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Abstract: In social networks, the occurrence of unexpected events rapidly catalyzes the widespread
dissemination and further evolution of network public opinion. The advent of zero-shot stance
detection aligns more closely with the characteristics of stance detection in today’s digital age, where
the absence of training examples for specific models poses significant challenges. This task necessitates
models with robust generalization abilities to discern target-related, transferable stance features
within training data. Recent advances in prompt-based learning have showcased notable efficacy
in few-shot text classification. Such methods typically employ a uniform prompt pattern across all
instances, yet they overlook the intricate relationship between prompts and instances, thereby failing
to sufficiently direct the model towards learning task-relevant knowledge and information. This
paper argues for the critical need to dynamically enhance the relevance between specific instances and
prompts. Thus, we introduce a stance detection model underpinned by a gated multilayer perceptron
(gMLP) and a prompt learning strategy, which is tailored for zero-shot stance detection scenarios.
Specifically, the gMLP is utilized to capture semantic features of instances, coupled with a control gate
mechanism to modulate the influence of the gate on prompt tokens based on the semantic context
of each instance, thereby dynamically reinforcing the instance–prompt connection. Moreover, we
integrate contrastive learning to empower the model with more discriminative feature representations.
Experimental evaluations on the VAST and SEM16 benchmark datasets substantiate our method’s
effectiveness, yielding a 1.3% improvement over the JointCL model on the VAST dataset.

Keywords: zero-shot stance detection; social networking; prompt learning; contrastive learning

1. Introduction

Stance detection aims to automatically identify an individual’s stance or attitude
(e.g., favor, against, or neutral) expressed in text towards a specific proposition, topic, or
target [1–4]. Traditionally, this task has focused on learning classifiers to predict stances
on the same topic. However, in real-world scenarios, with the continuous emergence of
new topics, it is impractical to train a classifier for each topic due to the time-consuming
and expensive nature of the process. Therefore, zero-shot stance detection, which seeks
to recognize stances towards unseen targets based on knowledge of visible targets, has
gradually gained attention.

To tackle the issue of zero-shot stance detection, existing research has endeavored to
explore attention mechanisms [5], contrastive learning [6], adversarial learning [7], or graph
architectures based on external commonsense knowledge [8]. However, these methods
often face limitations in capturing capabilities and a dependency on external resources,
thereby failing to fully leverage the intrinsic information contained within datasets. On
the other hand, with the widespread adoption of pretrained models such as BERT [9] and
GPT [10] in the field of natural language processing, prompt learning has emerged as a
novel technique, thus demonstrating significant potential in addressing zero-shot stance
detection tasks. This approach transforms text classification tasks into cloze tests, where
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the pretrained language model is responsible for selecting the appropriate word from a set
of candidates to fill in the blanks, thereby ensuring semantic alignment with another piece
of text. For example, in identifying the sentiment of a social media post like “I missed the
bus today”, we might continue with a prompt like “I felt so__” and ask the PLM to choose
from a set of emotion-related words to complete the sentence. In this manner, by selecting
suitable prompts, we can manipulate the model’s behavior to predict the desired output
using the pretrained LM itself, sometimes without the need for any additional task-specific
training [11].

Brown et al. [12] first introduced the concept of prompts in the context method. Subse-
quently, Schick and Schütze [13] proposed PET, which achieves improvements by lever-
aging patterns in natural language understanding. Some studies [14–16] have automated
the search for prompts to reduce the dependence on manual pattern design by human ex-
perts. All these methods utilize natural language as prompts; hence, they are referred to as
discrete prompts. Other methods such as Ppt [17], Prefix-tuning [18], and P-tuningV2 [19]
replace natural language prompts with trainable continuous tokens, thereby automatically
searching for the optimal prompts in high-dimensional space. Accordingly, these methods
are known as continuous prompts. Current prompt-based learning methods typically
train models targeting specific task objectives, thus seldom considering the applicability
of samples to prompts. Although some recent works [20–22] have attempted to generate
prompts using contextual information, they often overlook how samples influence prompts,
thus focusing instead on how prompts contribute to instances. Such methods usually apply
the same prompt pattern across all instances, thereby leading to an inability to fully explore
the specific associations between instances and prompts, as well as to guide the model to
learn knowledge and information most relevant to the task.

To effectively address the issue of insufficient relevance between instances and prompts
in the field of natural language processing, this paper proposes an innovative solution.
We introduce a gated mechanism at the core, the gated multilayer perceptron (gMLP) [23],
to capture and refine the relevance between instances and prompts precisely. Through
this mechanism, we can calculate a relevance score that is used to dynamically adjust
the influence of prompts on instances. This not only strengthens the association between
instances and prompts but also achieves effective control of the information flow, thereby
enhancing the precision and efficiency of the processing.

Furthermore, this study ingeniously integrates strategies from prompt learning and
contrastive learning. Prompt learning stimulates the model’s sensitivity to specific tasks
by designing appropriate prompts, while contrastive learning enhances the model’s dis-
criminative power by comparing differences between various instances. This combination
not only improves the model’s ability to capture subtle differences but also enhances its
understanding of complex relationships.

The main contributions of this paper are as follows:

• We propose a novel stance detection model that combines the advantages of prompt learn-
ing and contrastive learning, thus enabling effective stance detection in zero-shot scenarios.

• We introduce a gating mechanism that can dynamically adjust the influence of the gate
on prompt tokens based on the semantic features of the instance, thereby enhancing
the relevance between instances and prompts.

• We conducted experiments on two benchmark datasets, VAST and SEM16, and the
results demonstrate that our model outperforms existing state-of-the-art methods on
both datasets.

2. Related Work
2.1. Zero-Shot Stance Detection

Early research on zero-shot stance detection methods largely focused on stance de-
tection within a set of targets, i.e., detection tasks where the training and test sets share
the same targets [24]. Crosstarget stance detection is a task similar to zero-shot stance
detection, in which a classifier trained on a known target is used to predict stances on data
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for an unknown target [25]. Existing crosstarget stance detection studies typically utilize
models based on attention mechanisms [26] or graph networks [27], thereby learning target-
associated features from the training set’s targets and then applying them to predict test
sets that are closely related to the target dataset. Unlike crosstarget stance detection tasks,
zero/few-shot stance detection aims to automatically determine the stance outcomes for
various unknown target data. Under this task requirement, Conforti et al. [28] constructed
a large-scale expert-annotated stance detection dataset, where the test set’s targets were
invisible relative to the training set. Allaway et al. [5] built a zero-shot stance detection
dataset with a wide range of topics, thus covering a broad spectrum of related topic cate-
gories. Based on this dataset, Allaway et al. [5] proposed a topic grouping attention model
to capture the relationship between targets and general topic representations, but they used
a fixed BERT model without further fine-tuning, which significantly limited the model’s
performance. In another study, Allway et al. [7] applied a dataset for intratarget stance
detection to zero-shot stance detection and employed adversarial learning to extract sample-
independent transferable features. However, it required a large amount of unlabeled data
from the target, which is not feasible for zero-shot stance detection tasks. Liu et al. [8]
introduced relevant commonsense knowledge from both structural and semantic perspec-
tives, thereby proposing a commonsense-enhanced graph model based on BERT to address
zero/few-shot stance detection tasks, but they overlooked the relationships between targets.
Liang et al. [29] solved this problem using a joint contrastive learning framework and
conducting contrastive learning from both context-aware and target-aware perspectives,
but their focus was on the contrast between classes, thus ignoring the connections between
targets within the same class.

2.2. Prompt Learning

Prompt learning is commonly defined as a method that transforms downstream
learning tasks into text generation tasks by incorporating prompt information into the
text input. Petroni F. et al. [30] introduced the LAMA dataset to test language models’
comprehension of factual and commonsense knowledge. This dataset comprises a set
of data sources, each containing a set of facts, which could be in the form of triples or
answer pairs. Brown T. et al. [12] created manually crafted prefix prompts for various tasks,
including question answering, machine translation, and commonsense reasoning. These
prefix prompts demonstrated strong performance across many NLP tasks and benchmarks
in zero-shot, one-shot, and few-shot settings. Schick T. et al. [13] targeted text classification
and conditional text generation tasks by converting original texts into a “cloze” format using
predefined templates, thereby aiding language models in understanding downstream tasks,
which is especially challenging in small sample learning settings with only a few samples.
Jiang Z. et al. [31], in the MINE method, adopted a mining approach to automatically
discover templates from texts containing input x and output y. This method scrapes data
from text corpora (like Wikipedia) and then looks for dependency paths between inputs and
outputs. Yuan W. et al. [32] used phrase replacements from a thesaurus to translate prompts
back and forth between different languages. Wang et al. [33] utilized conceptual knowledge
as prompts, thereby enabling models to more effectively understand the nuances of the
text and achieving heightened classification accuracy in zero-shot scenarios. Zhu et al. [34]
integrated soft knowledge into the prompt tuning process; this strategy markedly improved
the model’s grasp of short text contexts, thereby substantially enhancing text classification
performance. Goswami et al. [35] introduced a novel lightweight prompt-based method
that adapts language models trained on broad domain datasets to various low-resource
fields. This method employs domain-specific keywords and trainable gated prompts,
thus providing targeted guidance for the intended domain. These studies demonstrate
that model guidance through prompt content modification is effective; however, most
techniques employ identical prompts across instances, thereby neglecting the specific
relationships between instances and prompts. Motivated by these approaches, our study
introduces a mechanism using a gated multilayer perceptron (gMLP) to dynamically
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adjust the impact of prompts on instances, thereby significantly optimizing the model’s
performance in stance detection tasks for particular instances.

3. Methodology

In this section, we introduce the prompt learning method for zero-shot stance detection.
We then present the architecture of EZSD-CP, which adds an additional layer between the
embedding layer and encoder of pretrained language models (PLMs). This architecture is
depicted in Figure 1. The architecture of the EZSD-CP framework mainly consists of six
parts: (1) Setting prompt templates to insert prompts between the target and comment text,
thus better stimulating the potential of pretrained language. (2) BERT word embeddings,
where the target, comment text, and prompt sentences are fed into the BERT model for
word embedding to obtain a semantic representation of the text. (3) The gMLP module,
which uses gMLP to capture the semantic relevance between instances and prompts and
then utilizes this relevance as a gating mechanism to dynamically adjust the influence of
prompts on instances. (4) Stance contrastive learning, which performs contrastive learning
based on the supervisory signal of stance labels to better generalize stance features and
improve the model’s generalization ability. (5) Concat is an integration module that fuses
the rich semantic vectors provided by BERT word embeddings with context-sensitive
prompt tokens obtained through a carefully designed gating mechanism to generate a
comprehensive enhanced feature representation. (6) The encoder module, where we use
the deep network architecture of BERT to process word embeddings further, thus obtaining
vector representations that include deeper contextual relations.

Embedding Layer

PromptS1 S2

Norm

Channel

Activation

Spatial Gating 

Unit

Channel

Encoders

Pro

Con

Concat

Figure 1. Overall model diagram.



Entropy 2024, 26, 325 5 of 14

3.1. Task Description

LetM be a pretrained language model (PLM) with a vocabulary V . For a zero-shot
stance detection instance (s1, s2), our goal is to predict the stance of s2 towards s1, where s1
and s2 represent the target and comment text, respectively. In prompt learning, s1 and s2
are typically placed within a specific pattern consisting of special tokens, text pairs, and
external prompt tokens. For example, in our task, the instance (s1, s2) is inserted into a
pattern with prompt tokens—[CLS], p1, s1, [MASK], p2, s2, [SEP]—and thenM is used to
select the appropriate word w ∈ V∗, where p1, p2 ∈ Vp are prompt tokens, and V∗ is the set
of candidate label words. Finally, the label word w ∈ V∗ is mapped onto the actual labels.
In our task, the mapping function is “neutral” → 2, “favor” → 1, and “against” → 0.

P(y|(s1, s2)) = P(w|M((s1, s2), p)) (1)

Here, P represents the probability distribution of y given the input text pair (s1, s2),
where p = p1, p2,. . . , pk, and k is the length of the prompt. Generally, prompt learning
is divided into two main categories: discrete and continuous. Discrete prompt learning
methods search for human-understandable prompt tokens, meaning that the prompt
tokens are a subset of the vocabulary of the pretrained language model (PLM). In contrast,
continuous prompt learning methods use pseudo tokens in the pattern, which, during
training or inference, are projected into differentiable high-dimensional vectors.

3.2. Encoding Module

We use BERT as our pretrained language model and use the coding layer in BERT for
word embedding of instances (s1, s2) and prompts:

E = [E1; Ep; E2] = Embed([s1, p, s2]) (2)

where E ∈ RL×d is the input embedding matrix, E1 ∈ RL1×d and E2 ∈ RL2×d are the
embedding matrices of s1 and s2, respectively, Ep ∈ Rk×d is the embedding matrix of the
prompt markers, L is the sequence length, L1, L2, and k are the lengths of s1, s2, and p,
respectively, and d is the dimension of the embedding.

3.3. gMLP Module

In the EZSD-CP model, the process of extracting semantic information from instances
primarily focuses on effectively extracting information from multiple tokens that compose
the prompt. The gMLP model, with its unique structure, such as the spatial gating unit, effi-
ciently processes this semantic information, thereby particularly excelling in understanding
and analyzing complex relationships between tokens, as shown in Figure 2. Consequently,
we attempt to utilize gMLP to generate channelwise gating signals.

W = σ(Dense(gMLP(E))) (3)

where W ∈ Rk×d is a weight matrix.
The gMLP consists of a stack of L blocks with the same size and structure. In our

model, the input to the gMLP is E ∈ RL×d. Each block is defined as

Z = σ(EU), Z̃ = s(Z), Y = Z̃V (4)

where σ is the activation function, and U and V define linear projections along the channel
dimensions—the same as the FFNs of transformers (e.g., they have shapes of 768 × 3072
and 3072 × 768).

One of the key components in the above formulation is s(·), which is a layer capturing
spatial interactions, as shown in Figure 2. When s is a constant mapping, the above
transformation degenerates into a regular feedforward neural network (FFN) in which
individual tokens are processed independently without any communication across tokens.
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For gMLP, a major concern is designing an excellent system that captures complex spatial
interactions across tokens. Unlike transformers, the model does not require a positional
embedding, as this information will be captured in s(·).

Split

Norm

Spatial Proj

Figure 2. Spatial gating unit.

3.4. Stance Contrastive Learning

To enhance the generalization ability of stance learning, Gunel et al. [36] proposed a
method that defines stance comparison loss on a hidden vector of examples with supervised
stance labeling information. The purpose of this loss function is to capture the similarities
between examples within the same category and compare them with examples from other
categories. Specifically, given a hidden vector {hi}Nb

i=1 in a small batch H (Nb is the size of
the small batch), take one of the data hi as an anchor. Among them, hi, hj∈H. The same
label in the same batch is considered a positive pair, i.e., yi = yj, where yi and yj are the
labels of samples hi and hj, respectively. Those with different labels in the same batch are
considered negative samples, and then the loss of all positive pairs (hi, hj) and (hi, hj) is
calculated as

Lcon = − 1
N ∑

hi∈H
ℓ(hi). (5)

ℓ(hi) = log
∑j∈H\i∥[yi=yj ]

exp( f (hi, hj)/τs)

∑j∈H\i exp( f (hi, hj)/τs)
. (6)

where ∥[yi = yj] ∈ {0, 1} is an indicator function; here, its value is 1, f (hi, hj) is the cosine
similarity function for computing hi, and hj, f (hi, hj) = sim(u, v) = uTv/∥u∥∥v∥. τs is the
temperature coefficient for comparison learning.

3.5. Concat Module

Finally, EZSD-CP multiplies the prompt embedding and gate weights channelwise
and concatenates the new prompt embedding E′p with E1 and E2.

E′p = Gate
(
Ep; E

)
= W⊙ Ep (7)

E′ =
[

E′p, E1, E2

]
(8)

where ⊙ stands for channel multiplication, so the continuous prompted learning method
in Equation (1) translates to the EZSD-CP:

P
(
y|(s1, s2)

)
= P

(
w|M

(
E′
))

(9)
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3.6. Training

The learning objective of our proposed model is to train the model by uniting a
supervised stance detection loss LCE and a contrast learning loss Lcon. The total loss
consists of the sum of the two losses:

LLoss = λcLCE + λnLcon (10)

λc, λn are tuning hyperparameters, where LCE is the crossentropy loss. LLoss is
calculated as shown in Algorithm 1.

Algorithm 1 Calculation of the stance contrastive and crossentropy losses

1: Input: s1,s2
2: Output: LLoss
3: E← [E1; Ep; E2]← BERT_Embedding(s1, p, s2) ▷ p is the prompt token
4: Lcon ← Contrastive(E) ▷ Compute contrastive learning loss
5: W ← σ(Dense(gMLP(E))) ▷ Get channel gating
6: E′p ←W⊙ Ep ▷ Control prompt weights
7: E′ ← [E′p, E1, E2] ▷ Concatenate processed embeddings with original
8: ŷ←M[E′] ▷ Classification probability predicted by PLM
9: LCE ← CrossEntropy(ŷ, y) ▷ Compute classification loss

10: LLoss ← Lcon + LCE ▷ Total loss
11: return LLoss

4. Experiments
4.1. Datasets and Evaluation Indicators

Our model was evaluated using the zero/few-shot dataset released in 2020 and the
SEM16 dataset published in 2016.

The Varied Stance Topics (VAST) [5] is specifically designed for zero/few-shot stance
detection and includes comments from the New York Times “Room for Debate” section,
thereby covering a wide range of topics. There are over ten thousand data entries compris-
ing more than 6000 targets. The statistics for VAST are shown in Table 1.

SEM16 contains six predefined targets, including Donald Trump (DT), Hillary Clinton
(HC), the feminist movement (FM), the legalization of abortion (LA), atheism (A), and
climate change (CC).The statistics for SEM16 are shown in Table 2.

Consistent with previous work, we use the macro average of the F1 scores for each
target as the evaluation metric. First, the F1 values for the three categories were calculated,
and then the average of the F1 values for all categories was taken.

Table 1. Detailed statistics of VAST. # denotes “number of” or “count”, indicating the quantity for
each category listed.

Statistics Train Dev Test

# Examples 13,477 2062 3006
# Documents 1845 682 786
# Zero-shot Topics 4003 383 600
# Few-shot Topics 638 114 159

Table 2. Data statistics for SEM16. DT: Donald Trump, HC: Hillary Clinton, FM: Feminist Movement,
LA: Legalization of Abortion, CC: Climate Change is a Real Concern, A: Atheism. # denotes “number
of” or “count”, indicating the quantity for each category listed.

Topic # Ex # Unlabeled Keywords

DT 707 2194 trump, Trump
HC 984 1898 hillary, clinton
FM 949 1951 femini
LA 933 1899 aborti
CC 564 1900 climate
A 733 1900 atheism, atheist
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4.2. Experimental Implementation

Our experiments were all encoded using case-insensitive BERTbase with a 12-layer
transformer encoder, where each word token was mapped to a 768-dimension embedding.
We optimized our model using the Adam optimizer, with all dropout rates set to 0.1.
learning rates were chosen from (1, 2, 3, 4, 5)× 10−5; the training batch size was set to 8, the
step size to 0.1, and the final choice of all hyperparameters was based on the performance
on the validation set. λc and λn were set to 0.5 and 1, respectively. The learning rates were
set to 1× 10−5. The median comparative learning loss was chosen from 0.14 to 0.07, both
using an A40 graphics card for the experiments.

4.3. Baseline Method

To demonstrate viability, we compared the proposed model with the following state-
of-the-art models:

• BERT-joint [5]: Contextual conditional encoding followed by a two-layer feedforward
neural network.

• TGA Net [5]: The model using contextual conditional encoding and topic-grouped
attention.

• BERT-GCN [8]: The model applies the conventional GCN [37] only considering the
node information aggregation.

• CKE-Net [8]: A model based on BERT using the CompGCN [38] to obtain the com-
monsense information.

• DTCL [39]: The model introduces a latent topic cluster embedding and a discrete
latent topic variable to build a bridge between various targets.

• ST-PL [40]: The model designs an agent task framework that combines self-supervised
learning and cue learning for automatically identifying and exploiting goal-irrelevant
gestural expression features while excluding goal-relevant expression features through
a data augmentation strategy.

• JointCL [29]: The model consists of stance contrastive learning and target-aware
prototypical graph contrastive learning.

4.4. Main Results

The overall results of our model compared to the baseline are presented in Table 3. To
assess the efficacy of our approach across various scenarios, we conducted experiments on
the VAST and SEM16 datasets. Our model significantly outperformed all baselines, thereby
affirming the effectiveness of our gate mechanism for controlling the influence of prompts
on instances and our supervised contrastive learning method. To show our experimental
results more clearly, as shown in Figure 3, we compare the experimental results of JointCL
and EZSD-CP_bert in a bar chart.

Specifically, our model’s performance on the VAST dataset was two percentage points
higher than the ST-PL model. This notable enhancement in performance can be attributed
to the combined effect of the adopted gating mechanism strategy and contrastive learning
approach. While the ST-PL model, grounded in prompt-based learning, demonstrated
commendable capability, our model further refined the dynamic interplay between in-
stances and prompts during the learning process. Moreover, by reinforcing the model’s
ability to distinguish features via contrastive learning, we achieved even more impressive
results in the challenging zero-shot stance detection task, thereby validating the efficacy of
our method.

In the realm of zero-shot stance detection, the JointCL model is regarded as the current
best practice due to its enhancement of intercategory connections through clustering.
Our model surpassed JointCL in performance, thereby highlighting the significance of
introducing gating mechanisms and contrastive learning strategies. The CKE-Net model
attempts to strengthen the link between targets and texts by integrating the ConceptNet
common sense knowledge graph. In contrast, our model, which capitalizes on the potential
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of pretrained models through prompt learning, yielded superior outcomes, thus further
confirming the effectiveness of prompt-based learning methodologies.

To comprehensively evaluate the generalizability of our model, we experimented with
replacing BERT with RoBERTa and compared the results across both datasets. Although the
findings on RoBERTa were also encouraging, we noticed a slight decline in performance
on the VAST dataset, by 0.6 percentage points compared to BERT. This observation might
stem from the multithemed nature of the VAST dataset, where RoBERTa exhibits a finer-
grained focus on language comprehension within similar or identical themes. Conversely,
on the SEM16 dataset, RoBERTa’s overall performance generally exceeded that of BERT,
thus potentially illustrating the inherent advantages of larger-scale pretrained models in
zero-shot tasks.

Table 3. Experimental results on VAST dataset and SEM16 dataset.

Model
VAST (%) SEM16 (%)
Pro Con Neu All DT HC FM LA A CC

BERT-joint [5] 54.6 58.4 85.3 66.1 - - - - - -
TGA Net [5] 55.4 58.5 85.8 66.6 41.5 48.7 46.6 45.3 54.2 35.4
BERT-GCN [8] 58.3 60.6 86.9 68.6 42.3 50.0 44.3 44.2 53.6 35.5
CKE-Net [8] 61.2 61.2 88.0 70.2 - - - - - -
DTCL [39] 60.0 64.7 87.6 70.8 - - - - - -
ST-PL [40] - - - - 48.4 53.7 51.2 48.1 52.2 35.2
JointCL [29] 64.9 63.2 88.9 72.3 50.5 54.8 53.8 49.5 54.5 39.7
EZSD-CP_bert (ours) 65.4 64.5 90.6 73.6 59.58 75.2 56.7 58.5 54.48 42.5
EZSD-CP_roberta (ours) 65.2 64.3 89.5 73.0 68.8 76.3 62.2 64.4 54.44 37.3

Figure 3. Comparative bar graphs of experimental results of EZSD-CP and JointCL on VAST and
SEM16 datasets.

4.5. Ablation Experiments

In this study, to delve into the role of each component within the EZSD-CP model, we
designed a series of ablation experiments to evaluate the contribution of each component,
and the corresponding experimental results are detailed in Table 4. The results of the
ablation experiments clearly indicate that once the gMLP gating mechanism was removed,
the model suffered significant performance losses across all evaluation metrics. This
phenomenon strongly underscores the importance of the gMLP gating mechanism, namely
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its role in enabling the model to flexibly adjust the response intensity to prompt tokens
based on the semantic features of input instances. Furthermore, when we removed the
stance contrastive learning (con) component from the model, we observe a significant
decrease of nearly six percentage points in the overall performance. This decline reveals the
importance of stance contrastive learning within the model, particularly its effectiveness in
learning the similarities of stance features within the same category, thereby enhancing the
model’s generalization ability to similar targets.

Table 4. Results of the ablation experiment. The gMLP indicates a gating mechanism, and the con
indicates stance contrastive learning.

Model
VAST (%) SEM16 (%)
Pro Con Neu All DT HC FM LA A CC

EZSD-CP (ours) 65.4 64.5 90.6 73.6 59.58 75.2 56.7 58.5 54.48 42.5
gMLP 62.1 68.6 85.9 72.2 56.2 74.0 54.9 56.4 35.7 32.0
con 63.6 66.5 88.3 71.6 53.3 73.2 53.4 55.6 37.1 32.9

4.6. Confounding Experiment

In this experiment, to visually evaluate the model’s performance on the test dataset
and accurately reveal the model’s classification efficacy across different categories, we
conducted an in-depth confusion matrix analysis for each newly added component of
the model. As shown in Figure 4, after the removal of the gMLP module, the recognition
accuracy for categories other than the “against” category experienced a decline. This result
powerfully indicates the significant role of the gMLP module in enhancing the overall
classification accuracy of the model. Furthermore, by combining the data from Figure 4a,c ,
it can be observed that the prediction accuracy for all categories decreased after the removal
of the con module, with the “favor” label experiencing a significant reduction for 40 cases
in its prediction accuracy. This change clearly points out the positive contribution of the
con module within the model, especially in improving the recognition capability for the
“favor” stance. Therefore, these experimental results not only verify the effectiveness of the
gMLP and con modules but also highlight their value in constructing an efficient stance
detection system.

(a) F1 All Value (b) F1 -gMLP Value (c) F1 -con Value

Figure 4. The confusion matrices over different modules. F1 All denotes our proposed model EZSD-
CP, F1 -gMLP denotes the removal of the gMLP module, and F1 -con denotes the removal of the
contrast learning module.’0’ represents against, ’1’ indicates favor, and ’2’ denotes neutral.

4.7. Analysis and Discussion

We meticulously examined how the gating mechanism influenced the EZSD-CP. We
randomly selected 12 instances and analyzed the gating signal weights generated on certain
channels for different instances. The visualization results recorded in Figure 5 indicate that
the gating mechanism can obtain varying gate weights for different instances.
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Figure 5. Gate weights in different channels.

5. Conclusions

In this paper, we elucidate the main problems currently faced by zero-shot stance
detection in the context of prompt learning and validate the importance of using a gating
mechanism to regulate the influence of prompts on different instances. We proposed an
instance-guided prompt learning method, EZSD-CP. EZSD-CP constructs prompts using a
weight matrix extracted from instances. Thus, during the training and inference process,
the prompts are constrained by the semantic information of the instances. At the same
time, contrastive learning was introduced into the model, thereby enabling it to learn
more discriminative feature representations. This straightforward approach achieved
state-of-the-art performance on both the VAST dataset and the SEM16 dataset.

In the future, we plan to explore a better gating mechanism that can more effectively
adjust the influence of prompts on instances based on the semantic information of sentences.
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