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Abstract: An entanglement-based continuous variable (CV) QKD scheme is proposed, performing
information reconciliation over an entanglement-assisted link. The same entanglement generation
source is used in both raw key transmission and information reconciliation. The entanglement
generation source employs only low-cost devices operated in the C-band. The proposed CV-QKD
scheme with information reconciliation over an entanglement-assisted link significantly outperforms
the corresponding CV-QKD scheme with information reconciliation over an authenticated public
channel. It also outperforms the CV-QKD scheme in which a classical free-space optical communi-
cation link is used to perform information reconciliation. An experimental demonstration over the
free-space optical testbed established at the University of Arizona campus indicates that the proposed
CV-QKD can operate in strong turbulence regimes. To improve the secret key rate performance
further, adaptive optics is used.

Keywords: entanglement; QKD; continuous variable; entanglement assisted communication; information
reconciliation

1. Introduction

With the help of entanglement [1–9], we can: beat the capacities of classical chan-
nels [1–5,10–12], achieve better sensitivity than classical sensors [1,4], and provide quantum-
mechanics-based security [1,3,6]. The security of quantum key distribution (QKD) is guar-
anteed by quantum-information-processing theorems, such as the no-cloning theorem and
theorem on the indistinguishability of arbitrary quantum states, rather than computation
complexity [3,6–9]. Different photon degrees of freedom can be utilized in QKD, including
polarization, time, frequency, phase, and orbital angular momentum. Among the different
QKD protocols, discrete variable (DV)-QKD and continuous variable (CV)-QKD are very
popular ones. In DV-QKD schemes, a single-photon detector (SPD) is applied, while in
CV-QKD, we rely on the uncertainty principle. With CV-QKD, we can achieve higher
secret key rates (SKRs) compared to corresponding DV-QKD schemes, thanks to its com-
patibility with state-of-the-art telecom optical communications [3]. For a comprehensive
introduction to CV-QKD systems, interested readers are referred to [13] (see also [3]). The
research on CV-QKD is gaining momentum, judging by the increasing number of papers
published in the last two decades [14–30]. Generally speaking, CV-QKD schemes can be
classified as Gaussian-modulation- or discrete-modulation-based. Further, they can be
either entanglement-based or coherent-states-based. Typically, information reconciliation is
performed over the authenticated public channel, to which Eve has access [31].

In this paper, we are concerned with the entanglement-based free-space optical
(FSO) CV-QKD scheme, in which reverse information reconciliation is performed over
an entanglement-assisted communication link. Entanglement-assisted communication is
based on the principles described in ref. [10–12]. To reduce the system complexity and
cost, the same entanglement generation source is used for both raw key transmission and
information reconciliation. Instead of using a high-cost 780 nm pump laser to implement
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the entangled source, we develop the entanglement generation source using only low-cost
telecom devices operated in the C-band. To experimentally evaluate the proposed CV-
QKD system, we develop a free-space optical testbed at the University of Arizona campus
with a propagation path length of 1.5 km. We experimentally demonstrate that, in strong
turbulence regimes, the proposed CV-QKD scheme with information reconciliation over
an entanglement-assisted link significantly outperforms the corresponding conventional
scheme performing information reconciliation over the authenticated classical channel. To
improve the secret key rate performance, adaptive optics [32–35] is used.

The paper is organized as follows. In Section 2, the proposed entanglement-based
CV-QKD scheme with information reconciliation over the entanglement-assisted link is
described. In Section 3, we describe the terrestrial FSO CV-QKD testbed that we developed
at the University of Arizona campus. The experimental results are provided in Section 3.
Some important concluding remarks are given in Section 4.

2. Proposed Entanglement-Based CV-QKD with Information Reconciliation over
Entanglement-Assisted Links

The proposed entanglement-based CV-QKD scheme with information reconciliation
over an entanglement-assisted link is provided in Figure 1. The entanglement generation
source, based on parametric down-conversion (PDC), is placed on the Alice side. The
PDC entangled source generates two-mode squeezed vacuum (TMSV) states, which can be
represented on the basis of the number (Fock) states as follows:

|ψ⟩A,B = (Ns + 1)−1/2
∞

∑
n=0

(
Ns

Ns + 1

)n/2

|n⟩A|n⟩B, (1)

where Ns =
〈

â†
A âA

〉
=

〈
â†

B âB
〉

is the mean photon number corresponding to either Alice
(A) or Bob (B) qubits. Alice and Bob photon creation (annihilation) operators are de-
scribed by â†

A (âA) and â†
B (âB). The phase-sensitive cross-correlation (PSCC) coefficient

⟨âA âB⟩ =
√

Ns(Ns + 1) is related to the Alice–Bob photon pair entanglement.
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Figure 1. Illustrating the proposed entanglement-based CV-QKD scheme with information reconcilia-
tion over an entanglement-assisted link.

The Wigner covariance matrix of the pure maximally entangled zero-mean Gaussian
TMSV state is given by [1]:

ΣA,B =

[
(2Ns + 1) 1 2

√
Ns(Ns + 1) Z

2
√

Ns(Ns + 1) Z (2Ns + 1) 1

]
, (2)

where 1 denotes the identity matrix and Z is the Pauli Z-matrix. Evidently, in a regime
with Ns << 1, the phase-sensitive cross-correlation coefficient is ⟨âA âB⟩ ≈

√
Ns, and in

comparison with the classical limit Ns, we obtain that
√

Ns ≫ Ns.
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By using the electro-optical I/Q modulator, Alice randomly selects a point in the
signal space (phase space). With the optical switch in position 1, Alice performs homodyne
balanced detection on her qubit photons by mixing them with local oscillator (LO) photons
using a directional coupler-based balanced detector. By setting the phase-shift after the
LO oscillator to either 0 or π/2, Alice selects measuring either the in-phase or quadrature
component. Bob’s qubit photons at the output of the entangled source are transmitted
over the quantum channel. With the optical switch in position 1, Bob randomly measures
either the in-phase on quadrature component with the help of his homodyne balanced
detector. By selecting the instances where Alice and Bob measured the same component,
after corresponding analog-to-digital converters (ADCs), Bob and Alice obtain the raw
keys x and y, respectively.

In the conventional scheme, Alice and Bob will further perform the information
reconciliation over the public channels, to which Eve has access to. In our proposed
solution, we perform reverse information reconciliation over an entanglement-assisted
system, as shown in Figure 1, by employing the same entangled source used for raw key
transmission. With both optical switches in position 2, Bob performs LDPC encoding to
obtain the parity bits s. With the help of a phase modulator, the parity bits are imposed
on Bob’s qubit photons and transmitted over the same quantum channel in the opposite
direction. Alice then performs homodyne balanced detection on the photons received from
Bob by using her qubit’s photons as the reference photons. Given that Bob and Alice’s
photons are entangled, the information reconciliation is performed over the entanglement-
assisted system. Following the balanced homodyne detection, Alice performs LDPC
decoding to obtain the correct key identical to Bob’s one. Finally, Alice and Bob perform
privacy amplification to remove any correlation with Eve and, thus, obtain a secure key.

Based on refs. [1,3,8,9], we can calculate the normalized secret key rate (SKR) as follows:

r = βI(A; B)− χ(B; E), (3)

where β is the reconciliation efficiency, I(A;B) is the mutual information between Alice
and Bob, and χ(B;E) is the Holevo trans-information between Bob and Eve, denoted as
χ(B;E). The mutual information between Alice and Bob is identical for both individual and
collective attacks and is given by [1,3,31]:

I(A; B) =
1
2

log2

(
v + χtotal
1 + χtotal

)
, (4)

where v is the variance of the source, while the variance of the total noise, denoted as χtotal,
is obtained by the summing up the variance of the channel noise χline and the homodyne
detection noise χhomodyne, which can be expressed by referring to the channel input by:

χtotal = χline +
χhomodyne

T
; χline =

1 − T
T

+ ε; χhomodyne =
1 − η + vel

η
, (5)

where T is the transmittance of the channel, vel is the photodiodes’ electrical noise, η is the
detector efficiency, and ε is the excess noise that accounts for the modulation imperfections,
the phase noise, and the relative intensity noise (RIN) of the LO reference signal, etc. The
Holevo trans-information between Bob and Eve is determined by [1,3,8,9]:

χ(B; E) = g
(

λ1 − 1
2

)
+ g

(
λ2 − 1

2

)
− g

(
λ3 − 1

2

)
− g

(
λ4 − 1

2

)
, (6)

where g(x) = (x + 1) log2(x + 1)− x log2 x and λi are the symplectic eigenvalues of corre-
sponding covariance matrices determined by:

λ1,2 =

√
1
2

(
A ±

√
A2 − 4B

)
, λ3,4 =

√
1
2

(
C ±

√
C2 − 4D

)
, (7)
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with the corresponding parameters A, B, C, and D being defined by:

A = v2(1 − 2T) + 2T + T2(v + χline)
2, B = T2(1 + vχline)

2,

C =
Aχhomodyne+v

√
B+T(v+χline)

T(v+χtotal)
, D =

√
B

v+χhomodyne
√

B
T(v+χtotal)

.
(8)

The reconciliation efficiency in the proposed CV-QKD scheme is determined by:

β =
R

I(B; A)
, (9)

where R is the code rate of the LDPC code used in the reverse information reconciliation
(RIR), while I(B;A) is the mutual information between the Bob and Alice channel used in
the RIR, which is different from the one used in Equation (4), as discrete modulation is
used in RIR, while Gaussian modulation in raw key transmission.

3. Description of Terrestrial Free-Space Optical (FSO) Testbed to Study the Proposed
Entanglement-Based CV-QKD Scheme

To evaluate the SKR performance of the proposed entanglement-based CV-QKD
scheme, we developed an FSO testbed at the University of Arizona campus. In Figure 2,
we describe the reverse reconciliation entanglement-assisted (EA) communication testbed,
which is composed of the following stages: (1) entanglement generation source, (2) WDM
demultiplexer-based stage to separate the signal and idler photons, (3) modulation stage,
(4) transmission stage, (5) beam collection and compression stage, (6) stage to delay the idler
photons, (7) homodyne balanced detection stage, and (8) bit-error rate (BER) computing
stage. The experimental setup is located in ECE Room 549 of the ECE building at the
University of Arizona, where the Quantum Communication (QuCom) Lab is located. The
entanglement generation source employs only low-cost telecom devices operated in the
C-band. A tunable laser set to 1545.9 nm is used as the pump laser, whose output is
amplified by the high-power EDFA and split into two parts using a 50:50 beam splitter. The
top beam splitter output is used as the input to a type-0 periodically poled lithium niobate
(PPLN) waveguide. In this PPLN waveguide, entangled photon pairs are generated by
processes of secondary harmonic generation (SHG), followed by spontaneous parametric
down-conversion (SPDC). The entanglement pair we selected are 1550 nm as signal photons
and 1541.8 nm as idler photons. The signal photons are modulated using a phase modulator,
which is modulated by the RF signal from an arbitrary waveform generator (AWG) set
to 10 Gb/s, in which the LDPC-encoded BPSK information sequence is recorded. We
then transmit the phase-modulated signal photons out of the Lab towards a retro reflector
placed around 750 m away on the roof top of the Optical Sciences Meinel building. By
using the mirror in the middle of the link, we can establish connection when there is no
line-of-sight between Alice and Bob. The reflected beam at the ECE 549 lab window, after
a round trip of ~1.5 km, is collected by a periscope and compressing telescope. On the
other hand, we perform optical phase-conjugation on the idler photons by mixing them
with a 1545.9 nm amplified pump signal and passing them through the bottom PPLN
waveguide, thus performing the difference frequency generation. The output of the bottom
(phase-conjugation) PPLN waveguide is passed through a WDM demultiplexer, we select a
1550 nm output, and the phase-conjugated photons are propagated over 1 km of SMF, which
serves as the optical delay line (ODL). After collecting the signal photons by a compressing
telescope, we pass them over the optical bench with an adaptive optics setup and finally
couple them in an optical fiber. The signal photons and idler photons are fed into a balanced
homodyne detector and the RF output of the balanced detector is recorded by a real-time
oscilloscope running at a sampling rate of 100 GSa/s. The recorded waveforms are then
processed by the PC to perform uncoded BER calculation, LDPC decoding, post-forward
error correction (FEC) BER calculation, and reverse information reconciliation efficiency
calculation. Further, to provide improvements in BER in the information reconciliation
stage and SKR, an adaptive optics (AO) setup is used, where the beam after the compressing
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telescope goes through an AO setup, which is composed of a deformable mirror (DM) and
a wavefront sensor (WFS) operated in a servo loop.
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Figure 2. The reverse information reconciliation entanglement-assisted testbed developed at the
University of Arizona campus.

The corresponding entanglement-based FSO testbed for the raw key transmission
study is provided in Figure 3.
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Figure 3. The entanglement-based CV-QKD free-space optical testbed.

Similarly to Figure 2, the same entangled source is used for raw key transmission. Bob’s
qubit photons at 1550 nm are transmitted over the 1.5 km FSO link. Alice’s 1541.8 nm qubit
photons are modulated by the I/Q modulator. The ODL matches the FSO propagation time
of Bob’s photons. Alice mixes her qubit photons on an optical hybrid before the balanced
detector (not shown in Figure) with LO photons and randomly measures either the in-phase
or quadrature component with the homodyne balanced detector. Bob mixes his photons
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received by the compressing telescope on an optical hybrid and selects to measure either the
in-phase or quadrature component of the received signal. Bob announces his selections of the
measured component, but keeps the results of the measurement private. Bob and Alice keep
the instances when they measured the same component as the raw keys x and y, respectively.

Bob’s encodes his raw key by the LDPC code, selected based on the FSO channel
conditions, imposes such an encoded BPSK sequence with the phase modulator, and
transmits it over the entanglement-assisted scheme shown in Figure 2. The rest of the
protocol is the same as that described in the previous section. Corresponding experimental
results are provided in the next section.

4. Experimental Results

The secret key rate results are summarized in Figure 4 for a raw key rate of 10 Gb/s.
The calculations are based on Equations (3)–(9), by employing the calibration method
described in ref. [7,8]. The histogram of the received power, provided in Figure 5, has a
Rayleigh distribution, which indicates that the experimental demonstrations were con-
ducted in a strong turbulence regime [32,33]. In Figure 4, we show the SKR results for
different values of channel attenuations experienced during raw key transmissions. The
system parameters were found to be η = 0.8, Vel = 0.0321, and ε = 0.011. We compare the
SKRs for different reverse information reconciliation (IR) schemes: the proposed EA-based
IR scheme with and without adaptive optics, the IR based on the classical communication
scheme operated over the FSO link, and the IR over the authenticated public channel.
Clearly, the proposed EA-based IR scheme outperformed all the other schemes for the
range of the total FSO channel attenuation found for the duration of the experiments. The
achievable reconciliation efficiencies are provided in the figure. For a total channel loss
of 10 dB, the SKR of the proposed scheme was 0.92 Gb/s, while the SKR of IR over the
classical FSO link was 0.39 Gb/s. The SKR of the corresponding scheme with IR over the
authenticated public channel was only 0.21 Gb/s. Therefore, the CV-QKD with the IR over
the EA link significantly outperformed the corresponding conventional scheme with IR
over the authenticated channel. In strong turbulence regimes, the adaptive optics provide
some improvement in the SKR. Even though the improvement in the SKR for the AO (in
strong turbulence regime) was small, it is still relevant in the information reconciliation
stage in order to improve the BER and reduce the FEC frame loss.
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Figure 5. The histogram of received power during experiments.

5. Concluding Remarks

An entanglement-based CV-QKD scheme was proposed, performing information rec-
onciliation over an entanglement-assisted communication link. In the proposed scheme, the
same entanglement generation source, developed by employing spontaneous parametric
down-conversion, was used for dual purposes: raw key transmission and information
reconciliation. The developed entanglement generation source employed low-cost telecom
devices operated in the C-band. To evaluate the proposed CV-QKD scheme, a free-space op-
tical testbed was developed at the University of Arizona campus with a propagation path of
length of 1.5 km. Experimental verification showed that, in a strong turbulence regime, the
proposed CV-QKD scheme with information reconciliation over an entanglement-assisted
link was capable of significantly outperforming the corresponding CV-QKD scheme per-
forming the information reconciliation over an authenticated public channel. The proposed
scheme was also shown to outperform the CV-QKD scheme in which a classical FSO com-
munication link is used to perform the information reconciliation. It was found that, in a
strong turbulence regime, adaptive optics does not provide significant improvements in
the secret key rates.
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