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Abstract: Network security situational awareness (NSSA) aims to capture, understand, and display se-
curity elements in large-scale network environments in order to predict security trends in the relevant
network environment. With the internet’s increasingly large scale, increasingly complex structure,
and gradual diversification of components, the traditional single-layer network topology model can
no longer meet the needs of network security analysis. Therefore, we conduct research based on a
multi-layer network model for network security situational awareness, which is characterized by
the three-layer network structure of a physical device network, a business application network, and
a user role network. Its network characteristics require new assessment methods, so we propose
a multi-layer network link importance assessment metric: the multi-layer-dependent link entropy
(MDLE). On the one hand, the MDLE comprehensively evaluates the connectivity importance of links
by fitting the link-local betweenness centrality and mapping entropy. On the other hand, it relies on
the link-dependent mechanism to better aggregate the link importance contributions in each network
layer. The experimental results show that the MDLE has better ordering monotonicity during critical
link discovery and a higher destruction efficacy in destruction simulations compared to classical link
importance metrics, thus better adapting to the critical link discovery requirements of a multi-layer
network topology.

Keywords: network security situational awareness; critical link; multi-layer network; mapping entropy

1. Introduction

As the structure of the internet becomes increasingly complex and large, security
threats in cyberspace present multi-dimensional, large-scale, and highly destructive behav-
ioral characteristics and penetrate into all levels of physical devices, business applications,
and user roles. In the field of network security situational awareness (NSSA), technical
personnel perform network situational awareness and threat analyses and implement
targeted security policies based on the network topology to ensure the secure operation and
maintenance of the entire network environment. They may use various technical means,
such as traffic monitoring, intrusion detection, honeypots, vulnerability scanning, and other
related tools, to accomplish their tasks [1–4].

At the same time, a significant number of scholars have centered their research around
assessment methods in network security situational awareness. Chen et al. [5] used AHP
correlation analysis to construct a quantitative assessment model of cyber threats involving
various aspects such as the system, host, and service. Further, Kong et al. [6] proposed a
comprehensive evaluation model combining the hierarchical analysis idea and the fuzzy
evaluation method. In addition, to increase their effectiveness, theories such as rough
set theory and cluster analysis [7,8] have been introduced into the design of situational
assessment methods.

Entropy 2024, 26, 315. https://doi.org/10.3390/e26040315 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26040315
https://doi.org/10.3390/e26040315
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e26040315
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26040315?type=check_update&version=2


Entropy 2024, 26, 315 2 of 22

All of the above situation assessment models use network topology information as the
backbone of analysis. However, currently, network topology information acquisition and
analysis mainly focus on the interconnection level of network devices, and in our previous
work [9], the limitations of this kind of assessment relying on a single-layer network
basemap are elaborated, which mainly consist of the following four aspects: (a) Single-
layer network topology models cannot characterize the formation of business correlations
between network applications based on data traffic. (b) Single-layer network topology
models are unable to characterize the interpersonal associations between network users
based on business access and communication interactions. (c) Threat correlation analysis
by purely device-layer networks is inadequate after the discovery of anomalous network
behavior. (d) Single-layer network topology models provide insufficient support for critical
node identification and critical link discovery, and the networks’ structural information is
monolithic. To overcome the limitations of single-layer networks in situational analysis, we
propose a multi-layer network model for network security situational awareness.

As an analytical framework that can comprehensively characterize the hierarchical
coupling relationship of complex systems, multi-layer networks [10,11] have been gradually
introduced into situational awareness models in various fields. In cyberspace, according to
the different application scenarios, the component properties and connection modes of vari-
ous types of networks have different characteristics. For example, the physical device layer
(labeled PD), which is embodied in the routing relationship, corresponds to communication
connections between physical devices such as servers, terminals, and routers. The business
application layer (labeled BA), embodied in the access relationship, corresponds to the
business intertwining between different business systems and access nodes. The layer of
user roles (labeled UR) embodied in online social networking corresponds to diverse asso-
ciative relationships between virtual account roles, and multi-layer networks are capable of
inscribing patterns of connectivity between multiple networks simultaneously.

In previous work [12], we focused on identifying critical nodes in multi-layer network
models. To achieve this, we propose a method that combines multi-attribute decision
making and node-dependent mechanisms. The experiments show that this fusion method
performs better in terms of evaluation performance compared to the classical node identifi-
cation method [13–16].

In network security situational awareness, the critical link discovery method is an-
other research focus that corresponds to the critical node identification method. For the
multi-layer network model, link importance is measured in terms of both topology and
dependencies. Links in a network are characterized as various types of connectivity rela-
tionships between nodes at the time of model construction. Compared with nodes, links
have outstanding characteristics: On the one hand, links in the network are more extensive,
and they have more diverse types. At the same time, a single link has less impact on the
network, so the effect is not obvious enough in simulation experiments. On the other hand,
they are limited by data sources and detection methods, and compared with the nodes,
the integrity of the information of the links may be worse, so local information assessments
are more urgent. Given this, by fusing the entropy of link-local betweenness mapping
with the link-dependent mechanism in multi-layer networks, this paper proposes a link
importance assessment metric that builds an analytical domain around the target link: the
multi-layer-dependent link entropy (labeled MDLE). The main contributions of this work
are as follows:

• Our work introduces mapping entropy into the link importance assessment method
for the first time, which effectively expands the domain of link importance assessments
by fusing the topological information of links with neighborhood set information, thus
increasing the assessment efficacy of relevant link discovery metrics.

• Based on the dependent mechanism of the multi-layer network model, this paper
proposes a critical link discovery metric, multi-layer link mapping entropy (MDLE),
which is more adaptable to the link assessment needs of multi-layer networks than
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the classical link discovery metrics and has more advantages in assessment accuracy
and network damage effects.

2. Related Work

In this section, the research work related to critical link discovery is summarized.

2.1. Critical Link Discovery

The research on critical link discovery methodologies is an incremental process, with the
migration of node importance metrics as part of the early link importance assessment metrics.
By improving the node betweenness centrality proposed by Freeman [13], Newman [17]
proposed link betweenness centrality. The link degree [18] as a migration method for node
degree has been applied to several research areas such as link importance assessments
as well as link prediction. Sun et al. [19] constructed a k-core index variant for links by
introducing the k-core decomposition theory into link importance assessments, which
made some improvements to the assessment efficiency. However, their study only fo-
cuses on single-layer complex networks and does not incorporate the unique dependency
characteristics of multi-layer networks to adapt to a wider and finer range of assessment
needs. Chen et al. [20] measured the importance of nodes and edges in network analyses
by designing functions that calculate the additive edge priority, node degree, and median
centrality, but this focuses on how to efficiently identify and quantify the importance of indi-
vidual components in a network. Onnela et al. [21] proposed the topological overlap index
to analyze the performance characteristics of communication networks in the face of link
removal in the study of the local and global structure of societal communication networks.
However, it is limited to a single neighborhood analysis, focusing on the neighborhood
and overlaps between nodes in a single-layer network. Kimura [22] solved the problem of
minimizing the spread of computer viruses or malicious rumors based on a natural greedy
strategy to efficiently find a finite number of links in a network. To address the problem of
large link sizes and expensive computations, Saito et al. [23] tackled this problem by using
the bottom-k sketch algorithm and further by employing two new acceleration techniques:
marginal link updating (MLU) and redundant link skipping (RLS). In subsequent work,
Saito [24] introduced marginal node pruning (MNP) and burn out following (BOF) to
further accelerate the efficiency of network link evaluations. To address the problem of
how to effectively identify critical links that severely degrade the network performance,
Kazumi et al. [25] utilized bridge detection techniques in graph theory to efficiently identify
critical links in the context of node reachability as a performance measure. However, none
of the survey papers mentioned above consider the problems of multi-layer networks, let
alone the connectivity characteristics of links at different levels, dependencies across layers,
efficient transfer, and merging of link importance, which is exactly what we propose.

2.2. Type of Link

It is worth noting that the exploration of the nature of links in multi-layer networks
has also been receiving a lot of attention. Links with direction can characterize the di-
rectionality of information or paths, while links with weights can effectively characterize
the disparity in the amount of information contained between links [26]. Based on the
topological distribution, it was found that some links exist only between nodes belonging
to different sets (e.g., bipartite networks) [27], acting as intermediary connecting nodes
of different natures. At the same time, some links have a temporal dimension, are active
in performing their functions only in a specific time interval, and are in a disconnected
state at non-specific times [28]. Mikko [29], in their survey on multi-layer networks, de-
scribes the location of links according to their topological position, categorizing them as
“intra-layer” or “inter-layer”. Buldyrev [30] explored multiple interdependent networks
in many systems in society, from engineering to healthcare, where nodes are functionally
interdependent and therefore links are also described as media capable of transmitting
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functional dependencies. This design inspired the idea of transmitting the importance of
the components of the three-layer networks in this paper.

In summary, the discussion on importance assessments of links and link types cuts
across several fields, which provides a solid foundation for related research work in the
field of network security.

3. Materials and Methods
3.1. Network Model Definition

In this section, the relevant network model definitions are described. To begin, let us
provide the formal definition of a single-layer network.

Definition 1 (Single-Layer Network). A graph (i.e., a single-layer network) is a tuple G =
(V, E), where V is the set of nodes and E ⊆ V × V is the set of edges that connect pairs of nodes.

Similarly, we introduce the formal definition of a multi-layer network.

Definition 2 (Multi-Layer Network). A multi-layer network M is represented by a binary
M = (G, C), where the network G = {Gα; α ∈ {1, · · · , l}} is the collection of (directed or undi-
rected, entitled or un-empowered) graphs Gα = (Vα, Eα) and Gα is called the αth layer of the
multi-layer network M. C =

{
Eαβ ∈ Vα × Vβ; α, β ∈ {1, · · · , l}, α ̸= β

}
is a collection of inter

connections between nodes of different layers Gα and Gβ(α ̸= β). Element Eα is called intra-
layer connections of the multi-layer network M, while element Eαβ(α ̸= β) is called inter-layer
connections.

3.2. The Multi-Layer Network Model for Network Security Situational Awareness

Current network security situation assessment models rely on the single-layer network
structure to sort out and analyze the inventory of assets and vulnerability information in
the network to set up a risk-level assignment strategy for the entire network environment.
However, this network structure ignores the vertical influence of business systems and user
groups in security assessments, resulting in the whole assessment behavior being confined
in a flat framework. To address this problem, our team proposed a multi-layer network
model for network security situational awareness based on the literature [9]. The model is
broadly described as follows.

According to the construction logic of the current internet structure, the physical
level of network equipment deploys various types of business system nodes and access
nodes. In contrast, user roles within the business system form a social group at the internet
level due to business associations. Based on the mapping relationships of the internet
at different levels, we construct a multi-layer network model by aggregating the three
main networks that maintain the normal flow of information on the internet: the physical
device layer network (PD), the business application layer network (BA), and the user role
layer network (UR), as shown in Figure 1. This network model will be described below
from three perspectives: network architecture layering, the node bearer medium, and link
connection types.
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Figure 1. Schematic diagram of multi-layer network architecture. (bottom) The physical device layer
(labeled as PD) demonstrates the routing communication relationship, which contains the communi-
cation connections between physical devices such as servers, terminals, and routers. (middle) The
business application layer (labeled as BA) shows the business access relationship, which contains
the business intertwining between different business systems and access nodes. (top) The user role
layer (labeled as UR) corresponds to various association relationships between virtual account roles
in online social networks.

3.2.1. Network Architecture Layering Perspective

The information for the different network layers in this model is derived from the
different mapping domains in which the internet service operates. The model is divided
into three network layers from the bottom up: the physical device layer, the business
application layer, and the user role layer. The physical device layer is the physical support
for the operation of the entire network system, providing the operating environment for
business access. The business application layer portrays the access relationship of the
application business flow, and the users belonging to each business system constitute the
network social group. The user role layer describes the user group’s social relationship and
business association in the network.

This means that the physical device layer network assigns the communication en-
tity connections as the underlying support for information transmission and data flow.
The business application layer network describes the intertwining and correlation of ser-
vices and contains business access systems to meet the application needs of various types
of users. The user role layer portrays the social structure in cyberspace and characterizes
online social groups with account association properties.

3.2.2. Node Bearer Medium Perspective

As a multi-dimensional portrayal model of network situations, the nodes in the multi-
layer network can be classified into six categories of heterogeneous nodes based on their
topological location and functional attributes.

There are three types of heterogeneous nodes in the physical device layer network:
router nodes, server nodes, and terminal nodes. The router node in the inner layer of the
network is responsible for communication hopping and coordination. The server node
at the edge of the network provides the operation and maintenance environment for the
business systems, and the terminal node is the physical interface for ordinary users to log
into the network.

There are two types of heterogeneous nodes in the business application layer: business
system nodes and access nodes. The business system node mainly carries all kinds of
business flows in the network, approves access, and provides corresponding services,
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and the access node is the mapping identifier of the terminal entity devices in the business
access relationships.

There exists a type of heterogeneous node in the user role layer, i.e., the user node,
which mainly characterizes all kinds of accounts and user IDs generated by relying on the
business system. It is the access credentials for users to apply for application services from
all kinds of business systems.

3.2.3. Link Connection Type Perspective

Links in the multi-layer network can be categorized as an “intra-layer link” or an
“inter-layer link” in terms of their topological location. However, in the process of network
research, we tend to pay more attention to the role of the link in terms of the network-
specific aim, that is, the link connection type. So, for classification with regard to the
network link connection type, the network contains two types of links: “connected links”
and “dependent links”.

A connected link describes an undirected connected relationship between nodes,
indicating the presence of connectivity and association characteristics between nodes,
but they do not have a dependent relationship. Dependent links, based on characterizing
the connectivity between nodes, imply that nodes are not pairwise equivalent, but rather
have primary and secondary dependencies, and directed links are used to characterize
this dependent relationship. The endpoints of dependent links are divided into “support
nodes” (located at the start of the directed link) and “dependent nodes” (located at the
target end of the directed link). The support node provides the deployment environment
for the dependent point connected to it or plays a direct control role; when all the support
nodes fail, it will cause the dependent node of the following one to fail. A dependent node
has no direct effect on the state of the relevant support nodes or the type of connection
between the nodes, as the description in Table 1 shows.

Table 1. Link connection type catalog.

Connection
Type Point 1 Point 2 Pos Description

Connected
Link

route route intra
Communication relationship

between routers

business business intra
Business linkages or calling relationships

between business systems

business access intra
Access relationships between access

nodes and business systems

access user inter
Associations for user accounts logging

in from access nodes

user user intra
Social relationships or business
connections between user roles

Connection
Type

Support
Point

Dependent
Point Pos Description

Dependent
Link

route server intra
Server is dependent on the communication

support provided by the router

route terminal intra
Terminal is dependent on the communication

support provided by the router

server business inter
Business system is dependent on the

environment provided by server

terminal access inter
Access node is entity mappings of

a terminal in the business access relationship

business user inter
User roles are groups of accounts that

belong to the business system
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4. Critical Link Discovery
4.1. Problem Analysis

Analyzing the connection pattern of the above multi-layer network model, it can be
found that the links in the model contain two categories: “connected links” and “dependent
links”. A connected link has a general connectivity role between nodes, characterizing
the existence of connectivity between nodes and using an undirected link as an identifier.
The nodes at the two ends of the dependent link are defined as the dependent node and the
support node, respectively. While playing the role in the connectivity of nodes, dependent
links also implement the following mechanisms: when a support node fails, the dependent
node associated with it will also experience a secondary failure; similarly, the dependent
node will fail when the dependent link is disconnected. The dependent link in the model is
identified using a directed link.

It is important to note that while there has been extensive research on critical node
identification methods in complex networks in recent years, the research on critical link
discovery has been severely limited thus far. Unfortunately, most of the approaches taken
are based on the direct or indirect expansion of node identification methods, which do not
properly consider the importance of the link as the central object of research. Rather, they
solely focus on evaluating the importance of the two endpoints of the link and fusing them
separately, which is a major limitation that must be addressed. In conjunction with the
multi-layer-dependent network model mentioned above, the following main requirements
need to be met when designing a critical link discovery method. (The four requirements are
our abstract assumptions, and are solely the ones we care most about from cybersecurity
and practical need perspectives, so they are not comprehensive. There is no doubt that
other extensions are possible, so we will continue to iterate and update them continuously
in subsequent work.)

(a) The size of the links in the network will increase at a significant rate compared to
the nodes, and even in sparse graphs, the number of links may be much larger than
the nodes. It is much more difficult for the network to collect all the information on
links than to collect information on nodes. Therefore, when conducting a critical link
importance assessment, it should be centered around the local information of the links
as much as possible.

(b) During the discovery of a critical link, if many links have the same importance score,
then it will not be possible to make a precise importance decision, so the importance
assessment metrics for links need to have a high granularity for assessment.

(c) Since the model has two types of links, “connected links” and “dependent links”,
the contribution of the target link in both connected and dependent relationships
should be considered to ensure the generalizability of the link identification methodol-
ogy (both types can be evaluated using the same framework).

(d) The critical links obtained according to the critical link identification method should
have a certain status in the network structure and undertake important functional
tasks, and will have a large impact on the network when the critical links are removed
or fail.

To meet the above assessment needs, this paper proposes a link importance assessment
metric called MDLE, which integrates the link betweenness centrality in the first-order
central domain and the mapping entropy to comprehensively assess the importance of
links. Next, the following classic metrics will be presented for assessing the importance of
a link.

4.2. Classical Critical Link Assessment Metrics

This section presents the definitions and descriptions of classical critical link assess-
ment metrics. The betweenness centrality [17] of link e is denoted as LBCe and defined
as follows.
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Definition 3 (Link Betweenness Centrality).

LBCe = ∑
s,t∈v

σ(s, t | e)
σ(s, t)

(1)

In Equation (1), s and t are any two nodes in the network that are not identical, σ(s, t) charac-
terizes the number of shortest paths that exist between node s and node t, and σ(s, t | e) characterizes
the number of cases in the shortest path that pass through link e, where σ(s, t | e) = 1/n when the
shortest path length is n first-order links.

The link betweenness centrality is considered to be a better choice for evaluating the
importance of links with a high accuracy and strong discrimination, but this method is com-
plicated to compute and not easy to apply due to the difficulty in grasping global information.

The Jaccard index [31] of link e is denoted as Jaccarde and defined as follows.

Definition 4 (Jaccard Index).

Jaccarde =

∣∣Ux ∩ Uy
∣∣∣∣Ux ∪ Uy
∣∣ (2)

In Equation (2), x and y characterize the two end nodes of link e, Ux characterizes the set of
neighboring nodes of node x, and Uy characterizes the set of neighboring nodes of node y. A smaller
value of the Jaccard index indicates that the degree of dissimilarity between the two endpoints of link
e is higher and the importance of the link is stronger.

The degree centrality [18] of link e is denoted as LDCe(i,p) and defined as follows.

Definition 5 (Link Degree Centrality).

LDCe(i,p) =
∑N

j xij · ∑N
q ypq

(N − 1)2 (3)

In Equation (3), N is the total number of nodes in the network, i and p characterize the two
end nodes of link e, respectively, j characterizes the other nodes in the network except node i, and
xij is the connection state vector of node i to node j, which is 1 when there is a connection and 0
otherwise. Similarly, q characterizes the other nodes in the network except node p, and ypq is the
connection state vector of node p to node q, which is 1 when there is a connection and 0 otherwise.

Link degree centrality can fit the connection weights of link endpoints with a low
computational complexity, but only local information about the size of neighboring nodes
is taken into account, the computational granularity is coarse, and the importance is not
well identified.

The k-shell index [19] of link e is denoted as LKSe and defined as follows.

Definition 6 (Link K-shell Index).

LKSmax
e(i,j) = max

{
KSi, KSj

}
(4)

LKSmin
e(i,j) = min

{
KSi, KSj

}
(5)

LKSpro
e(i,j) = KSi ∗ KSj (6)

In Equations (4)–(6), KSi and KSj characterize the k-shell indices of the two endpoints of
link e(i,j), and LKSmax

e(i,j) , LKSmin
e(i,j) , and LKSpro

e(i,j) are the link shells under different fitting strategies,
respectively. The link shells characterize the link’s importance by the degree of centrality in the
network of endpoints connected by the current link.
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The topological overlap index [21] of link e is denoted as TO
(

e(i,j)
)

and defined
as follows.

Definition 7 (Topological Overlap Index).

TO
(

e(i,j)
)
=

nij

ki − 1 + k j − 1 − nij
(7)

In Equation (7), nij describes the number of common neighbors of node i and node j. The exis-
tence of common neighbors of node i and node j makes the following possible when the link is blocked:
information can still be propagated through the paths formed by common neighbor nodes and the
higher the number of replaceable links, the lower the importance of the link.

4.3. Critical Link Discovery Method Fusing the Link-Local Betweenness Mapping Entropy and the
Link-Dependent Mechanism
4.3.1. Link-Local Betweenness Centrality

In existing research, the discovery methods for critical links are mainly divided into
two aspects: One is the numerical fitting of the critical node identification results, for in-
stance, the link degree centrality (LDC) and link k-shell index (LKS). The other is the formal
transformation of the critical node discovery methods, for instance, the link betweenness
centrality (LBC), the Jaccard index, and so on. However, it can be seen that none of the
above methods have established an important analysis framework specifically for the
target links.

Previously, for the neighborhood importance information extraction from links, the
method used was numerical fitting based on analyzing the importance information of the
two end points of the target link. However, for the target link, there is a natural overlap
between the neighborhoods of the two end points, which affects the judgment of the
important information of the link. Therefore, we believe that the analysis domain for links
should be established with the target link as the central object.

In graph theory, analogous to the notion of node neighborhood, the link neighborhood
is defined as follows.

Definition 8 (Link Neighbor). In the graph G = (V, E), let e be a link in the graph, i.e., e ∈ E.
The open neighborhood of a link e in G refers to the open neighborhood set ENG[e] = { f ∈ E |
f ̸= e, f is the neighbor of e}, and the closed neighborhood of a link e in G refers to the set
MG[e] = {e} ∪ ENG[e].

Link e is considered to be destroyed in G when both endpoints of link e and its closed
neighborhood MG[e] are removed from the network; accordingly, for a subset of links
S ⊆ E(G), S is said to be a link destruction strategy in G if every link in S is destroyed.
When every link in S is destroyed, the resulting subgraph of G is called a surviving
subgraph, denoted G/S, and the link neighborhood is shown in Figure 2a.

Since the concept of a link neighborhood does not include all the nodes of neighboring
links, i.e., the blue nodes (a,b,...,h), which is not conducive to the computation of local
centrality in the network, this paper derives the concept of a link neighborhood and
proposes the “link first-order central domain” as follows, whose structure is shown in
Figure 2b.

A link neighborhood is defined as a collection of links, and the nodes in Figure 2a
are represented because the nodes are not included in the link neighborhood, but only
as associated nodes between links. A link first-order central domain is defined as a two-
element set (node and link) that contains nodes and links, and the nodes in Figure 2b
are represented by solid circles because the nodes are contained in the link first-order
central domain.
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(a) (b)
Figure 2. Schematic diagram of link neighborhoods and first-order central domains. (a) It represents
the link neighborhoods, which is defined as the set of links, i.e., it does not contain nodes, and
therefore the nodes in (a) are represented by circles surrounded by dashed lines. (b) It represents
the link first-order central domain, the link first-order central domains is defined as a two-element
set (nodes and links) containing both nodes and links, hence the nodes in (b) are represented by
solid circles.

Definition 9 (Link First-order Central Domain). In graph G(V, E), let MG[e] be the closed
neighborhood of link e. The first-order central domain of link e can be defined as FCG[e] =
{MG[e] ∪ I | I and is the set of endpoints of e and the neighboring links of e}. It can be seen that
the link first-order central domain is a local analysis domain built around link e.

Link betweenness centrality is considered an essential metric with good evaluation
results. Still, the applicable scenarios are limited because they require complete topological
network information to build the analysis domain for calculation. In the link first-order
centroid domain, analogous to the notion of the self-network mediator of a node in a node’s
neighborhood, the link-local betweenness centrality (labeled LLBC) in the link first-order
central domain can be proposed as an importance metric for links.

Definition 10 (Link-Local Betweenness Centrality).

LLBCe = ∑
s,t∈FCG[e]

σ(s, t | e)
σ(s, t)

(8)

where nodes s and t belong to the first-order central domain of link e. The local betweenness
centrality of a link can effectively assess the importance of the target link in the first-order central
domain in terms of communication functionality, and the method only requires local information
about the network.

4.3.2. Link-Local Mapping Betweenness Entropy

It was found through an analysis of the above ideas about LLBC that although the
LLBC solves the problem of the strong dependence of global metrics on the completeness
of topological information, the scope of the analysis of link topological centrality is also
limited to the one-hop range of the target link. To further extend the scope of the analysis
domain, the concept of mapping entropy is introduced in this paper.

The idea of entropy was first introduced by Clausius. Initially, it was used as a param-
eter for determining the state of matter and describing the process of “energy degradation”.
However, as entropy became more widely applied across different fields, researchers be-
gan to attribute more specific characteristics to it. One such characteristic is information
entropy, proposed by Shannon in the area of information theory. Information entropy is
commonly used in complex network analyses, where it serves as a measure of information
variation. Higher entropy values indicate greater variation in the metric information, which
in turn carries less information. Conversely, lower entropy values signal more stable metric
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evaluations, with more information content. The definition of network information entropy
is as follows.

Given a graph G(V, E), define the node information entropy Ei as follows.

Definition 11 (Information Entropy).

Ei = −∑
i

Ii log Ii = −∑
i

DCi log DCi (9)

In Equation (9), Ii is the importance degree of node/link i. It can be replaced with metrics such
as degree centrality, betweenness centrality, etc., and node degree centrality (labeled DC) is used
here as an example.

Nie et al. [32] proposed that the information entropy fusion can be used to assess the
amount of information of the target (node/link) within the neighborhood range, and further
extended the analysis domain to obtain the concept of mapping entropy. The related
definitions are as follows.

The mapping entropy of node i is denoted as MEi and defined as follows.

Definition 12 (Mapping Entropy).

MEi = −DCi ∑
i

log DCj (10)

In Equation (10), DCi is the degree centrality of the target node i and j belongs to the
neighborhood set of node i.

The mapping entropy can comprehensively measure the amount of information of the
target component as well as the neighbor component of the assessment metrics within the
scope of the analysis domain and has achieved better application results in research.

Analyzing the construction of the mapping entropy, it can be found that this metric
simultaneously integrates the importance score of a certain indicator itself and the score of
the neighboring objects under the same evaluation index, so that through the mechanism of
mapping entropy, we can extend the analysis scope of the link-local betweenness centrality
to the next-hop neighborhood, and further synthesize more topology information for the
analysis of the importance of the target link.

We establish the link-local mapping betweenness entropy (labeled LLBME) in the
first-order central domain by examining the connection between a link and its neighboring
links, much like the node mapping entropy.

This is determined by combining the link-local betweenness centrality of the link and
its neighboring links, as defined below.

Definition 13 (Link-local Mapping Betweenness Entropy).

LLBMEe1 = −LLBCe1 ∑
e1

log LLBCe2 (11)

In Equation (11), LLBCe1 is the local betweenness centrality of link e1 in the first-order
centroid domain, and LLBCe2 is the local betweenness centrality of link e1’s neighboring link e2.

4.3.3. Link-Dependent Mechanism

As shown in Figure 3, when studying the dependency relationships between nodes,
the analysis domain is constructed with the nodes as the core, and the nodes are categorized
as a “dependent node” or an “independent node” according to whether they need the
support of other nodes or not. The set of “dependent links” characterizes the dependencies
between nodes, while the set of “connected links” represents the connectivity between
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nodes. Dependent nodes must rely on other nodes for their survival, while “independent
nodes” are characterized as functioning without the support of other nodes.

c

α
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b

e

fd

Connected

Link

Dependent 

Link

β

a c

b d

Dependent Node Independent Node

Connected Link Dependent Link

Dependent 

Link

Connected 

Link

Figure 3. Schematic diagram of the node-dependent mechanism.

When the analysis domain is established with the target link as the center, as shown
in Figure 4, and the analyses of “connected links” and “dependent links” are conducted
separately, it can be concluded that:

(a) The analysis of “connected links”, whose two endpoints α and β are on an equal
footing (Points), which carry out the connectivity function in the network, shows that
they are substitutable and do not form a dependency with their neighboring links.

(b) Analyzing the “dependent links”, its two endpoints α and β have different roles
(support node and dependent node), and there is a dependent relationship between
the source endpoint α and the target endpoint β. In other words, when the source
endpoint α fails or the link e(α,β) is broken, the target endpoint β will also fail, and the
other links also dependent on the target endpoint β will also be broken. Therefore,
from the perspective of node importance, the importance of the target endpoint β
needs to be transmitted to the source endpoint α. Similarly, from the perspective of
link importance, the importance of the target endpoint β’s neighboring links other
than the homologous dependent links also needs to be transmitted to link e(α,β).
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Figure 4. Schematic diagram of the link-dependent mechanism.

In summary, fusing the link-local betweenness mapping entropy in the first-order
central domain with the link-dependent mechanism yields the multi-layer-dependent link
entropy (MDLE).
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Definition 14 (Multi-Layer-Dependent Link Entropy).

MDLEe1 = (LLBMEe1)
−1 + ∑

e2

Se2 (12)

In Equation (12), LLBMEe1 characterizes the link-local betweenness mapping entropy in the
first-order central domain, and since the values of the entropy-like metrics are negatively correlated
with the importance of the link, the inverse is taken here as the primitive score of the link’s importance.
Se2 then denotes the score of the importance of the rest of the neighboring links, other than the same-
direction dependency links, that are connected to the target endpoint β of link e1 when link e1 is a
dependent link.

4.3.4. Critical Link Discovery Process

To summarize, the critical link discovery metric, the MDLE, will be able to transfer the
link importance score based on the decomposition of the network coupling relationship
according to the dependency relationship of links and determine the link connectivity
importance and dependent importance for the discovery of critical links in the multi-layer
dependent network.

The methodological process for the MDLE consists of five phases:

• S1: network input phase.

Based on the target network data, the set of nodes and links is extracted and the
network topology is constructed.

• S2: link-local betweenness computation phase.

Construct the first-order central domain of the target link, compute the local link
median, and evaluate the importance of the target link.

• S3: mapping entropy calculation phase.

The corresponding mapping entropy is computed based on the link-local betweenness
centrality of the target link, extending the scope of the analysis domain.

• S4: comprehensive link importance assessment phase.

Determine the fusion mapping entropy based on link dependencies to compute link
importance in the multi-layer network.

• S5: sequence output phase.

Output the sequence of critical links based on link importance. The flow chart is
detailed in Figure 5.

Network Import

Link-local Betweenness 

Centrality Computation

Data preprocessing 

Network topology construction

Constructing the first-order centroid domain of the target link

Calculating link betweenness centrality in the analytic domain 

Mapping Entropy 

Calculation
Compute the entropy of the link-local betweenness centrality 

mapping of the target object 

Link Dependent Mechanism 

Calculation

Constructing the set of dependent links for a target link

Calculate link importance score based on dependent mechanism

Importance Ranking 

Output 
Ranked sequence of importance of output links

S1

S2

S3

S4

S5

Figure 5. MDLE critical link discovery process.
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5. Network Experiment and Result Analysis
5.1. Dataset and Experimental Setup

To evaluate the critical link discovery method proposed in this paper, we tested it on
two multi-layer networks: a “typical business network” (labeled Business) and a “typical
campus network” (labeled Campus) [33]. Both networks have three-layer architectures: a
physical device layer, a business application layer, and a user role layer. The datasets were
created using the heuristic algorithm from the work [9], which establishes a “one-to-one”
dependency between the physical device layer and the business application layer based on
the area routing topology data. This means that if a server node fails, its corresponding
business system node also fails. If an access node fails, its corresponding user terminal also
fails. There are also multi-layer dependencies between the business application layer and
the user role layer, and “many-to-many” dependencies between them. This means that
after the failure of a business system node or an access node, the corresponding user nodes
will immediately fail.

To further validate the effectiveness of the approach, in addition to the critical link
discovery metric MDLE, five existing link importance metrics, i.e., the link degree centrality
(LDC), link betweenness centrality (LBC), link k-shell index (LKS), Jaccard index (Jaccard),
and topology overlap index (TO), will be used as an experimental control group in the
experiments in this section.

Similar to the idea of node importance assessments, in the multi-layer network topol-
ogy model for network security situational awareness, starting from the idea of the MDLE,
the importance of the links in the upper two layers of the three-layer network, as well
as the importance of inter-layer links, will be summarized in the physical device layer,
which will become the basis for judging the importance of various types of links in the
physical device layer. These important links in the physical device layer will play a critical
role in supporting the structure of the entire network topology. Therefore, when using
various types of non-neighborhood-centric metrics (LBC, LKS) to generate link importance
ranking sequences, we still set the evaluation scope at the physical device layer to ensure
the consistency of the evaluation level.

Next, the experimental part will comprehensively analyze the MDLE from three
perspectives: monotonicity rankings, metric correlations, and network destruction effects.

5.2. Link Importance Metric Ranking Monotonicity

Ranked monotonicity [34] is an important metric for performance evaluations of
critical link discovery methods; a higher ranked monotonicity implies a smaller size of the
set of medium volume scores for link output sequences, a weaker ambiguity in importance
decision making, and a finer granularity of importance evaluations.

Definition 15 (Link Monotonicity).

Mp
r (e) =

(
1 − ∑r∈R Lr(LR − 1)

Lp(Lp − 1)

)
(13)

In Equation (13), the set of to-be-evaluated monotonicity links is selected using sampling, and
p represents the proportion of the subset of to-be-evaluated links selected from the network links to
the total number of links, R is the set that divides the to-be-evaluated links into sets conditioned on
the condition that they have the same scores, Lp is the size of the set of to-be-evaluated links, and Lr
is the number of links in the to-be-evaluated link sets that have the same scores. The score of the
respective groups of links with the same scores is r.

In this section, the experiment is based on the network topology of the dataset “Busi-
ness” network. We choose the top ten percent of the links in the physical layer of the
network layer in the rankings of the MDLE and the other five metrics (LDC, LBC, LKS,
Jaccard, and TO) as the set of links to be evaluated. The monotonicity of the metrics is
shown in Figure 6.
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Figure 6. Schematic of monotonicity ranking of link importance metrics.

The experimental results show that compared with the other five metrics, the mono-
tonicity of MDLE can be maintained at 1.0, while the monotonicity of the rest of the metric
rankings is less than desirable, which is because the structural homogeneity of links is
more obvious than that of nodes considering the scale and the network characteristics. The
MDLE not only takes into account the degree of influence of the links in the homogeneous
range, but also combines the dependent mechanism with the synthesis of the links in the
multi-layer networks. Importance information makes the source of evaluation information
more diversified and solves the problem of the low decision-making accuracy in existing
link importance metrics.

5.3. Link Importance Metric Correlation Analysis

To further analyze the correlation between the MDLE and the existing link importance
metrics in terms of ranking, the Pearson product-moment correlation coefficient (labeled
PPMCC) [35] is used here to calculate the correlation between the metrics used in this
section (MDLE, LDC, LBC, LKS, Jaccard, TO). The Pearson correlation coefficient is defined
as follows.

Definition 16 (Pearson Product-Moment Correlation Coefficient).

γ =
1

n − 1

n

∑
i=1

(
Xi − X̄

σX

)(
Yi − Ȳ

σY

)
(14)

In Equation (14), for the set of samples X and Y of the two link importance metrics for
correlation assessment, Xi−X̄

σX
is the standardized score of the metric sample Xi, X̄ is the average of

the metric samples Xi, and σX is the sample standard deviation of the metric samples Xi. Similarly,
Yi−Y

σY
is the standardized score of the metric sample Yi, Ȳ is the average of the metric sample Yi,

and σY is the sample standard deviation of the metric sample Yi. The fluctuation range of the
PPMCC of the two metrics samples is [−1,1]. γ = 1 indicates that the metric samples Xi and
Yi have a good correlation, can be characterized by linear equations, and are positively correlated;
γ = −1 indicates that the metric samples Xi and Yi have a good correlation, can be characterized by
linear equations, and are negatively correlated; and γ = 0 indicates that the metrics do not have a
linear relationship with each other.

In this section, we also evaluate the network topology based on the “Business” dataset,
calculate the Pearson correlation coefficients between the MDLE and the five link impor-
tance metrics, and map the results into a heat map as shown in Figure 7.
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Figure 7. PPMCC heat map of link importance metrics.

In Figure 7, the heat map characterizes the strength of the correlation between the
two metrics in terms of the percentage of fill of the circular pattern and the positive and
negative correlation between the two metrics in terms of the color mapping of the legend
on the right-hand side, thus providing a graphical presentation of the Pearson coefficients
between the metrics. The diagonal line in the figure is the autocorrelation of each indicator,
represented by a filled dark blue circular pattern (i.e., γ = 1), and the lower left part of the
figure is symmetric with the upper right part.

Based on the analysis of the heat map values and color distribution, it can be seen
that, generally, the correlation between different assessment metrics presents the following
characteristics: First, for the set of homogeneous metrics (link importance is either positively
or negatively correlated with the metric values), the metrics are positively correlated with
each other; this is because the critical links in the network often take on important functions
in multiple dimensions. However, the correlation strength between them fluctuates due to
the different assessment perspectives of the link importance metrics, e.g., the correlations
between LDC, LBC, LKS, Jaccard, and TO are positive, but the magnitudes of the values of
the Pearson parameter are different. It is worth noting that the assessment perspectives
of various link importance metrics differ. However, the experimental network’s topology
has an impact on the assessment results to some extent. For instance, while the LBC and
Jaccard index assess links based on connectivity and endpoint variability, respectively, there
are positive and strong correlations in the assessment results because the physical topology
layer of the network presents a structure with solid centrality and leafy distribution at the
edges. As a result, the LBC’s assessment results exhibit a strong correlation with the Jaccard
index’s assessment results.

Meanwhile, the analysis shows that the correlation between the MDLE and the other
five metrics is weakly negative. The reason why the correlation performance is different
from the general indicators can be analyzed from the following two aspects.

First, from the perspective of the structural characteristics of the network model, the
network security situational awareness-oriented multi-layer network model, the impor-
tance of the link not only depends on the topological location, but is also affected by the
dependency relationship in the network. As a directional-dependent link fails, the depen-
dent nodes associated with it will undergo secondary failure, which will lead to network
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damage on a larger scale. The existing link importance indicators only consider the single-
layer network information, and cannot consider dependency as an assessment element,
so it is difficult to find the set of links that have a significant impact on the three-tiered
network topology.

The second is the idea of critical link discovery, where the MDLE aggregates the
importance information in the three-layer network topology through the dependencies
between network layers, can measure the importance of links from a domain-wide per-
spective, and can discover the set of links that play an important role in supporting the
entire network topology. Some links are replaceable in the network and although they
are located near the central area of the network, for instance, router communication links,
in the event of a failure, the connectivity function can be replaced by a similar link with
less impact on the network. On the contrary, failure of the links between the incoming
routers and the important servers will make the servers go offline, which will have a great
impact on the upper-layer service flow and a large amount of users’ access behaviors. These
important links are often non-important in existing importance metrics. Meanwhile, the
MDLE determines the importance of a network by evaluating its impact on all three tiers.
As a result, it has a weak negative correlation with the current link importance metrics in
terms of relevance.

5.4. Link-Removal-Based Network Destruction Simulation

In the link removal experiments, the node failure ratio (labeled θ) and link failure
ratio (labeled ζ) of the three-layer network are utilized to gauge the level of influence that
link removal has on the network’s structural integrity. The preferred node failure ratio is
defined in the following manner.

Definition 17 (Node Failure Ratio).

θ =
NLoss

PD + NLoss
BA + NLoss

UR
NPD + NBA + NUR

(15)

In Equation (15), NPD, NBA, and NUR denote the number of failed nodes in the entire
network topology in the physical device layer, the business application layer, and the user role layer,
respectively. Nloss

PD , Nloss
BA , and Nloss

UR denote the number of failed nodes in the physical device layer,
the business application layer, and the user role layer, respectively, in the experimental process.

Similarly, the link failure ratio is defined as follows.

Definition 18 (Link Failure Ratio).

ζ =
Lloss

PD + Lloss
BA + Lloss

UR
LPD + LBA + LUR

(16)

In Equation (16), LPD, LBA, and LUR denote the number of failed links in the entire network
topology in the physical device layer, the business application layer, and the user role layer, respec-
tively. Lloss

PD , Lloss
BA , and Lloss

UR denote the number of failed links in the physical device layer, the business
application layer, and the user role layer, respectively, in the experimental process.

Compared with the proportion of network node failure, the proportion of network link
failure highlights the retention of links in the current subject network after the perturbation,
which demonstrates the connectivity density of the network.

In this section, the continuous link removal strategy is used to conduct experiments,
and the network node failure ratio and network link failure ratio of the “Business” and
“Campus” networks are determined to observe the impact of link removal on the topology
of the three-layer network model according to different link importance evaluation indexes.
The results of the experiments are shown in Figures 8 and 9.
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(a)

(b)
Figure 8. Relationship between link removal size and network node/link failure ratio (continuous
series)—Business. This figure depicts the variation in node (subfigure a)/link (subfigure b) failure
ratio when links are successively deleted in the network “Business” ranked by link importance.

The horizontal coordinate shows both the significance ranking and the size of the link
that has been removed through the critical link discovery methodology; a higher ranking
indicates that the link has a higher score of importance in the method, and also earlier
the link is removed Campus in the experiment. The vertical coordinate characterizes the
proportion of network node/link failures, which is identified by a separate subgraph, since
the experimental results indicate that the MDLE has a significant advantage in the speed of
convergence compared to the other link importance metrics.
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(a)

(b)
Figure 9. Relationship between link removal size and network node/link failure ratio (continuous
series)—Campus. This figure depicts the variation in node (subfigure a)/link (subfigure b) failure
ratio when links are successively deleted in the network “Campus” ranked by link importance.

To analyze the validity of the MDLE more comprehensively, this section of the experi-
ment employs two comparison strategies for the “Business” and “Campus” networks: (a) In
the “Business” network removal experiment, after the MDLE-based destruction strategy
makes the network node/link failure ratio reach the convergence, the convergence position
of the failure ratio is recorded, and then link removal is carried out based on the existing
link importance index until the network failure ratio is close to the convergence position
in the MDLE and the scale of link removal in the network at this time is counted. (b) In
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the “Campus” network removal experiment, a set of links with the same size is selected
based on their importance metrics (including the MDLE), specifically the top 100 links
per metric. These links are then removed and the experiment observes the percentage of
network node/link failures.

In Figure 8, it is shown that during the link removal experiments, the convergence
position of the MDLE in the percentage of network node failures and the percentage of link
failures is around 85% and 97%, respectively. The experimental results show that when
the two best metrics of network damage in the comparison methods, the link betweenness
centrality (LBC) and the topology overlay index (TO), converge, the size of the removed
links in the network has already exceeded 2000, while the MDLE discovery method reaches
the convergence of the network node/link failure ratio before removing 30 links. This
proves that the MDLE, which integrates multi-layer information, has a significant advantage
in the discovery of critical links in multi-layer networks.

In Figure 9, with the increasing scale of link removal in the network, the proportion of
node/link failure in the network increases positively, and the experimental results show
that compared with the other five metrics (LDC, LBC, LKS, Jaccard, and TO), the MDLE can
make the proportion of node failure in the network converge quickly. After removing the
top 100 links, the proportion of node failure in the network node removal based on the five
existing link importance assessment metrics is around 10–30%, while the effect of removal
based on the MDLE reaches more than 90%. Similarly, assessing from the perspective
of the network link failure ratio, after removing the top 100 links ranked by each metric,
for the link removal strategy based on the existing link importance assessment metrics,
the network link failure ratio is about 2–40%, while the effect of removal based on the
MDLE is close to 100%, which means that connectivity has been paralyzed in the three-layer
network. The experimental results show that in the multi-layer network model oriented
to network security situational awareness, compared with the existing link importance
metrics, the link importance rankings in the MDLE are more reasonable, and the MDLE
can be more effective in discovering the critical link sets in the three-layer network.

6. Conclusions

By analyzing the architecture of a multi-layer network model and the distribution of
links, this paper proposes a link importance assessment metric: the multi-layer-dependent
link entropy (MDLE). This metric synthesizes the link-local betweenness mapping entropy
and the dependent mechanism for critical link discovery. Since the existing link discovery
methods cannot better solve the problems of a poor link information completeness and
a huge link scale in networks, we construct a topology analysis domain centered on the
target link, calculate the local betweenness centrality, and enhance the evaluation effect
based on the mapping entropy theory. At the same time, decomposing the coupling
relationship of links in the first-order central domain, combined with the link-dependent
mechanism, enables the importance of links to be transmitted in the multi-layer network
model, thus completing the convergence of importance metrics in each network layer and
discovering the set of links that play a key role in the network. In the experimental portion,
we employed different link importance metrics, including the Jaccard index, as a basis for
comparison. The outcomes of the ranking monotonicity tests demonstrate that the MDLE
is more precise in evaluating the granularity of link importance metrics within the network.
After conducting a similarity analysis using PPMCC-based metrics, it was discovered that
the link assessment results produced by the MDLE with the gain-dependency mechanism
differed from the results obtained from single-layer information metrics. The MDLE results
were found to be better suited for multi-layer structural characteristics. Finally, the results
of the link removal experiments show that, compared to the five link importance metrics
for which control experiments were conducted, the ranking results of the MDLE are more
reasonable, with significant advantages in both the node failure ratio and link failure ratio
results. The larger the network size, the more superior the assessment becomes.
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Currently, our team has made some progress in building multi-layer network models
for network security situational awareness. We have completed several tasks such as model
building, critical node identification, and critical link discovery. These works have been
covered in our previous works and this paper. As a result, we have established a basic
research framework. The next step is to build upon this foundation and continue to develop
our understanding of network security situational awareness. However, regarding the
actual demands of network security situational awareness systems, the above work mainly
improves the effectiveness of situational assessments from the network topology perspec-
tive, while in an actual network environment, dynamic changes in service traffic and the
importance of user role information will further expand the complexity of situational
assessments. Therefore, in future research, based on the multi-source information support
and complex architecture support provided by multi-layer networks, the introduction of
knowledge graph [36] technology to portray threat behaviors or the combination of large
language models [37] to assist in processing massive situational data will help to further
enhance the perception and assessment of the overall security position of a network.
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