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Abstract: We derive the ab initio equilibrium statistical mechanics of the gas–liquid–solid contact
angle on planar periodic, monodisperse, textured surfaces subject to electrowetting. To that end, we
extend an earlier theory that predicts the advance or recession of the contact line amount to distinct
first-order phase transitions of the filling state in the ensemble of nearby surface cavities. Upon
calculating the individual capacitance of a cavity subject to the influence of its near neighbors, we
show how hysteresis, which is manifested by different advancing and receding contact angles, is
affected by electrowetting. The analysis reveals nine distinct regimes characterizing contact angle
behavior, three of which arise only when a voltage is applied to the conductive liquid drop. As the
square voltage is progressively increased, the theory elucidates how the drop occasionally undergoes
regime transitions triggering jumps in the contact angle, possibly changing its hysteresis, or saturating
it at a value weakly dependent on further voltage growth. To illustrate these phenomena and validate
the theory, we confront its predictions with four data sets. A benefit of the theory is that it forsakes
trial and error when designing textured surfaces with specific contact angle behavior.

Keywords: contact angle; capillarity; statistical mechanics; hysteresis; electrowetting

1. Introduction

In a recent article, we outlined the statistical mechanics that predicts the hysteretic
behavior of the equilibrium angle between a textured solid plane and a liquid drop sur-
rounded by a gas [1]. Without resorting to any free parameter, the analysis captured the
magnitude of the angle upon the advance and recession of the drop in terms of the known
microscopic geometry of cavities pitting the plane and surface energies of the liquid–gas,
gas–solid and solid–liquid interfaces. Recognizing ‘advance’ and ‘recession’ of the contact
line as first-order phase transitions in the course of filling cavities, our treatment naturally
interpreted the difference between the advancing and receding contact angle cosines as
hysteresis. From this calculation, we uncovered six distinct regimes of the cavity ensemble,
thereby reproducing known phenomenology of the contact line.

For example, the analysis identified two of these regimes as the non-hysteretic ‘dry’
and ‘wet’ Cassie–Baxter states [2]. Crucially, we also showed that the ‘Wenzel state’, often
mentioned in the capillary literature, in fact spans the other four regimes. However, unlike
Wenzel’s geometrical conjecture that cavities effectively present a larger solid surface to
the drop [3], our approach managed to quantify the hysteresis that is the hallmark of
this state but that Wenzel himself did not explicitly predict. The statistical mechanics
then naturally interpreted the pinning of drops as an energy barrier associated with the
difference between the advancing and receding contact angle cosines. It also prescribed
solid textures with super-hydrophobic, super-hydrophilic, or non-equilibrium behavior.
Lastly, it identified two regimes exhibiting ‘metastability’, by which extrinsic action, such
as exerting an external pressure or condensing a vapor, is required to force a drop to reach
its equilibrium contact angle in recession [4,5].

Our treatment differed substantially from conventional analyses of capillarity, which
describe meticulously the microscopic orientation and occasional pinning of liquid near
the contact line, as it moves over every nook and corner of the textured solid surface.
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Instead, we ignored such detail and adopted the statistical mechanics of Maxwell [6] and
Boltzmann [7], who disregarded the outcome of every individual collision in a molecular
gas but rather handled their collective effects on the distribution of molecular velocities.
A cornerstone of Boltzmann’s insight was to recognize that molecular chaos, instead of
making the outcome of molecular collisions hopelessly unpredictable, allowed him to treat
their aftermath statistically. A benefit of applying Maxwell–Boltzmann’s approach to capil-
larity is to predict unambiguously how microscopic surface geometry affects the contact
angle and other phenomena where interfacial energy is paramount, such as unsaturated
porous media at equilibrium or permeated by fluid flow [8,9].

In this context, our statistical mechanics of the triple contact line superceded the
conventional trial-and-error practice to designing the texture of super-hydrophobic surfaces.
By forsaking adjustable parameters, its results were also subject to experimental validation.
In the process, an intriguing prediction arose in comparisons with data of Onda, Shibuichi,
et al. [10,11]. By varying the chemical composition of the liquid, those authors changed
interfacial energies and made the textured solid progressively more hydrophilic. Doing so,
they explored four of the six regimes that our theory identified. Crucially, the data suggested
that the contact angle jumps sharply as regime II gives way to the more hydrophilic ‘wet’
Cassie–Baxter state that we call regime IV (Figure 11, reference [1]).

Initially, we imagined that electrowetting could confirm the existence of this jump.
In the conventional view of this technique [12], establishing a voltage difference between
a drop and its underlying substrate is regarded as a convenient alternative to changing
surface wettability. However, to our surprise, adding electrostatic energy to our existing
treatment of textured surfaces was not equivalent to merely tuning interfacial energies.
Instead, the introduction of interacting capacitances on the microscopic scale unveiled
much richer physics.

In this article, our objective is to illustrate with a periodic texture how statistical
mechanics of the contact line may be extended to electrowetting, to elucidate peculiar
phenomena that arise when electrostatic energy is turned on and, toward guiding the
design of suitable validation experiments, to reveal how electric fields affect regimes of
contact line behavior.

We begin with a summary of electrowetting and its conventional treatment. We then
derive how microscopic capacitances contribute to the energy of individual unit cells. Then,
adopting the same procedure as our original statistical mechanics of textured surfaces, we
calculate the contact angle and its hysteresis in closed form while uncovering three more
regimes that only exist when an electric field is applied. Lastly, to demonstrate that the
theory can capture a diversity of observed behavior, we validate its results against four
data sets reporting phenomenologies that no single treatment had hitherto explained.

2. Background

In the electrowetting technique, a grounded electrode is fixed underneath a sheet of
dielectric solid [13]. A liquid drop at rest on the solid is supplied with another voltage,
thereby establishing a net capacitance C̄ across the sheet beneath the liquid–solid contact
patch. If the liquid is highly conductive and does not feature an electric double layer
above the patch [14], it may be considered a domain of constant voltage U. In this case, to
maintain thermodynamic equilibrium among the liquid–gas, gas–solid and solid–liquid
interfaces of the drop with respective surface energies γℓg, γgs and γsℓ, electrostatic energy
must be extracted from the solid–liquid contact interface of area A.

If the sheet of dielectric constant Ks and thickness H was rigorously flat, its capacitance
would amount to C̄ ≃ υ0Ks A/H, where υ0 ≃ 8.854 fF/mm is the permittivity of free
space. In that instance, the contact angle cosine would rise from the ‘Young’ equilibrium
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value cos θe ≡
(
γgs − γsℓ

)
/γℓg to its ‘Lippmann’ counterpart cos θe + ξ or, equivalently,

goniometry would record a contact angle cosine greater by the amount

ξ ≡ 1
2

(
υ0Ks

H γℓg

)
U2, (1)

unless cos θe + ξ > +1, in which case, a state of non-equilibrium would ensue.
Because ξ ∝ U2 ⩾ 0, applying a voltage difference across the dielectric solid sheet,

regardless of its sign, should always make the sheet appear progressively more hydrophilic.
If an alternating (AC) voltage is imposed on a perfectly conductive liquid at moderate
frequencies, the appropriate value of U2 is its mean-square [13]. A challenge to the Lipp-
mann formulation is that it allows contact angles to decrease all the way to perfect wetting
(cos θ = +1), despite evidence of a ‘saturation’ at an acute angle [15].

As this article will show, a textured dielectric sheet gives rise to a non-trivial behavior
that has not yet been described by models assuming a uniform capacitance C̄ across it. By
deriving analytical expressions for the dependence of contact angle on texture, our model
will also provide an analytical framework for testing the statistical mechanics treatment of
the triple contact line with or without electrowetting. Finally, this article will suggest how
deep texture could be designed to achieve a specific contact angle response to a tuning of
the applied voltage.

As we found in the absence of electrostatics (ξ = 0), cavities pitting the solid surface
in the neighborhood of the contact line form an ensemble that can be described by statistical
thermodynamics [1,8]. In its simplest form, the analysis adopts the Ising assumption that
individual cavities can either be empty or full, respectively denoted by the state variable
σ = ±1. Their interaction with nearest neighbors affects their own propensity to transition
to the opposite filling state as the contact line ebbs or flows overhead, thereby producing
a hysteresis of different contact angle cosines upon recession (cos θ−) or advance (cos θ+),
with θ+ > θ−.

Such collective transitions in the cavity ensemble resemble an avalanche, and manifest
themselves as Haines jumps in unsaturated porous media [8]. They occur at specific proba-
bilities χ that individual cavities have been overcome by the contact line. When surface
texture geometry is known, the theory predicts values χ+ and χ− at which the transition
should, respectively, occur in advance and recession [1], in terms of geometrical aspect
ratios and cos θe. If the resulting χ falls within the interval [0, 1], then the corresponding
transition can take place. If it does not, the transition is forbidden, and cavities must remain
in their original filling state. Meanwhile, because any such phase transition involves a
change in overall cavity surface energy, it releases ‘latent energy’ and is therefore classified
as ‘first-order’.

Without electrostatic energy (ξ = 0), χ+ is guaranteed > χ−. Consequently, in that
case, because there are six ways to place χ+ > χ− with respect to the interval [0, 1], the
contact angle belongs to one of six distinct regimes [1]. In this article, we develop a similar
analysis that accounts for the detailed contribution of individual cavities to the capacitance
of the ensemble, and we derive new expressions for χ+ and χ− in terms of microscopic
capacitances on the cavity scale. Then, with ξ > 0, we find another three regimes with
χ+ < χ− that exhibit hysteresis behavior that is not present with ξ = 0.

We illustrate next how to calculate these capacitances for a specific periodic texture.
Crucially, because hysteresis arises from interactions with nearby cavities, capacitances
must account for the filling state of their neighbors. We carry out the analysis in two
steps [1]. First, from the standpoint of the ensemble of microscopic cavities, we derive their
individual energy levels, including interfacial and electrostatic contributions. Invoking the
mean-field and ergodic assumptions, we calculate the probabilities χ± for their collective
first-order phase transitions and the resulting latent energies. We then delineate the nine
contact angle regimes from the positions of χ± relative to [0, 1].
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Second, from the macroscopic standpoint of the liquid spherical cap, we find how
elementary displacements of the contact line are met by changes in contact angle. Finally,
we show that hysteresis (cos θ− ̸= cos θ+) arises from two causes, one associated with the
occurrence (or not) of transitions in the collective filling state, and the other related to the
interfacial and electrostatic interactions of neighboring cavities.

3. Microscopic Capacitances

We illustrate the analysis with a planar textured surface consisting of a periodic
monodisperse array of square pillars of side b, rising a height h above a flat base, separated
by the distance d, and delimiting interconnected cavities etched in a solid of overall thick-
ness H > h (Figure 1). For this geometry, an individual cavity belongs to a unit cell having
four quarter-pillars on its periphery (dashed squares in Figure 1).

Figure 1. A typical subset of the cavity ensemble used in numerical simulations. In this square
monodisperse periodic geometry with 5 × 5 unit cells, a ‘central’ cell is surrounded by four neighbor-
ing ‘edge’ cells connected through openings between pillars of square cross-section (lightly shaded),
and four ‘corner’ cells across the latter. In this example, drawn for ‘case 1’ with n = 3, the central
cavity is filled (liquid darkly shaded), three edge cavities are empty and the rest are full of liquid
(shown as another shade of gray). For simplicity, we ignore curvature of any gas–liquid interface
between the central and edge cells [1,8].

In this section, we find how much electrostatic energy is attributed to a unit cell, given
the filling state of its neighbors. Unlike earlier studies adopting a uniform capacitance [13],
we consider subtle details on the surface cavity scale. With an eye toward the thermody-
namic analysis that follows, we design a lumped-parameter model providing the simplest
closed-form expressions for capacitance and electrostatic energy levels of a unit cell.

We validate the model against numerical simulations of the Laplace equation car-
ried out in domains encompassing solid material of dielectric constant Ks, as well as gas
wherever it fills cavities (dashed lines in Figures 2–5). These domains span a grid of
5 × 5 unit cells around the square ‘central’ cell of interest (Figure 1). Our goal is to infer
the electrostatic energy Ec = (1/2)CU2 of the central cell from the surface charge density
ν = −Ksυ0∂V/∂y induced within its footprint of area (b + d)2 below the solid from the
recorded potential gradient ∂V/∂y at the base. Such charge density produces a cell capac-
itance C = −Ks(b + d)2υ0(∂V/∂y)/U. In the simulations, the liquid conducts perfectly,
thereby imposing a uniform voltage U on any of its interfaces with the solid or gas. A
reference voltage of zero is applied below the solid. For simplicity, the displacement field
has a vanishing component perpendicular to any gas–solid interface, and to the four lateral
sides of the domain. The latter are cast far enough, and finite elements are sufficiently
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small, that adding more cells or refining discretization leads to no greater precision in the
energy of the central cell.

Because in the Ising model a cavity is either full or empty, and bulk liquid may or may
not lie overhead, there are four principal cases in this problem (Table 1). In cases 1 and 2,
the central cavity is full (σ = −1). There is no liquid above the domain in case 1 (χ = 0,
Figure 2), whereas liquid has instead overcome all cavities in case 2 (χ = 1, Figure 3).
In case 3, the central cavity is empty (σ = +1), and no liquid resides overhead (χ = 0,
Figure 4). Therefore, its unit capacitance vanishes, unless at least one of its neighboring
cells is wet. In case 4, the central cavity is also dry (σ = +1), but overhead liquid guarantees
a finite capacitance (χ = 1, Figure 5).

Table 1. Four cases in a periodic rectangular array of four pillars delimiting a central cell surrounded
by four edge neighboring cells and four corner cells. σ is the filling state of the central cell. χ is the
probability for the presence of the liquid drop overhead.

Case σ χ Figure

1 −1 0 Figure 2

2 −1 1 Figure 3

3 +1 0 Figure 4

4 +1 1 Figure 5

Figure 2. Lumped-parameter capacitance model in case 1 (filled central cavity, σ = −1; no bulk fluid
overhead, χ = 0). Hashed areas mark conductive liquid. Top: The closed dashed line delimits the
numerical simulation domain, which includes solid of dielectric constant K = Ks and gas with K = 1.
Thick vertical dashed–dotted lines define boundaries of unit cells; thin ones outline solid material
contributing to the capacitances shown. Dry neighboring ‘edge’ cavities may produce n parallel
capacitances combining those enclosed in the dashed rectangle. In homogeneous case 1 with n = 0,
the neighbor cavity would also contain liquid (not shown here). Bottom: Successive transformations
to calculate the equivalent impedance Z∗

1 of the four quarter-pillars belonging to the central cell when
n ̸= 0. Because Z∗

3 belongs to the adjacent unit cell, it does not feature in calculations of the central
cell energy. For notations, see Appendix A.
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Figure 3. Lumped-parameter capacitance model in case 2 (filled central cavity, σ = −1; bulk fluid
overhead, χ = 1). Top: Equivalent capacitance network; lines and symbols, see Figure 2. Bottom:
Similar to Figure 2, successive transformations to find Z∗

2 when n ̸= 0. Because Z∗
4 belongs to the

adjacent unit cell, it does not feature in calculations of the central cell energy.

Figure 4. Lumped-parameter capacitance model in case 3 (empty central cavity, σ = +1; no bulk
fluid overhead, χ = 0). The dry central cavity is coupled to a wet neighbor through the gas–liquid
interface in between pillars (capacitance C∗

m).

Figure 5. Lumped-parameter capacitance model in case 4 (empty central cavity, σ = +1; bulk fluid
overhead, χ = 1). Like case 3, the dry central cavity is coupled to a wet neighbor through a gas–liquid
interface (capacitance C∗

k ).

Adjacent unit cells do not necessarily hold the same filling state as the ‘central’ cavity
in every case. If so, we will show that electrostatic interactions among neighbors lead to
additional contact angle hysteresis beyond what theory predicts without electrowetting [1].
Our simulations indicate that such interactions are only significant when ‘edge’ cavities are
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filled differently than the central one. In contrast, ‘corner’ cells located across pillars have
negligible effects. Next-nearest neighbors are equally insignificant.

Meanwhile, because bulk liquid resides over many unit cells, cavities in case 1 only
experience nearest edge cavities in cases 1 or 3. Consequently, their electrostatic energy
depends on the integer number n of nearest edge cells in case 3. Conversely, unit cell energy
in case 3 depends on the number of adjacent cells in case 1. Similarly, case 2 energy depends
on the number of neighbor cells in case 4, and case 4 energy on that number in case 2.
Because there are four edge cells in this square packing, 0 ⩽ n ⩽ 4. (If pillars were arrayed
instead on a triangular packing, there would be up to 3 edge cells and no corner cell.) The
instance n = 0 is homogeneous filling without any near-neighbor interaction. Crucially,
our simulations also reveal that, while in general the capacitance of the central unit cell
depends on n, the actual placement of unlike nearest neighbor edge cells is inconsequential.

In all capacitance calculations, we make lengths dimensionless with the overall thickness
H of the textured solid, and capacitances as C∗ ≡ CH/Ksυ0(A0 + As), where A0 and As
are, respectively, areas of cavity opening and pillar cross-section. In the example of Figure 1,
A0 = (b + d)2 − b2 and As = b2. We denote the resulting quantities by an asterisk ∗.

Appendix A outlines a lumped-parameter model for the capacitance of the central cell,
including possible interactions with unlike nearest neighbors. Without such interactions,
the cavity ensemble is homogeneous and respective capacitances in the four cases are
C∗

10
, C∗

20
, C∗

30
= 0, and C∗

40
. For 0 < n ⩽ 4 neighboring cavities of a different filling state,

Appendix A also derives C∗
1 (n), C∗

2 (n), C∗
3 (n) and C∗

4 (n).
The lumped-parameter model and its parametric approximations are not strictly

necessary if surface texture is fixed. In that case, a numerical analysis of the electric field
can yield capacitances in all cases required by the theory. However, for surface design
optimization, such a model can reveal how the contact angle is affected by texture geometry.
In general, the dimensionless capacitances C∗ depend only on geometrical aspect ratios if
their electric field exclusively penetrates the dielectric solid (e.g., Equations (A1)–(A13)).
However, if they include a capacitive interaction with adjacent neighbors involving a field
traversing an empty cavity, Ks is no longer absorbed in the definition of C∗ and it appears
explicitly in the result (e.g., Equation (A16) or (A19) and (A20)).

As Figure 6 illustrates, the model captures well the parametric dependence of the
central unit cell capacitance for any number of unlike neighbors in all four cases. In the
next section, we therefore adopt its expressions. There, we calculate the electrostatic energy
of a unit cell in terms of its filling state σ, that of its neighbors, and the presence or absence
of liquid overhead (χ = 1 or 0).

Figure 6. Dimensionless capacitance C∗ ≡ CH/Ksυ0(A0 + As) of the central unit cell vs number
n of nearest neighbor ‘edge’ cavities of unlike state for Ks = 3.2, b∗ ≡ b/H = 1, d∗ ≡ d/H = 1
and h∗ ≡ h/H = 0.5 or, equivalently, α = 5/3, λ = 2/3 and ϵ = 3/4. Circles, squares, triangles
and diamonds are cases 1, 2, 3 and 4, respectively. Solid lines are expressions for the corresponding
lumped-parameter models of C∗

1 (n), C∗
2 (n), C∗

3 (n) and C∗
4 (n) from Equations (A11), (A13), (A15)

and (A18), plotted as if n was a real number. The respective intercepts are C∗
10

= C∗
1 (0), C∗

20
= C∗

2 (0),
C∗

30
= C∗

3 (0) = 0 and C∗
40

= C∗
4 (0) in Equations (A6), (A12), (A14) and (A17).
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4. Unit Cell Energy

In this section, we outline the first step in the derivation, namely the establishment of
an energy statistics of unit cells in the mesoscopic ensemble of many such cells near the
contact line. Because we reported the role of interfacial energies elsewhere [1], we now
emphasize the electrostatic contribution.

We begin with an account of nearest neighbors in the four cases outlined earlier. In
the mean-field approximation, the filling state of neighboring cells is equal to the average
value σ̄ in the ensemble under consideration. Therefore, the number n of edge cells with a
different filling state than the central one must be consistent with the probability dictated
by σ̄. In general, the probability P(σ = −1) to find a wet cell is a linear function of σ that
vanishes at σ = +1 and is unity at σ = −1. Then, P(σ = −1) = (1 − σ)/2. Similarly, the
probability of a dry cell is P(σ = +1) = (1 + σ)/2.

Because we found earlier that the capacitance of a central cell depends on the num-
ber of neighboring edge cells, but not on their actual position, there are 4!/[n!(4 − n)!]
ways to place 0 ⩽ n ⩽ 4 unlike edge neighbors among four such edge cells. Then, in
cases 1 and 2 where a central cell is wet (σ = −1), the probability to have n dry edge
cells is P1 or 2(n) = 4!/[n!(4 − n)!] × [(1 + σ̄)/2]n [(1 − σ̄)/2](4−n), which is normalized,
∑n P1 or 2 = 1. Therefore, if a unit cell is wet, its mean dimensionless capacitance is

C̄∗
1 or 2(σ = −1; σ̄) =

4

∑
n=0

4!
n!(4 − n)!

(
1 + σ̄

2

)n(1 − σ̄

2

)4−n
C∗

1 or 2(n), (2)

where C∗
1 (n) and C∗

2 (n) are found in Equations (A11) and (A13), respectively. Similarly, if
it is dry (σ = +1),

C̄∗
3 or 4(σ = +1; σ̄) =

4

∑
n=0

4!
n!(4 − n)!

(
1 − σ̄

2

)n(1 + σ̄

2

)4−n
C∗

3 or 4(n), (3)

with C∗
3 (n) and C∗

4 (n) from Equations (A15) and (A18).
Meanwhile, the probability of cases 1 or 3 (no bulk liquid overhead) is (1 − χ), and

the probability of cases 2 or 4 is χ (bulk liquid overhead). Consequently, the expected value
of a wet central unit cell capacitance is

C̄∗(σ = −1; σ̄; χ) =
4

∑
n=0

4!
n!(4 − n)!

(
1 + σ̄

2

)n(1 − σ̄

2

)4−n
[χC∗

2 (n) + (1 − χ)C∗
1 (n)], (4)

and the expected value of a dry cell is

C̄∗(σ = +1; σ̄; χ) =
4

∑
n=0

4!
n!(4 − n)!

(
1 − σ̄

2

)n(1 + σ̄

2

)4−n
[χC∗

4 (n) + (1 − χ)C∗
3 (n)], (5)

As written, these expressions are indeterminate when σ̄ = ±1. However, they con-
verge to the finite limits

C̄∗(σ = −1; σ̄ = −1; χ) = χC∗
20
+ (1 − χ)C∗

10
, (6)

C̄∗(σ = −1; σ̄ = +1; χ) = χC∗
24
+ (1 − χ)C∗

14
, (7)

C̄∗(σ = +1; σ̄ = −1; χ) = χC∗
44
+ (1 − χ)C∗

34
, (8)

and

C̄∗(σ = +1; σ̄ = +1; χ) = χC∗
40
+ (1 − χ)C∗

30
, (9)
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where C∗
ij

is short-hand for the dimensionless capacitance C∗
i (n = j) of a unit cell in state i

with j neighboring edge cavities of unlike filling.
To calculate energy levels for filling states σ = ±1 of the central unit cell, we now

find how much energy ∆E it must receive to transition from one level to another. First, we
consider filling an initially dry cavity (σ = +1 → −1) of volume vp. As we showed [1],
such filling involves four contributions associated with interfacial energies. They arise from
the work of pressure W = +κ γℓg vp on the interface of gas and bulk liquid with curvature
κ; the surface energy Γp = −Ap γℓg cos θe required to replace gas by liquid on cavity walls
of area Ap; the energy Γo = A0γℓg(1 − 2χ) needed to produce a gas–liquid interface as
the contact line advances (χ = 0 → 1) over the cavity of opening area A0, or to delete it
as the contact line recedes (χ = 1 → 0); and the interfacial energy Γn = σ̄γℓg An between
the central cell and its next-nearest ‘edge’ cells of mean-field filling state σ̄, where An is
the combined cross-section areas linking the central cell to its adjacent neighbors. In the
example of Figure 1, vp = A0h, A0 = (b + d)2 − b2, Ap = 4bh + A0 and An = 4dh.

Adopting our earlier convention [1] to make unit cell energy E dimensionless,
E∗ ≡ E/(A0γℓg), these interfacial contributions become

∆E∗
int(σ = +1 → −1) = 1 − 2χ − α cos θe + λσ̄ + κ∗, (10)

from which the parameters κ∗ ≡ κvp/A0, α ≡ Ap/A0 and λ ≡ An/A0 arise. (Unless
an external pressure is applied, κ∗ is generally too small to matter [1].) Another useful
dimensionless parameter is the area fraction ϵ ≡ A0/(A0 + As) of the top plane that
consists of cavity openings. With a perfectly flat surface, ϵ = 0. For the periodic texture in
Figure 1,

ϵ = 1 − (1 + d∗/b∗)−2, (11)

α = 1 + λb∗/d∗, (12)

λ = 4h∗/(2b∗ + d∗) = (α − 1)
[
(1 − ϵ)−1/2 − 1

]
, (13)

and
h∗ = (α − 1)b∗ϵ/[4(1 − ϵ)], (14)

where distances b, d and h are, once again, dimensionless with H. To these contributions, we
now subtract the electrostatic energy ∆Eel = (1/2)U2[C̄(σ = −1; σ̄; χ)− C̄(σ = +1; σ̄; χ)]
that the cavity must spend to fill, i.e., to raise its unit cell capacitance from the dry states 4
or 3 (Equation (5)) to the wet states 1 or 2 (Equation (4)). In dimensionless form, it is

∆E∗
el(σ = +1 → −1) = ξ[C̄∗(σ = −1; σ̄; χ)− C̄∗(σ = +1; σ̄; χ)]/ϵ. (15)

Overall, to transition from dry to wet, a unit cell must receive the dimensionless energy
∆E∗ = ∆E∗

int − ∆E∗
el from Equations (10) and (15),

∆E∗(σ = +1 → −1) = 1 − 2χ − α cos θe + λσ̄ + κ∗ (16)

− ξ[C̄∗(σ = −1; σ̄; χ)− C̄∗(σ = +1; σ̄; χ)]/ϵ.

A similar calculation yields the energy supplied to a cavity for its reverse transition
(σ = −1 → +1) from wet to dry. Overall,

∆E∗(σ = −1 → +1) = −1 + 2χ + α cos θe − λσ̄ − κ∗ (17)

− ξ[C̄∗(σ = +1; σ̄; χ)− C̄∗(σ = −1; σ̄; χ)]/ϵ.

In general, as its filling state evolves from −σ to +σ, the total dimensionless energy
budget of a unit cell changes by the amount

∆E∗(−σ → +σ) = σ(2χ − 1 + α cos θe − λσ̄ − κ∗)− ξ[C̄∗(+σ; σ̄; χ)− C̄∗(−σ; σ̄; χ)]/ϵ. (18)
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Fixing the ground state at σ = 0 and ξ = 0 without loss of generality [1], the energy of
a unit cell is therefore

E∗ =
σ

2
(2χ − 1 + α cos θe − λσ̄ − κ∗)− ξ

2
[C̄∗(+σ; σ̄; χ)− C̄∗(−σ; σ̄; χ)]/ϵ. (19)

For the periodic texture in Figure 1, dimensionless capacitances C̄∗(σ; σ̄; χ; b∗, d∗, h∗)
in Equations (4)–(9) and (15)–(17) are functions of the cavity filling state σ, the mean-field
σ̄, the probability χ and three independent geometrical aspect ratios b∗, d∗ and h∗. To
investigate geometrical limits, such as when cavities shrink toward a flat solid surface,
these ratios can be conveniently expressed in terms of α, ϵ and b∗ using Equations (12)–(14),
such that C̄∗ = C̄∗(σ; σ̄; χ; α, ϵ, b∗). For such periodic texture, expressions of C̄∗ are given in
Equations (6)–(9).

Among the dimensionless geometrical parameters α, ϵ, λ and b∗, the first three are
independent of texture scale, and therefore they should apply regardless of actual cavity
size. Without electrowetting, a solid surface with microscopic features should behave as
any larger homothetic texture, as long as cavities do not approach the drop size or are too
large to uphold the frozen disorder condition [1,8]. In contrast, because b∗ encodes the
scale H of the dielectric layer, size matters as soon as a voltage is applied.

5. Phase Transitions

After establishing transition energies like those in Equations (16) and (17), our earlier
article [1] calculated the two Ising energy levels for σ = ±1 in terms of geometrical param-
eters and the Young contact angle, χ and σ̄ [1]. We then found their respective probabilities
and the resulting expected value ⟨σ⟩ for the filling state of an individual unit cell, which
the ergodic assumption identified with σ̄. We showed that the ensemble effectively exhibits
‘frozen disorder’, such that ⟨σ⟩ can be approximated as −sign(χ − χ±), where χ± are
values of χ that make energy in Equation (19) vanish for σ̄ = ±1 or, equivalently, that
cancel the respective right-hand sides of Equations (16) or (17). For a periodic structure
with single-valued (λ, α), χ± have separate discrete values. If either one resides within the
interval [0, 1], then it marks the probability χ where the entire ensemble transitions from
one state to the other. If not, then such a transition is forbidden.

For a contact line advancing on an initially dry surface, χ rises from 0, while the
mean filling state remains pegged at σ̄ = +1. Therefore, C̄∗(−1) and C̄∗(+1) are given
by Equations (7) and (9), respectively. From Equation (16), σ would transition from +1 to
−1 at

χ+ =
1 − α cos θe + λ + κ∗ − ξ

(
C∗

14
− C∗

30

)
/ϵ

2 − ξ
(

C∗
40
− C∗

24
+ C∗

14
− C∗

30

)
/ϵ

. (20)

Conversely, for a contact line receding on an initially wet surface, σ̄ = −1 in Equation (17),
and C̄∗(+1) and C̄∗(−1) are found in Equations (6) and (8) such that, as χ decreases from
1, σ would transition from −1 to +1 at the probability

χ− =
1 − α cos θe − λ + κ∗ − ξ

(
C∗

10
− C∗

34

)
/ϵ

2 − ξ
(

C∗
44
− C∗

20
+ C∗

10
− C∗

34

)
/ϵ

. (21)

Because dimensionless capacitances appearing in Equations (20) and (21) can be
expressed in terms of α, ϵ and b∗, the transition probabilities χ− and χ+ are functions of α,
ϵ, b∗, κ∗, cos θe and ξ. In the limit where ϵ → 0, these expressions appear singular; however,
as Appendix A shows, they converge to finite values; nonetheless, this is inconsequential,
since a rigorously flat surface experiences neither phase transition nor hysteresis.

The positions of χ± relative to the interval [0, 1] give rise to a phase diagram like that in
Figure 7. This diagram is subject to geometrical restrictions. They include h∗ ≡ h/H < 1, since
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a cavity cannot be deeper than the underlying substrate; α > 1, since a cavity cannot have a
surface area smaller than its opening; and, from Equation (14), b∗ < 4(1− ϵ)/[ϵ(α − 1)].

As Figure 7 shows, electrowetting produces richer physics than without it. In its
absence, χ+ and χ− depend linearly on α cos θe, λ and κ∗; because ξ = 0 ⇒ χ− < χ+, there
are six ways to place these two numbers with respect to [0, 1], from which six regimes of
the contact angle arise [1].

The picture is more complicated with ξ > 0. Rather than straight lines separating
regimes and a symmetry between hydrophilic (cos θe > 0) and hydrophobic (cos θe < 0)
regions, boundaries are now curved. As expected, they are shifted toward the hydrophobic
side of the phase diagram, thereby narrowing the range of parameters producing hydropho-
bic behavior. For example, the ‘dry’ Cassie–Baxter state (regime VI) covers a smaller region.
Its ‘wet’ counterpart (regime IV), which was strictly confined to cos θe > 0 with ξ = 0, now
exists with negative cos θe.

As Equations (20) and (21) indicate, transition probabilities are hysteretic if they arise,
in that their value depends on the path of the contact line. Without applying a voltage
(χ = 0), χ− < χ+, and their difference is due to λ. With ξ > 0, additional hysteresis
arises from mutual capacitances. Curiously, χ+ may also become smaller than χ− in rare
instances, e.g., the grey regions of Figure 7 within regimes I, IV and VI. In addition, it
allows three new regimes VI, VIII and IX that only exist for ξ > 0.

Figure 7. Phase diagram of α cos θe vs λ for the conditions h∗ = 0.9, Ks = 3.2 and κ∗ = 0 with the
geometry of Figure 1. Top: cos θe = +0.5 (hydrophilic solid). Bottom: cos θe = −0.5 (hydrophobic).
The empty range α < 1 is topologically forbidden. Solid lines are χ+ and χ− = 0 or 1, as shown for
ξ = 0.25. Dotted lines are the corresponding straight lines for ξ = 0 (no electrowetting). Light arrows
point to where these lines are moved when ξ is increased from 0 to 0.25. Roman numerals mark the
first six regimes. The grey regions are rare instances where χ+ < χ− at ξ = 0.25. However, they
still belong to regimes IV, I and VI where they arise. No such region exists with ξ = 0. For ξ = 0.25,
L± < 0 and the color scale indicates λ + L+ in regimes I and II, and λ + L− in regimes I and III.
(Contrast this with λ + L± ≡ 0 for ξ = 0.) Color is not shown in regimes IV, V and VI where no
transition is allowed.

6. Latent Energy

If they take place, phase transitions at χ+ or χ− involve a latent energy, which is
defined as the energy that a unit cell must receive on average to execute them. Equivalently,
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in a form made dimensionless with (A0γℓg), it is the change L = ∆⟨E∗⟩ across the transition
in the expected value of the unit cell energy in Equation (19), where σ = σ̄ both change
sign simultaneously. To evaluate L, our earlier article first reported the expected value
consistent with a filling probability that is characteristic of frozen disorder,

P(σ = ±1) = H(±χc ∓ χ), (22)

where H is the Heaviside step function and χc = χ± is the probability at the advancing
(+) or receding (−) transitions. In the Ising formulation, any function f (σ) has an ex-
pected value ⟨ f ⟩ = f (σ = +1)× P(+1) + f (σ = −1)× P(−1), where P(±1) is given by
Equation (22). In particular, the expected capacitance terms in Equation (19) are〈

C̄∗(±σ; σ̄; χ)
〉
= C̄∗(±1; σ̄; χ)× P(+1) + C̄∗(∓1; σ̄; χ)× P(−1). (23)

For example, at χ ≲ χ+ just before an advancing transition where σ = σ̄ = +1,
P(+1) = 1,

〈
C̄∗(σ; σ̄; χ)− C̄∗(−σ; σ̄; χ)

〉
= C̄∗(+1;+1; χ)− C̄∗(−1;+1; χ).

Without electrowetting (ξ = 0), we found that advancing and receding transitions
always exhibit the same ‘exothermic’ latent energy L± = −λ < 0 for a periodic textured
surface. Instead, using Equation (23) to find the expected value of E∗ from Equation (19),
and substituting χ± from Equations (20) and (21), we now find that L+ and L− are no
longer equal, invariant or always exothermic,

L± = ∓
(
2χ± − 1 + α cos θe − κ∗

)
(24)

∓ ξ

2
[C̄∗(−1;−1; χ±)− C̄∗(+1;−1; χ±)

− C̄∗(+1;+1; χ±) + C̄∗(−1;+1; χ±)]/ϵ.

With ξ > 0, these expressions for L± are too complicated to quote, although they are
found in the MATLAB program ElectroWetting.m available as Supplementary Materials.
One can calculate them from Equation (24) in terms of any of three independent geometrical
parameters using Equations (6)–(9), (11)–(14), (20) and (21), and capacitances provided in
Appendix A. Figure 7 illustrates their dependence on α cos θe and λ at fixed h∗. In that
example, both latent energies are exothermic where they exist, L± < 0. However, other
hydrophobic conditions can yield endothermic latent energies: for example (λ = 0.2, α = 8,
θe = 2π/3, h∗ = 0.9, Ks = 3.2, κ = 0) has L+ ≃ 0.146 and L− ≃ 0.127 for ξ = 0.35 in
regime I; these values also lead to the rare instance where χ+ ≃ 0.34 < χ− ≃ 0.51.

7. Macroscopic Energy Balance

To predict the advancing and receding contact angles, we now consider the evolution
of the macroscopic energy of the liquid drop as the contact line travels across the underlying
solid substrate pitted with cavities that are either filled or empty. As Tadmor [16] showed,
elementary changes in interfacial areas contribute to a change in the potential energy of
the drop

dG = γkℓdAkℓ + γℓgdAℓg + γgkdAgk, (25)

where index k represents any of the three possible states of matter in unit cells beneath
the line, namely gas (g), solid (s) or liquid (ℓ) under the Ising assumption. At the contact
line, the interface area between state k and the liquid grows at the expense of that between
gas and state k, so that dAkℓ = −dAgk. Meanwhile, at constant volume, a spherical liquid
cap satisfies

dAℓg/dAkℓ = cos θ, (26)

where θ is the instantaneous contact angle. Then,

dG = (γkℓ + γℓg cos θ − γgk)dAkℓ, (27)
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For an exclusively flat solid substrate solid (k = s), Equation (27) is dG = (cos θ −
cos θe)γℓgdAsℓ, thereby yielding how the potential energy of a drop changes as θ deviates
from the equilibrium contact angle θe [1]. With an electrostatic field, Maxwell stresses
induce local deformations around the contact line [17]. However, because Equation (26)
remains valid even when the liquid is severely deformed by gravity [18], we conjecture
that it also applies to electrowetting.

When k = s̄ represents effective properties of the textured solid surface with cavities
of known filling statistics, the corresponding elementary change in the ensemble-averaged
potential energy of the drop can similarly be written

dḠ = (cos θ − cos θϖ)γℓgdAs̄ℓ, (28)

where dAs̄ℓ is the increment of visible contact patch area, and θϖ represents the angle of
an advancing contact line (θ+, ϖ = +1), or a receding one (θ−, ϖ = −1). In this section,
we calculate these angles by evaluating the expected change ⟨δG⟩ in the drop’s potential
energy as the contact line sweeps an individual unit cell, and by identifying the result with
Equation (28). Equation (28) is also the basis for calculating the energy barrier hampering
reversal of the contact line direction [1].

Algebraically, ⟨δG⟩ includes three ‘reversible’ contributions to drop potential that have
equal and opposite expressions upon advance and recession and, if a phase transition is
allowed, a possible ‘irreversible’ fourth that arises with latent energy but does not merely
change sign upon contact line reversal. For instance, with ξ = 0, this fourth contribution
remains the same in both directions, and therefore, it produces different expressions for
cos θ+ and cos θ− [1].

In our earlier article, we calculated the first two average contributions ⟨δGs⟩ and ⟨δGo⟩,
respectively attributed to the passage of the contact line over flat parts of the solid surface
and over the cavity opening. Making k = s and dAkℓ

.
= ϖAs in Equation (27),

⟨δGs⟩ = ϖAsγℓg(cos θ − cos θe). (29)

To determine ⟨δGo⟩, one considers the two Ising cases with incremental opening area
dAkℓ

.
= ϖA0. If the cavity is filled, Equation (27) yields δGo = ϖA0γℓg(cos θ − 1) with prob-

ability P(−1) = (1− σ̄)/2; if it is empty, δGo = ϖA0γℓg(cos θ + 1) with P(+1) = (1 + σ̄)/2.
Overall, the expected value is ⟨δGo⟩ = ϖA0γℓg(cos θ + σ̄). Then, because σ̄ depends on χ,
passage of the contact line over the unit cell ensemble (χ = 0 → 1) produces the overall
integral average

⟨δGo⟩ = ϖA0γℓg

(
cos θ +

∫ 1

χ=0
σ̄dχ

)
. (30)

With electrowetting, a third algebraically reversible contribution arises as the drop
must give up electrostatic energy to accommodate changes in its underlying capacitance.
Like δGo, elementary contributions to δGc depend on the filling state of cavities. If
they are full, passage of the line brings unit cells from case 1 to case 2 without unlike
neighbors (C∗

10
→ C∗

20
) and, if they are empty, from case 3 to case 4 (C∗

30
→ C∗

40
). Then,

⟨δGc⟩ = −(1/2)U2ϖ
[(

C20 − C10

)
(1 − σ̄)/2 +

(
C40 − C30

)
(1 + σ̄)/2

]
. Applying a similar

integral procedure as that for δGo, substituting ξ, noting that C30 = 0, and defining
δc ≡ (C∗

20
− C∗

10
)/C∗

40
,

⟨δGc⟩ = −ϖ(A0 + As)γℓg
ξ

2
C∗

40
(1 + δc)

[
1 +

(1 − δc)

(1 + δc)

∫ 1

χ=0
σ̄dχ

]
. (31)

As Figure 6 suggests with δc ≃ 2%, this expression is typically dominated by capac-
itance C∗

40
in case 4. However, different capacitance designs can also bring δc near one

(Appendix B).
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The fourth contribution to the incremental drop potential energy is minus the average
latent energy that cavities must receive from the drop to switch filling state, if such first-
order phase transition is allowed,

⟨δGL⟩ = −A0γℓgL±. (32)

As expected, this expression does not depend explicitly on contact line direction
(ϖ = ±1, advance or recession). Adding the four contributions from Equations (29)–(32),
matching the result to Equation (28) with incremental unit cell area dAs̄ℓ

.
= ϖ(A0 + As),

defining the opening surface area fraction ϵ ≡ A0/(A0 + As), and identifying ϖ = ±1
with advancing (θ+) and receding (θ−) contact angles, we find

cos θ± = (1 − ϵ) cos θe − ϵ
∫ 1

0
σ̄dχ + ξC∗

40

(
1 + δc

2

)[
1 +

(
1 − δc

1 + δc

) ∫ 1

0
σ̄dχ

]
± ϵL±. (33)

In the limit of a flat solid surface without cavities (ϵ → 0), C∗
10

= ϵ[1+(α− 1)/(b∗p2)]+

O[(α − 1)4ϵ] → 0, C∗
20

= 1 + ϵ2b∗(α − 1)/4] +O[(α − 1)4ϵ2] → 1, C∗
40

= 1 − ϵ2b∗(Ks −
1)/4] + O[(α − 1)4ϵ2] → 1, and δc → 1. Therefore, Equation (33) converges toward
cos θ± = cos θe + ξ when cavities disappear, as expected.

Table 2. Terms in Equation (33). σ̄i and σ̄f are, respectively, the initial and final filling states of
the textured surface. If Equations (20) or (21) yield 0 ⩽ χ± ⩽ 1, a phase transition is allowed
with L = L± from Equation (24); otherwise, L ≡ 0. (a) Regimes III and V can have ‘metastable’
recession, whereby an advancing contact line cannot wet cavities without intervention [1,4,5]. At its
most extreme, such recession therefore begins with dry cavities and forsakes hysteresis, whereby
the four columns on the right are replaced by their advancing counterparts. (b) Regime IV begins
with filled cavities (σ̄i = −1), irrespective of initial state, as soon as an equilibrium contact line is
formed. Similarly, regime VI always begins with a dry state (σ̄i = +1). As a result, regimes IV and
VI are known as ‘wet’ and ‘dry’ Cassie–Baxter states [1]. Regimes VII, VIII and IX only arise with
electrowetting (ξ > 0) when Equations (20) and (21) yield χ+ < χ−.

Regime Advance (ϖ = +1) Recession (ϖ = −1)

χ+ χ− σ̄i σ̄ f
∫ 1

0 σ̄dχ L σ̄i σ̄ f
∫ 1

0 σ̄dχ L

I ∈[0, 1] ∈[0, 1] +1 −1 2χ+ − 1 L+ −1 +1 2χ− − 1 L−

II ∈[0, 1] <0 +1 −1 2χ+ − 1 L+ −1 −1 −1 0
III a >1 ∈ [0, 1] +1 +1 +1 0 −1 +1 2χ− − 1 L−

IV b <0 <0 −1 −1 −1 0 −1 −1 −1 0
V a >1 <0 +1 +1 +1 0 −1 −1 −1 0
VI b >1 >1 +1 +1 +1 0 +1 +1 +1 0

VII <0 ∈[0, 1] −1 −1 −1 0 −1 +1 2χ− − 1 L−

VIII ∈[0, 1] >1 +1 −1 2χ+ − 1 L+ +1 +1 +1 0
IX <0 >1 −1 −1 −1 0 +1 +1 +1 0

As Table 2 summarizes, contact angle hysteresis (cos θ+ ≠ cos θ−) arises from Equation (33)
in two ways. In the first, hysteresis is guaranteed if a phase transition occurs in at least one
direction, i.e., if χ+ or χ− (or both) belong to the interval [0, 1]. Such is the case for regimes
I, II, III, VII and VIII, where the latent energy term ϵL bears a different sign in advance and
recession, or vanishes in one direction. In the second way, hysteresis is inevitable whenever
the term

∫
σ̄dχ does not integrate to the same value in both directions, but instead depends

on the initial state σ̄i of the surface (regimes I, II, V, VII, VIII and IX). Conversely, the only
non-hysteretic regimes are the wet and dry Cassie–Baxter states, which we, respectively,
call regimes IV and VI.

Nonetheless, Table 2 assumes that the specified initial σ̄i is readily achievable. How-
ever, as Quéré, Lafuma and Calliès [4,5] noted, surfaces in regimes III and V do not wet
without effort, and therefore, their recession may not begin with fully filled cavities. In
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this instance, a goniometer would not observe as much hysteresis as what Equation (33)
predicts, unless special preparation is first implemented, such as condensing water [4] or
pressing the liquid on the surface [5]. Quéré, Lafuma and Calliès [4,5] interpreted this
dependence on initial conditions as ‘metastability’. However, whether or not electrostatic
energy is involved, our theory readily identifies the origin of such behavior [1].

8. Phenomenology

For the periodic array of square pillars in Figure 1, predictions of transition proba-
bilities in Equations (20) and (21), latent energies in Equation (24), and contact angles in
Equation (33) are implemented in the MATLAB program ElectroWetting.m provided as
Supplementary Materials, in terms of the three independent geometrical parameters ϵ, α
and b∗, the Young contact angle cosine cos θe, the dimensionless drop interface pressure κ∗,
the solid dielectric constant Ks and the electrowetting parameter ξ.

As written, Equations (19), (24) and (33) are general, in that they do not require that the
cavity network be periodic. In principle, for any well-characterized texture, it is therefore
possible to carry out electrostatic simulations of all relevant states of the central cell and
its near neighbors, record the resulting capacitances, and calculate regime transitions and
contact angle behavior vs voltage. Because this approach needs no empirical input beyond
independently measured material dielectric constant and surface energies, we qualify
it as ab initio. However, while numerical simulations can be used in principle to find
capacitances C∗

ij
of any arbitrary texture in the four cases, it may not be straightforward to

establish their closed-form expressions. Then, the determination of optimum dimensions
of a textured surface is best achieved by constructing a lumped-parameter model with
best-fit coefficients like those used in Appendix A. Such a procedure does not impugn the
generality of our framework.

Thus, for the square periodic texture of Figure 1, we fitted p1 ≃ 0.929 and p2 ≃ 0.197
to 36 or more homogeneous simulations (n = 0) in cases 1, 2 and 4 with 0.12 < b∗ < 2.2,
0.25 < d∗ < 3, 0.11 < h∗ < 0.86 and Ks = 3.2, thereby matching the lumped-parameter
expressions of C∗

10
, C∗

20
and C∗

40
to within relative errors < 2.6%, < 1.3% and < 5.8% in

those respective cases. We then conducted 20 inhomogeneous simulations with b∗ = d∗ = 1
and h∗ = 1/2 in all four cases with 0 ⩽ n ⩽ 4 to least-squares fit p3 ≃ 0.044, p4 ≃ 0.065
and p5 ≃ 0.10 (Figure 6).

In the example of Figure 1, all unit cells have the same rectangular dimensions, and
therefore have single-valued (λ, α). If instead the texture possessed a distribution F(λ, α),
multiple conformations would have to be simulated to produce ab initio predictions. With
these challenges in mind, we exploit the result of Equation (33) to reveal how peculiar
phenomena observed in electrowetting also arise with the ideal periodic geometry that
we analyzed. We begin with two data sets obtained on random textures [19,20]. Then, we
consider a periodic design [21] resembling Figure 1. Finally, we illustrate how an altogether
different surface topology can be analyzed [12].

8.1. Blake et al. [19]

Figure 8 recalls the experiments of Blake et al. [19] to illustrate how the theory can
predict contact angle saturation, whereby cos θ does not increase with voltage squared
until reaching perfect wetting at cos θ = +1 (and non-equilibrium beyond), but instead
switches regime to limit its rise. Because these authors obtained the data for a PET film
without additional texture, comparisons of our model with those data are only qualitative.
However, they suggest that saturation begins as the voltage rises across the transition
between regime II and IV. Because hysteretic regimes I and II have cos θ+ < cos θ−, they
possess a substantial energy barrier, calculated in Reference [1], which promotes contact
line pinning until saturation occurs. If a goniometry experiment could keep the drop
in place in regime IV despite the absence of pinning, regime IV would eventually give
way to hysteretic regime V at ξ ≃ 1.18, then to regime VI at ξ ≃ 1.34 (inset of Figure 8).
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However, because regimes V and VI have out-of-equilibrium advancing angles, they cannot
be observed.

Figure 8. The data of Blake et al. [19] for contact angle cosines of a sessile drop with γℓg ≃ 0.064 J/m2

vs ξ on a PET film with Ks ≃ 3.4 and thickness H ≃ 100µm. Circles and triangles are, respectively,
DC and mean-square AC voltages converted to ξ using these values. (Unlike [19], we base ξ on
mean-square AC voltage rather than AC amplitude [13].) Solid and dashed lines are predictions of
cos θ+ (advance) and cos θ− (recession) in Equation (33) with cos θe ≃ 0.39 [15] and κ∗ = 0. Because
this surface has random topography, ϵ = 0.35, α = 1.2 and b∗ = 0.23 are fitted to data only to judge
whether the model can reproduce trends qualitatively. Inset: Upon increasing ξ, the advancing angle
conforms to regime I in 0 < ξ < 0.32, then regime II (0.32 < ξ < 0.338), followed by a smaller
saturated slope in regime IV without hysteresis (0.339 < ξ < 1.18), in which the absence of a pinning
energy barrier makes it difficult to keep the drop from sliding away. Regime V (1.18 < ξ < 1.34) has
inverted hysteresis, but its advancing angle is out of equilibrium. Regime VI (ξ > 1.34) cannot be
reached either. Regimes are shown as roman numerals.

8.2. Gupta et al. [20]

Gupta et al. [20] conducted experiments in which they quantified hysteresis on a
hydrophobic solid. Once again, because the latter’s microscopic texture is unknown,
comparisons with our model are merely instructive. As Figure 9 suggests, these authors
observed a stable drop until the transition from regime II to IV, at which point contact
angle saturation occurred. In principle, greater voltages should raise cos θ further toward
perfect hydrophily in subsequent regimes IX and VI (inset). However, the absence of an
energy barrier in non-hysteretic regime IV made it impractical to keep the drop steady
and explore those regimes at larger U2. On the other hand, the sudden removal of the
barrier near ξ ≃ 0.641 allowed the drop to undergo a recession that the substantial barrier
in hysteretic regimes I and II had hitherto prohibited. With effective values of ϵ, α and b∗

shown in Figure 9, the model of Equation (33) captures essential features of the data, with
the exception of the apparent threshold ξ ≃ 0.06 that electrowetting had to exceed before
affecting the advancing angle.
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Figure 9. The data of Gupta et al. [20] (cos θ+, bottom symbols; cos θ−, top; from their Figure 2b) on a
PDMS sheet (H ≃ 10µm, Ks ≃ 2.65) with sessile water drops (γℓg ≃ 0.072 J/m2). Solid and dashed
lines, see Figure 8, are for cos θe = −0.29, ϵ = 0.25, α = 1.8, b∗ = 0.3, and κ∗ = 0 with regimes I
(0 < ξ < 0.546), II (0.546 < ξ < 0.641), IV (0.641 < ξ < 0.794), IX (0.794 < ξ < 0.796), VI (0.796 < ξ)
reaching perfect wetting at ξ ≃ 1.48 (inset). Regimes are shown as roman numerals. Arrows mark
when U2 (and ξ) are increased or decreased.

8.3. Herbertson et al. [21]

Herbertson et al. [21] created a patterned solid surface featuring cylindrical posts in
an array of equilateral triangles. Because each of their unit cells possessed three adjacent
cavities, their arrangement was topologically different from the square packing of columns
with four neighbors that we modeled. In addition, their design included ridges of height
h/2 joining every two posts along parallel lines, which amounted to two and a half cross-
sections separating each cavity to its neighbors, thereby reducing λ. In spite of these
differences, it is instructive to compare our predictions to their data, in which they raised
the voltage from zero until saturation, then progressively brought it back down again
(Figure 10). As these authors suggested, we estimate the underlying scale of ξ by fixing
(1/2)υ0Ks/(Hγℓg) ≃ 7 10−5 V−2. Otherwise, we adopt values of α, λ, ϵ and h∗ calculated
from their triangular lattice, including ridges and, for compatibility with our model, we
prescribed an effective b∗ from Equation (14).

Figure 10 compares our predictions to data. As these authors raised ξ from zero, the
textured solid conformed to regime III in 0 < ξ < 0.63, then regime V in 0.63 < ξ < 1.07,
while the advancing angle adjusted to a progressively smaller equilibrium value at each
new voltage. Both regimes are deemed ‘metastable’ [4,5], as they cannot spontaneously
achieve complete cavity wetting upon recession (Table 2). Since they are also hysteretic,
they oppose a substantial energy barrier to retracting the contact angle [1]. Consequently,
because the subsequent transition to regime II required a sharp increase in θ at ξ ≃ 1.07,
the small drop, barely deformed by gravity, likely could not recede. Instead, it never
transitioned to regime II and likely remained ‘frozen’ in its current state of regime V (dash–
dotted line). Then, as ξ was subsequently lowered, the contact patch area and cos θ also
remained nearly invariant. In this stand-down, the metastability and energy barrier of
regime V prevented the system to explore its equilibrium receding angle found in Table 2.
Instead, because returning values of cos θ were located between the two ‘primary curves’
of cos θ− and cos θ+, they exhibited a behavior called ‘return-point’ hysteresis [8].

Figure 10 illustrates the important fact that values of cos θ predicted by the equilibrium
theory cannot always be achieved in practice. In other words, changing the voltage can
occasionally induce regime transitions requiring a reversal of the contact line that the
energy barrier of hysteresis may forbid. If ‘metastable’ regimes III and V are involved,
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some transitions can similarly be forbidden, as they are predicated on an initial state that
these regimes cannot spontaneously reach without applying extrinsic energy [1].

Figure 10. The data of Herbertson et al. [21] with posts of b = 7µm diameter, h = 6.5µm and
H = 15µm on an equilateral triangular pattern of b + d = 15µm center-to-center distance with a
single ridge of height h/2 in each cavity, producing α = 1 + 4h(πb + d)/[2

√
3(b + d)2 − πb2] ≃ 2.25,

λ = 20dh/[2
√

3(b + d)2 − πb2] ≃ 1.66, ϵ = 1 − π[b/(b + d)]2/2
√

3 ≃ 0.803. For comparison, we
adopt Equation (14) to find b∗ ≃ 0.34 from h∗ ≃ 0.43. Consecutive regimes as voltage is raised:
Regime III (0 < ξ < 0.63), regime V (0.63 < ξ < 1.07), regime II (1.07 < ξ < 1.62), regime IV
(1.62 < ξ). Solid, dashed lines and arrows, see Figure 9. The dotted line and shaded regions mark
non-equilibrium values of cos θ− > +1. The dash–dotted line marks the ‘frozen’ cos θ as the drop
fails to transition from regime V to regime II, which the theory underpredicts until voltage excitation
is released.

8.4. Krupenkin et al. [12]

In this context, we illustrate similar limitations of the equilibrium theory by comparing
its predictions with the data of Krupenkin et al. [12], who created a texture consisting of
very slender microscopic posts on a square lattice with relatively large pitch and, unlike
solids in Figures 2–5, a thin dielectric layer covering all features at a constant distance w
from their exposed surface. Because this layer sets the electrostatic energy, its uniform
thickness produces different capacitances and predictions than in Sections 3–7. Because
w ≪ H, the resulting dimensionless square voltages ξ ≡ (1/2)υ0KsU2/(wγℓg) are also
much larger than those in Figures 8–10. To illustrate how the theory is applied to this case,
Appendix B summarizes how predictions are updated.

Contrary to what Krupenkin et al. [12] surmised from their observations of a linear
relation of cos θ vs (1 − ϵ), the drop began in hysteretic and ‘metastable’ regime V rather
than the non-hysteretic dry Cassie–Baxter state (regime VI). As cos θ increased with ξ, the
contact angle decreased, therefore causing the constant volume drop to advance. The drop
then experienced a sudden transition to regime II (Figure 11), which should have resulted
in a rapid reduction in cos θ or, equivalently, a higher θ leading to recession. However, the
hysteretic nature of regimes V and II erected an energy barrier that pinned the contact line
and prevented θ from reversing course. In addition, the transition threw the system out of
equilibrium, as the cos θ < −1 outcome of Equation (33) is impossible. Shortly afterwards,
the rising square voltage caused yet another transition to regime IV, once again out of
equilibrium (cos θ > +1).

As Figure 11 shows, the theory, which adopts the actual textured geometry and
Young contact angle that Krupenkin et al. [12] reported, predicts the rise of cos θ with ξ
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in regime V and the sudden transition that they observed. However, it cannot capture
with certainty cos θ behind the transition, as the system deviates sharply from equilibrium.
Lastly, although the theory predicts remarkably well the transition value of ξ for the
relatively short pitch of b + d = 1.05µm that Krupenkin et al. [12] staged (Figure 11, left), it
fares less well for the sparse forest of slender posts on the much larger 4µm pitch (Figure 11,
right). Because cavities were deep and wide at 4µm, they were unlikely to possess only
states of complete filling or complete drainage, thus challenging the basic assumption of
the Ising theory.

Figure 11. The data of Krupenkin et al. [12] with molten salt of γℓg ≃ 0.062 J/m2 on cylindrical posts
of b = 0.35µm diameter and h = 7µm height on square patterns of pitch b + d = 1.05µm (left,
α ≃ 8.65, λ ≃ 19.5, ϵ ≃ 0.913) and 4µm (right, α ≃ 1.48, λ ≃ 6.43, ϵ ≃ 0.994). In this design, the
dielectric layer of Ks ≃ 3.8 conforms everywhere to the textured surface with constant thickness
w = 0.054µm resulting in microscopic capacitances calculated in Appendix B. The definition of
ξ ≡ (1/2)υ0KsU2/(w γℓg) is now based on w rather than H. Similarly, the scale of texture is relative
to w, e.g., b∗ ≃ 6.36. Krupenkin et al. [12] reported cos θe ≃ 0.136.

9. Conclusions

We extended the statistical mechanics of the triple contact line to predict electrowet-
ting behavior on a textured solid surface at equilibrium. Having identified the controlling
variable ξ making the square applied voltage dimensionless and calculated interacting
capacitances of microscopic cavities in the texture, we invoked the same mean-field ap-
proximation, ergodic assumption, frozen disorder and Ising state variables of the original
theory [1]. We then showed that electrowetting operates in nine distinct regimes. De-
pending on whether first-order transitions are allowed among them, these regimes may or
may not release latent surface energy and possess a hysteretic difference (cos θ− − cos θ+)
between the cosines of their receding and advancing contact angles.

Because this difference determines the magnitude of the energy barrier controlling the
reversal of contact line direction, the theory implies that equilibrium regimes IV and VI,
sometimes called the ‘wet’ and ‘dry’ Cassie–Baxter states, may challenge goniometry, as
they allow drops to move freely without hysteretic pinning. As in the original theory, we
found that the traditional ‘Wenzel state’ does not exist as such, but that it spans instead
the other seven hysteretic regimes. Meanwhile, we recognized that some regimes may
not materialize if they operate out of equilibrium, or if their onset requires the drop to
reverse direction while the contact line is pinned. In addition, we noted that ‘metastable’
regimes III and V cannot achieve the filled initial state that they require to recede [4,5].
Lastly, contrary to a traditional conjecture, our calculations implied that raising ξ is not
equivalent to changing the Young contact angle cosine of the underlying pure uniform
solid surface.

To validate the theory and lend new insight to the rich physics of electrowetting, we
confronted our predictions with four published sets of data. Because the solid surface in
the first two sets featured uncharacterized random texture, our comparisons were merely
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qualitative, but they explained why cos θ ‘saturates’ as the dimensionless square voltage ξ
keeps rising [19,20], and they captured the hysteretic behavior of cos θ± vs ξ [20].

The other two sets involved textured surfaces with known geometry and surface
energies, which we adopted to test our predictions quantitatively. A common feature
of hysteretic systems is that their current state depends on prior history. In this context,
our theory predicts equilibrium states whether they can be achieved or not. The data
of Herbertson et al. [21] illustrated this point by examining the peculiar operation of
metastable regime V, which ‘froze’ cos θ at the value reached with the largest imposed ξ.

Lastly, the set of Krupenkin et al. [12], which they acquired with a forest of slender
microscopic cylindrical posts, revealed further limitations of the equilibrium theory. Al-
though our calculations closely predicted the value of ξ at which these authors observed
a jump in cos θ, the model could not address its subsequent modest rise with ξ, which
occurred in regime IV operating out of equilibrium. Predictions also fared less well with
their sparsest forest, which challenged our Ising assumption of only two states (full or
empty) for the resulting cavities. For such scant texture, definitive predictions may require
detailed numerical simulations of capillary interactions at the microscopic scale, which our
equilibrium statistical mechanics had conveniently allowed us to ignore.

In spite of these limitations, a benefit of the theory is that it provides definitive
predictions of textured surfaces and avoids a trial-and-error approach to their design. By
identifying the cause of contact angle hysteresis, pinning, saturation, metastability, regime
jumps, super-hydrophobicity, super-hydrophilicity and out-of-equilibrium behavior, this
statistical mechanics of the contact line, whether or not electrowetting is involved, affords
insights that the traditional Wenzel theory could not provide.
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Appendix A. Microscopic Capacitances

This Appendix derives lumped-parameter capacitances of the central cell, account-
ing for possible electrostatic interactions with unlike nearest neighbors, as illustrated in
Figures 1–6. As mentioned earlier, capacitances and lengths are made dimensionless with
Ksυ0(A0 + As)/H and H, respectively, and denoted by an asterisk∗. Results are presented
in a form that is not indeterminate as ϵ → 0, so they may be programmed without singular-
ity. Relations among geometrical parameters are found in Equations (11)–(14).

Because case 2 couples nearby cavities through pillars (Figure 3), it is the most alge-
braically complicated configuration, and therefore, we consider it first. Its principal source
of electrostatic energy arises from the capacitance

C∗
d =

[
(b∗ + d∗)2 − b∗2

]
(1 − h∗)−1(b∗ + d∗)−2 = ϵ/(1 − h∗) (A1)

between the bottom of the cavity at voltage U and the reference voltage. To capture the
contribution of pillars in case 2, we split their capacitance into a piece below the base

C∗
p = b∗2(1 − h∗)−1(b∗ + d∗)−2 = (1 − ϵ)/(1 − h∗), (A2)

www.mdpi.com/xxx/s1
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and two complementary pieces C∗
q /(1 − p1) and C∗

q /p1 in series, where

C∗−1
q = h∗(b∗ + d∗)2b∗−2 = h∗/(1 − ϵ), (A3)

and p1 is a parameter that we match to a wide range of homogeneous simulations with
n = 0. At their junction, the two pieces are connected to parts of the wetted pillar walls
belonging to the unit cell by a capacitance of area 4b∗h∗ across the effective distance p2b∗,

C∗
w = 4h∗(b∗ + d∗)−2/p2 = 4h∗(1 − ϵ)/(p2b∗2), (A4)

where p2 is a parameter fitted to simulations with n = 0. If nearby cavities are dry (n ̸= 0),
the electric field in pillars within the central unit cell is drawn toward parts of these pillars
belonging to as many as n edge cells. Such interaction has a coupling capacitance of area
h∗b∗ and an effective distance p3b∗,

C∗
ℓ = h∗(b∗ + d∗)−2/p3 = h∗(1 − ϵ)/(p3b∗2), (A5)

where p3 is fitted to simulations. Pillars touching dry edge cells are modeled as before by
splitting C∗

q into two parts. However, there is no longer a capacitance C∗
w connecting their

junction to any of the n dry cavities. Contributions from n pillars are connected in parallel
as shown in Figure 3.

With a homogeneous filling distribution in case 2, the configuration is strictly peri-
odic, the energy of the central cell is unaffected by its neighbors and, because n = 0, its
dimensionless capacitance reduces to

C∗
20

= C∗
d +

[
1

C∗
p
+ (1 − p1)C∗−1

q +
C∗−1

q

C∗
wC∗−1

q + 1/p1

]−1

. (A6)

If instead n ̸= 0, loss of periodicity compels us to distinguish how much current flows
to the base of the central cell from how much flows to the base of its near neighbors. To
that end, we transform the capacitance network in three steps shown on the bottom of
Figure 3. First, we define a dimensionless impedance as the inverse of the corresponding
dimensionless capacitance, Z∗ ≡ 1/C∗. From Figure 3, we find

Z∗
ab = p1C∗−1

q /n

Z∗
bc = C∗−1

q /(C∗
wC∗−1

q + 1/p1) (A7)

Z∗−1
ca = nC∗

ℓ .

After executing the triangle-to-star transformation

Z∗
a =

Z∗
ab

1 + Z∗
abZ∗−1

ca + Z∗
bcZ∗−1

ca
,

Z∗
b =

Z∗
abZ∗

bcZ∗−1
ca

1 + Z∗
abZ∗−1

ca + Z∗
bcZ∗−1

ca
, (A8)

Z∗
c =

Z∗
bc

1 + Z∗
abZ∗−1

ca + Z∗
bcZ∗−1

ca
,

we find the equivalent impedance Z∗
2 by matching currents flowing through either side of

the pillars,

Z∗
ℓ =

(
1/C∗

p

)
+ (1 − p1)C∗−1

q (A9)

Z∗
r = Z∗

ℓ /n,
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thus obtaining

Z∗
2 = Z∗

ℓ + Z∗
c + Z∗

b

(
1 +

Z∗
ℓ + Z∗

c
Z∗

r + Z∗
a

)
, (A10)

and, finally, the dimensionless capacitance of a unit cell in case 2 with arbitrary number
0 ⩽ n ⩽ 4 of dry edge cavities,

C∗
2 (n) = C∗

d + 1/Z∗
2 . (A11)

As expected, C∗
2 (n = 0) = C∗

20
.

As Figure 2 shows, case 1 has the same elementary capacitances C∗
d , C∗

p, C∗
q , C∗

w, C∗
ℓ

and parameters p1, p2, p3 as in case 2 (Equations (A1)–(A5)). Its unit cell capacitance with
near neighbors of identical filling state (n = 0) is

C∗
10

= C∗
d +

C∗
w

1 + (1 − p1)C∗
wC∗−1

q + C∗
w/C∗

p
. (A12)

If the filled central cavity in case 1 interacts with n dry neighbors, we invoke a
transformation similar to case 2 to find the equivalent pillar impedance Z∗

1 ,

Z∗−1
t = C∗

w

Z∗
g = (1 − p1)C∗−1

q + 1/C∗
p,

Z∗−1
f = nC∗

ℓ /
[
1 + (1 − p1)C∗

ℓ C∗−1
q + C∗

ℓ /C∗
p

]
, (A13)

Z∗−1
1 = C∗

w/
(

1 + Z∗
g Z∗−1

f + Z∗
gC∗

w

)
,

C∗
1 (n) = C∗

d + 1/Z∗
1 .

Unlike cases 1 and 2, the coupling of dry central cavities in cases 3 and 4 to filled
nearest neighbors is no longer dominated by capacitances through pillars. Instead, field
lines emanating from the bottom of the dry central cavity are drawn to the liquid interface
across the two adjacent pillars without penetrating the latter significantly.

In the homogeneous case 3 with dry neighboring cavities, the central cell capaci-
tance vanishes,

C∗
30

= 0. (A14)

When, instead, there are n neighboring wet cells, Figure 4 indicates a higher capaci-
tance

C∗
3 (n) = C∗

m/[(C∗
m/C∗

d ) + (1/n)], (A15)

with coupling capacitance of area d∗h∗ and effective distance p4d∗

C∗
m = h∗(b∗ + d∗)−2/(p4Ks) = h∗(1 − ϵ)/(p4Ksb∗2), (A16)

where p4 is fitted to simulations. In Equation (A15), the ratio C∗
m/C∗

d = (α − 1)(1 −
h∗)/(4p4Ksb∗) is finite.

In the homogeneous case 4 without neighbors of a different state (n = 0), Figure 5 suggests

C∗
40

= [C∗
d /(1 + C∗

d /C∗
c )] +

[
C∗

p/(1 + C∗
pC∗−1

q )
]
. (A17)

If instead n ̸= 0, then

C∗
4 (n) =

C∗
d

1 + (C∗
d /C∗

c )/(1 + nC∗
k /C∗

c )
+

C∗
p

1 + C∗
pC∗−1

q
, (A18)
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where

C∗
c =

[
(b∗ + d∗)2 − b∗2

]
(b∗ + d∗)−2/(Ksh∗) = ϵ/(Ksh∗) = 4(1 − ϵ)/[Ks(α − 1)b∗] (A19)

is the capacitance of the dry cavity, with ratio C∗
d /C∗

c = Ksh∗/(1 − h∗). In Equation (A18),
C∗

k is a coupling capacitance of area similar to C∗
m, but with a different effective distance

p5d∗ that reflects the presence of a wet ceiling on the central cavity,

C∗
k = h∗(b∗ + d∗)−2/(p5Ks) = (α − 1)ϵ/(4p5Ksb∗), (A20)

such that C∗
k /C∗

c = ϵ(α − 1)2/[16p5(1 − ϵ)] in Equation (A18).
Finally, we expand the expressions in Equations (20) and (21) to note how they con-

verge as ϵ → 0, (
C∗

14
− C∗

30

)
/ϵ = 1 + a0 + ϵ(α − 1)(b∗ − a2)/4 +O(ϵ2), (A21)(

C∗
40
− C∗

24
+ C∗

14
− C∗

30

)
/ϵ = 1 + a0 − ϵ(α − 1)[b∗(Ks − 1) + a2]/4 +O(ϵ2), (A22)(

C∗
10
− C∗

34

)
/ϵ = a0 + a1 + ϵ(α − 1)(b∗ − a3)/4 +O(ϵ2), (A23)

and(
C∗

44
− C∗

20
+ C∗

10
− C∗

34

)
/ϵ = a0 + a1 − ϵ(α − 1)[b∗(Ks − 1) + a3]/4 +O(ϵ2), (A24)

where
a0 ≡ (α − 1)/(b∗p2), (A25)

a1 ≡ b∗Ks p4/(α − 1 + b∗Ks p4), (A26)

a2 ≡ 4(p2 + p3)(α − 1)/[p3(b∗p2)
2], (A27)

and

a3 ≡ 4(α − 1)
(b∗p2)2 +

b∗(α − 1)2

(α − 1 + b∗Ks p4)2 . (A28)

Appendix B. Texture of Krupenkin et al. [12]

In the design of Krupenkin et al. [12], a thin oxide layer of dielectric constant Ks
hugs the exposed textured solid surface to a small uniform depth w. Because its inter-
nal electric field is aligned nearly everywhere with the local unit normal to the surface,
most lumped capacitances shown in Figures 2–5 are eliminated. The remaining ones
include the capacitance Cd = υ0Ks Ap/w below the cavity wall of area Ap = A0 + πb h
and its counterpart Cp = υ0Ks As/w below cylindrical pillar tips of area As = (π/4)b2.
Here, it is natural to make capacitances and square voltages dimensionless with w rather
than H, respectively, C∗ ≡ C w/[υ0Ks(A0 + As)] and ξ ≡ (1/2)υ0KsU2/(w γℓg), where
A0 = (b + d)2 − (π/4)b2 is the cavity opening area. For example, C∗

d = Ap/(A0 + As) =
α ϵ and C∗

p = As/(A0 + As) = 1 − ϵ.
In cases 1 and 2, the filling state of near neighbors is irrelevant, whereby

C∗
10

= C∗
14

= C∗
d = α ϵ (A29)

C∗
20

= C∗
24

= C∗
d + C∗

p = α ϵ + 1 − ϵ .
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In cases 3 and 4, Equations (A14), (A15) and (A17) are unchanged, but with

C∗−1
q = 0 (A30)

C∗
m = h w/[(A0 + As)p4Ks]

C∗
c = ϵKs w/h

C∗
k = h w/[(A0 + As)p5Ks] .

Because the contributions of C∗
m and C∗

k to these equations are typically small, we
adopt, for simplicity, the same parameters p4 and p5 derived from simulations with square
posts. Substituting geometrical parameters of this cylindrical texture [1]

α = 1 + πh∗b∗/[(b∗ + d∗)2 − (π/4)b∗2] (A31)

λ = 4d∗h∗/[(b∗ + d∗)2 − (π/4)b∗2]

ϵ = 1 − (π/4)[b∗/(b∗ + d∗)]2 ,

where the asterisk∗ now denotes distances relative to w, we find in case 3

C∗
30

≡ 0 (A32)

C∗
34

= α ϵ/[1 + (π/4)b∗p4 Ks α/(1 − α)] .

With slender posts (w ≪ h), C∗
c is so small that the underlying C∗

d is unimportant in
case 4. Then,

C∗
40

≃ C∗
p = (1 − ϵ) (A33)

C∗
44

= α ϵ/[1 + (π/4)b∗p5 Ks α/(1 − α)] .

These results are implemented in the MATLAB program ElectroWettingKrupenkin.m
provided as Supplementary Materials. They imply several simplifications. For example,
δc ≡ (C∗

20
−C∗

10
)/C∗

40
= 1, such that Equation (33) becomes cos θ± = (1− ϵ) cos θe − ϵ

∫ 1
0 σ̄dχ+

ξC∗
40
± ϵL±. Similarly, because

(
C∗

14
−C∗

30

)
/ϵ = α and

(
C∗

40
−C∗

24
+C∗

14
−C∗

30

)
= 0, the ad-

vancing critical probability in Equation (21) becomes χ+ = (1/2)[1− α (ξ + cos θe) + λ + κ∗].
Here, ξ and cos θe appear as a group. However, this is not the case for all other terms in
Equation (33) and Table 2. Therefore, contrary to the conventional assumption, applying a
voltage is not equivalent in general to raising the Young contact angle cosine cos θe on the
pure solid.
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