 3, stride = 1, depth = 160)
batch norm layer(eps = 0.00001, depth = 160)
conv2d layer(kernel = 3, stride = 1, depth = 160)
shortcut:)
basic block layer2 = basic block(160, 320) x 5
basic block layer3 = basic block(320, 640) x 5
average pooling layer(kernel- = 6, stride = 1)

flatten layer
softmax classifier

flatten layer
softmax classifier

Attacker: We input Icp and T¢o into the attacker based on PGD to generate 14 through
targeted or non-targeted attacking. The iterative principle is shown as follows:

I =TT "”{IIAY +asign| V] (B, 1Y, Teo ) | } )

where | (-) is the cross-entropy loss function, § is the parameter of the pre-trained target
classifier, a is the amplitude of image pixel update in each iteration, S is the maximum per-
turbations strength, « is the iterative maximum perturbation intensity, and V 1y represents

the gradient of I N these gradients inform us of the direction in which I 2’ should move
to decrease the loss function. Each iteration updates I% to I 2] *1, and the final output is
the adversarial sample I, which participates in the training process of HAG-NET. Both
images I and Ico have the same size, and the adversarial image I, is then forwarded to
A, for classification using an alternative approach. The pseudo-code flow is outlined in
Algorithm 1.
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Algorithm 1 uses PGD attack method to generate AE

Input:

Output:

_
e

11:

Cover image I, the parameters 8 of pre-trained target classification network, the
maximum iterations T, the perturbation step size &, and the maximum perturbation
range S
Adversarial example I4
119‘ < Ico //The initial adversarial example is the cover image.
for i=0:Tdo
§=Vi,] (ﬁ, Ifq, TCO> //Get the gradient at the current iteration exampl.

d' =« x sign(g') //Get the perturbation magnitude at the current iteration.
if Iy +d' € Ico + S then
Ifjl = Ifq 4 d!/ /Update the perturbed image
Else
If:'l = Clip (I fq +dl, Ico + S) / /Confine the perturbations to the range
end if

end for
Ip =1}

Finally, the pseudo-code of HAG-NET when generating Ir and updating the parame-
ters of each component is shown in Algorithm 2.

Algorithm 2 HAG-NET generate adversarial embedding examples

Input:

Output:

R A S e

—_
=2

_ =

_
AN

Juy
N

NN NP e
MR owx

Carrier image I, target attack label Ty, accompanying switch, secret message M;,,
pre-trained target classification network C, maximum training number e.
Encoder parameters &, decoder parameters v and adversarial stego example I¢
@Y + rand, 'yoe rand, 0%«rand// parameter initialization
for i %1,. .., edo
M, <« rand
Generating 14 by Algorithm 1
o= g (1o,
Mjy; = Dot (1;5)
If switch = True then
Te {IA, Ig}
Else
I e {lo 1t}
end if

(o)

v < 7'/ /Update the parameters -y to 7'
Li=Lg 7)

Lk =Lo(Aq(11))
L, = Lp (M, M

in’ “"out
Li=Lc (Ifg, Tm)
Backward Ag x L +Ag % L + Ly +Ac x L .
Update encoder’s parameters 6" and decoder’s parameters @'
end for
0 = 0°, @ = &°//Save the optimal parameters of encoder E, decoder D
Ig = Eg(Ico, My, )/ /Output Adversarial Steganographic example

4. Experiments and Results
4.1. Experimental Setting

The target classification network is most vulnerable to attacks under the white-box
setting, wherein the adversary possesses complete knowledge of all its parameters. There-
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fore, we concentrate on evaluating HAG-NET’s attack capabilities against various target
classification networks. For training on the MNIST dataset, we chose Model A [22] and
Model B [6] as the target classification networks. Similarly, for the CIFAR-10 dataset, the
target classification networks were ResNet32 and WRN34.

Figure 4a depict curves illustrating the Mean Squared Error (MSE), representing the
Ly norm distance between the Adversarial Steganographic Example I and the original
cover image Icp, and Figure 4b depict the classification accuracy, indicating the success
rates at which the target classification networks correctly classify images. These curves are
generated under different settings after 50 epochs of pre-training. Specifically, they display
the results for various embedding capacities (0.01BPP, 0.1BPP, and 0.2BPP) while training
HAG-NET to attack Model A on MNIST (Figure 4a,b), ResNet32 on MNIST (Figure 4c,d),
and ResNet32 on CIFAR-10 (Figure 4e,f). Lower MSE values signify better visual quality
of the ASE, while decreased classification accuracy indicates improved adversarial attack
efficacy of the ASE against the target classification network.

MNIST on Model A MNIST on ResNet32 CIFAR-10 on ResNet32
(a) (©) (e)

0.046

—e— 0.2bpp —e- 0.2bpp

0.1bpp 0.044 0.1bpp
—— 0.01bpp —— 0.01bpp

0.042 ‘\\ ‘ 5
. 0.040 008
.
\\\\“ 0038 £ 007
L 0036 006
-
| oo g
010 % 005 ———

—e— 0.2bpp 021 —e- 0.2bpp —e— 0.2bpp
0.055 0.1bpp 0.1bpp 0.095 0.1bpp
—— 0.01bpp —— 0.01bpp \ —— 0.01bpp
0.090

—e— 0.2bpp
0.1bpp
—— 0.01bpp

g =N 0.085

o
o
©
019 -

“_—I a0 M‘M
[} 0.080

0040 018

e 5 0.075
e
0035 017 AL,
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
epoch epoch h

() (@

Figure 4. Pre-training of HAG-NET under different experimental settings, where (a,b) show the
curves of Lg loss and the classification accuracy of target classification network Model A in MNIST
dataset, (c,d) show the curves of Lg loss and the classification accuracy of the target classification
network ResNet32 in the MNIST dataset, (e,f) show curves of Lg loss and the classification accuracy
of the target classification network ResNet32 in the CIFAR-10 dataset.

We primarily measure capacity in terms of bits per pixel (BPP), representing the num-
ber of secret message bits hidden per pixel of the Adversarial Steganographic Example
(ASE), which is calculated as L/(c x H x W). During the 50 epochs of pre-training, we
observed a consistent downward trend in the Mean Squared Error (MSE) curves, as de-
picted in Figure 4a,c,e. This trend is also correlated with different embedding capacities.
Specifically, the MSE associated with a 0.01 BPP embedding capacity consistently reached
the lowest value after 50 epochs of pre-training, irrespective of the dataset, as shown in
Figure 4a,c, or the target networks, as shown in Figure 4c,e. In other words, the ASEs
generated with a 0.01 BPP setting are the most indistinguishable from the cover image.
Although the curves of classification accuracy for different target classification networks
and datasets also exhibit a similar downward trend, as depicted in Figure 4b,d f, the curve
of classification accuracy under a smaller embedding capacity setting is not always lower
than that under a larger embedding capacity at the same epoch. For instance, the ASE
generated with a 0.1 BPP achieved the lowest classification accuracy value in Figure 4f, but
it also yielded the highest value in Figure 4b.

To achieve the optimal visual effect of Adversarial Steganographic Examples (ASEs),
we will assess the attack effectiveness of HAG-NET under an embedding capacity setting
of 0.01 BPP, which is independent of the attack capability. Specifically, for the CIFAR-10
dataset with images of size 32 x 32 x 3, the length L of My is set to 31 bits, whereas for
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MNIST, a grayscale image dataset with images of size 28 x 28 x 1, the length L of My is
set to 8 bits.

4.2. Loss Funcationes Evaluation

To assess the influence of each loss function on the generation process of HGA-NET,
we conducted experiments by individually removing Lg, Lp, Lg, and L¢ from the objective
function of HGA-NET while keeping the rest unchanged. The resulting sample images
and corresponding perturbations after 50 epochs of training are presented in Table 2 and
Figure 5 for comparison.

Table 2. A schematic diagram depicting the partial loss functions during the training process of
HGA-NET is absent.

Train Without Lg Lc
Ig
——
]
| ICO -1 E I
.
. - 05 —d—a—a—a ) 10 ———— - :
5 —e— without Loss_E —— without Loss_E —&— without Loss_E
4l —&— without Loss_D 0.4 1 —&— without Loss_D 0.8 1 —&— without Loss_D
—+— without Loss_C —+— without Loss_C —+— without Loss_C
3 —&— without Loss_G 0.3 | —&— without Loss_G o 0.6 —&— without Loss_G
w '
%) a g
[+
<2 0.21 0.4 1
14 0.1 0.2 1
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Figure 5. HAG-NET provides line graphs illustrating the variations in different types of data when
each component loss function is individually removed. Among these, (a) illustrates the changes in
Mean Squared Error (MSE) between ASE and the carrier image under various conditions; (b) displays
the variations in Bit Error Rate (BER) of decoded information; and (c) demonstrates the changes in
accuracy of target classification network in recognizing ASE.

From Table 2, we observe that upon removal of the Lg constraint, the strength of
adversarial embedding perturbations is no longer restricted, resulting in the degradation
of the carrier image data. Similarly, as depicted in Figure 5a, it can be noted that the Mean
Squared Error (MSE) between the adversarial steganographic embedding (ASE) generated
by the Lg-unconstrained HAG-NET and the carrier image surpasses that of the removal
of other loss functions. After removing the loss function Lg, the authenticity of ASE will
be called into question. This is primarily because the absence of adversarial loss from
discriminator D will lead to an increase in the divergence between the data of ASE and
that of real images, resulting in an enlarged gap between their data distributions. For the
loss functions Lp and L¢, they ensure that ASE achieves both data hiding and adversarial
robustness against the target classification network. When either one is removed, the
other effect of ASE becomes more pronounced. As shown in Table 2 and Figure 5b,c, after
removing Lc, ASE emphasizes data hiding more, resulting in better visual quality and
smaller perturbation strength. However, the adversarial robustness of ASE towards the
target classification network is completely lost. Conversely, removing Lg shifts ASE’s focus
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towards adversarial robustness, leading to decreased visual quality, increased perturbation
strength, and the inability of the decoder to extract any secret information from the per-
turbations. This also demonstrates why tuning the hyperparameters of the generator loss
function can adjust the performance emphasis of Adversarial Steganographic Embedding
(ASE).

4.3. White-Box Attack Evaluation

HAG-Net demonstrates remarkable performance in adversarial embedding, enhancing
the efficiency of adversarial embedding, as illustrated in Table 3 below.

Table 3. Runtimes of HAG-NET, FGSM, C&W, PGD, and HUGO.

FGSM C&W PGD HUGO HAG-NET
Runtime 0.06s >3 h 0.7s 0.08 s <0.01s

To enhance the adversarial effect of Adversarial Steganographic Examples (ASEs),
we pre-train the encoder and decoder until the Bit Error Rate (BER) between My and
Mouyr is below 1075, The Bit Error Rate (BER) is calculated by dividing the number of
erroneously decoded bits by the length L of the secret message. This pre-trained network
effectively embeds and extracts secret messages, employing an adversarial approach from
the inception of training.

We randomly select 500 images from the MNIST and CIFAR-10 datasets for verification
purposes, showcasing the target attack success rates of HAG-NET across different target
classification networks. The simulations are conducted under the condition that the BER of
the decoded message is less than 107>, as detailed in Table 4.

On the CIFAR-10 dataset, HAG-NET achieves average success rates of 99.03% and
99.16% with ResNet32 and WRN34, respectively. Similarly, on the MNIST dataset, HAG-
NET demonstrates outstanding performance, achieving success rates of 99.26% with Model
A and 99.11% with Model B. Furthermore, HAG-NET achieves success rates above 98.40%
with different target classification networks for any target classes, with the maximum
success rate reaching 99.88%, above the minimum success rate of 1.44%. This result
illustrates the robustness of HAG-NET’s adversarial attack effect across MNIST and CIFAR-
10 datasets. Additionally, this robustness is corroborated by the average success rates when
attacking both grayscale and RGB images, both exceeding 99%.

Table 4. The attack success rate of target attacks by HAG-NET on each target classification networks
in MNIST and CIFAR-10 datasets.

MNIST CIFAR-10
Target Class Model A Model B ResNet32 WRN34
Class 0 98.58% 99.69% 98.88% 98.98%
Class 1 99.04% 98.32% 99.68% 99.38%
Class 2 99.25% 98.80% 99.16% 99.36%
Class 3 99.88% 98.65% 99.50% 99.16%
Class 4 98.79% 99.00% 98.40% 99.30%
Class 5 99.40% 99.72% 99.48% 99.10%
Class 6 99.21% 99.42% 98.88% 99.32%
Class 7 99.65% 99.33% 98.91% 99.35%
Class 8 98.98% 99.17% 98.76% 98.83%
Class 9 99.83% 99.04% 98.65% 98.85%
Average 99.26% 99.11% 99.03% 99.16%

We primarily compare HAG-NET with recent generative adversarial attack methods,
namely ADV-GAN and AI-GAN, as they emphasize adversarial attacks and share similari-
ties with our approach. In Table 5, we blod the best average success rates achieved with
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different methods across various target classification networks and datasets. The results
indicate that HAG-NET emerges as one of the top-performing generative adversarial attack
methods under similar dataset and target classification network settings. Our method
achieves the highest average success rates with Model A, Model B, and WRN 34. Compared
with the worst-case scenario among the same target classification networks, HAG-NET
demonstrates improvements of 1.36%, 0.81%, and 4.46%, respectively. Notably, compared
to AI-GAN, which secured second place, HAG-NET achieves a 3.32% improvement under
the same WRN34 setting. Conversely, ADV-GAN achieves the best average success rates
with ResNet32, with HAG-NET trailing closely by only 0.27%. It is important to note
that the adversarial attack effectiveness of ASEs also considers decoding error rates less
than 107>, imposing stricter constraints compared to other methods. Thus, we assert that
HAG-NET exhibits superior adversarial attack effectiveness among them.

The Figure 6 shows the ASE (Ig) of targeted classes 0—4 generated on the CIFAR-
10 dataset and 5-9 targeted class generated on the MNIST dataset. In the Figure 6, Ico
represents the cover images, and |Icp — Ig| indicates the perturbations between I and I.

Figure 7a illustrates a natural image of a dog being transformed into the Ir of the
remaining nine classes, arranged from top to bottom and left to right as follows: airplane,
car, bird, cat, deer, frog, horse, boat, and truck. HAG-NET is capable of performing different
target attacks on the same natural image, as depicted in Figure 7b. The corresponding
perturbations are displayed at the same location. It can be observed that the disturbance
generated by attacking a target class similar to the original class is relatively small compared
to other classes. For instance, the original image of a dog being attacked and classified as a
cat, shown in the first column of the second row in Figure 7b, produces an I that is the

most indistinguishable from I¢o.
HD Iaﬂiﬂﬁm

I’ B L: I ' -
: ¥,
I
Figure 6. The ASE of 04 target class in CIFAR-10 and the ASE of 5-9 target class in MNIST.

E“.EIEI”

[Ico - I |

(2)

Figure 7. (a) shows the ASE of that a dog image has been attacked into remaining nine classes,
from top to bottom and left to right they are plane, car, bird, cat, deer, frog, horse, ship, and truck.
(b) shows the corresponding adversarial embedded disturbance at the same location.
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Table 5. The average attack success rate of ADV-GAN, AI-GAN, and HAG-NET to target attack
Model A, Model B, ResNet32, and WRN34 on MNIST and CIFAR-10 datasets.

MNIST CIFAR-10
Methods Model A Model B ResNet32 WRN34
ADV-GAN 97.90% 98.30% 99.30% 94.70%
AI-GAN 99.14% 98.50% 95.39% 95.84%
HAG-NET 99.26% 99.11% 99.03% 99.16%

4.4. Robustness Evaluation

In this subsection, we assess HAG-NET under the scenario where the target classifica-
tion network is aware of potential attacks. Consequently, the target classification network
will employ several commonly used defense methods proposed in [19] to counter adver-
sarial attacks. These methods have been proven to significantly enhance the robustness of
the target classification network. They include: (1) adversarial training with FGSM (Adv),
(2) ensemble adversarial training (Ens), and (3) adversarial training with PGD.

The adversarial attack methods involved in this evaluation do not have access to
the specific parameters of the target classification networks or the defense mechanisms
employed by them. Additionally, during the training process of these attack methods, the
target classification networks are replaced by vanilla models. The experimental results
comparing HAG-NET, PGD, ADV-GAN, and AI-GAN under various defense methods for
the target classification networks are presented in Table 6 below.

Table 6. The success rates of different adversarial attack methods against a target classifier with
defense mechanisms.

MNIST CIFAR-10
Model A Model B ResNet32 WRN34

Methods Adv. Ens. Iter.Adv Adv. Ens. IterAdv  Adw. Ens. Iter.Adv Adv. Ens. Iter. Adv
PGD 20.59 11.45 11.08 10.67 10.34 9.90 9.22 10.06 11.41 8.09 9.92 9.87
Adv-GAN 8.00 6.30 5.60 18.70 13.50 12.60 10.19 8.96 9.30 9.86 9.07 8.99
AI-GAN 23.85 12.17 10.90 20.94 10.73 13.12 9.85 12.48 9.57 10.17 11.32 9.91
HAG-NET(A) 15.37 10.65 7.16 15.49 10.02 13.03 10.78 12.02 10.99 9.64 10.00 10.33
HAG-NET(B) 19.60% 11.88 11.56 19.91 11.30 15.23 10.30 11.45 12.10 10.05 12.17 11.16

HAG-NET(A) is HAG-NET without attacker and HAG-NET(B) is HAG-NET with attacker. All data in this table
are presented in % unit, and the top two results of each experiment are shown in bold.

Through calculation, the average success rates of PGD, ADV-GAN, AI-GAN, HAG-
NET (A), and HAG-NET (B) are 11.05%, 10.09%, 12.92%, 11.29%, and 13.06%, respectively.
As depicted in Table 4, it is evident that the success rates of HAG-NET (B) across different
defense methods and datasets either match or outperform other methods. Notably, the
success rates of HAG-NET (A) rank in the top two only for ResNet32 with the Iter-Adv
defense method and Model B with the Adv defense method, which are generally lower than
other adversarial attack methods, except ADV-GAN. This observation is further supported
by their average success rates. However, compared to HAG-NET (A), the success rates
achieved by HAG-NET (B) trained with PGD attacker demonstrate a significant enhance-
ment, with an average improvement of 2.91% on Model A and Model B. Nevertheless, it is
regrettable that the improvement of HAG-NET (B) is only 0.41% on CIFAR-10. We posit
that HAG-NET (B) may inherit a certain degree of robustness from the AE generated by the
PGD method on the MNIST dataset, given that the performance of the PGD method on the
CIFAR-10 dataset is also suboptimal, which explains the small improvement on CIFAR-10.

4.5. Data Hiding and Image Information Entropy

We compare the Bit Error Rate (BER) of HAG-NET with classical watermarking
algorithms such as HUGO, WOW, and HiDDeN, as well as with the latest adversarial
embedding method ADV-EMB, which shares similar functionalities with ours, across
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various embedding capacities. The Bit Error Rate (BER) of decoded messages serves as the
experimental index value, as illustrated in Table 7 below.

Table 7. BRE differences between HAG-NET and other data hiding methods under different capacity
settings.

Method BPP BER BPP BER BPP BER
HUGO 0.010 0 0.100 0 0.200 0
WOW 0.010 0 0.100 0 0.200 0
HiDDeN 0.011 <107° 0.101 <10~° 0.203 <107
ADV-EMB 0.011 <107° 0.101 <107° 0.203 <1073
HAG-NET 0.011 <107° 0.101 <107° 0.203 <1073

Unfortunately, HAG-NET still exhibits the characteristic decoding errors that are
shared with the latest generative watermarking methods, HiDDeN and ADV-EMB. At an
embedding capacity setting of 0.101 bits per pixel (BPP), the Bit Error Rate (BER) of the
decoded message for both our method and HiDDeN remains below 10~°>. However, when
the embedding capacity setting increases to 0.203 BPP, the BER of HAG-NET rises to 1073,
However, under the setting of 0.203 bits per pixel (BPP), HAG-NET performs consistently
with ADV-EMB in terms of performance. It is noteworthy that, compared to the pertur-
bations generated by ADV-EMB, which are only adversarial against binary steganalysis,
HAG-NET achieves adversarial robustness against larger classification networks.

To determine whether Adversarial Steganographic Examples (ASEs) contain more
information than other watermarking methods based on image information entropy, we
selected some samples generated by our method and others with similar disturbance
intensity and the same embedding capacity setting for calculating image information
entropy. This process aims to ensure that Deep Neural Networks (DNNs) perceive these
samples generated by different methods similarly and that they possess the same level of
information as perceived by human eyes. The results are presented in Table 6.

From Table 8, it is evident that the samples generated by all watermarking methods
exhibit an increase in image entropy compared to that of the carrier image, indicating
an augmentation in the amount of information contained within the images. Across all
embedding capacities, adversarial embedding methods consistently demonstrate higher
information content than HiDDeN, implying that adversarial information is effectively
embedded into the carrier image in an imperceptible manner. While at 0.101 BPP, the
MSE of ASE produced by HAG-NET exceeds that of ADV-EMB, at 0.010 BPP, HAG-NET
still maintains the highest image entropy despite having a lower MSE compared to ADV-
EMB. We attribute this observation to the adversarial perturbations generated by our
method containing more information when confronted with larger, more complex networks
compared to the binary classification network detection countered by ADV-EMB.

Table 8. The difference of MSE and information entropy value between HAG-NET and others.

0.010 BPP 0.101 BPP
MSE IMAGE ENTROPY MSE IMAGE ENTROPY
Ico 0 E ~6.793 0 I ‘ ~1.847
HiDDeN 0.0042 @ ~7.037 0.8120 I I ~5.078
ADV-EMB 0.0045 @ ~7.046 0.8319 I ‘ ~5.158
HAG-NET 0.0040 @ ~7.056 0.8550 I I ~5.319
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5. Conclusions

In this paper, we introduce a novel generative adversarial watermarking model, HAG-
NET, which is jointly trained by an encoder, decoder, and an attacker. The Adversarial
Steganographic Examples (ASEs) generated by the trained HAG-NET can embed secret
messages and achieve protection against detection for the carrier data. Compared with
recent generative watermarking or attack methods, our approach demonstrates comparable
or superior performance. We verified that under the same disturbance intensity, the
perturbation of ASEs consistently contains more information than perturbations generated
by other methods across various settings such as embedding capacity and dataset.
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