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Abstract: Recent progress towards understanding the mechanism of dynamical tunneling in Hamil-
tonian systems with three or more degrees of freedom (DoF) is reviewed. In contrast to systems
with two degrees of freedom, the three or more degrees of freedom case presents several challenges.
Specifically, in higher-dimensional phase spaces, multiple mechanisms for classical transport have
significant implications for the evolution of initial quantum states. In this review, the importance
of features on the Arnold web, a signature of systems with three or more DoF, to the mechanism of
resonance-assisted tunneling is illustrated using select examples. These examples represent relevant
models for phenomena such as intramolecular vibrational energy redistribution in isolated molecules
and the dynamics of Bose–Einstein condensates trapped in optical lattices.

Keywords: dynamical tunneling; resonance-assisted tunneling; chaos-assisted tunneling; Hamiltonian
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1. Introduction

The phenomena of dynamical tunneling (DT), introduced by Davis and Heller nearly
four decades ago [1] and anticipated in earlier studies, is associated with processes that are
classically forbidden but occur quantum mechanically. The reader may consult ref. [2] for a
detailed historical perspective on dynamical tunneling. More importantly, such processes in
classical dynamics may be energetically allowed yet dynamically forbidden. Thus, while no
barriers may be apparent in the configuration space, dynamical barriers can and do exist in
the full phase space of the system. Quantum dynamics can then mix near-degenerate states
via tunneling through such dynamical barriers. A profound consequence is the proliferation
of quantum pathways that open up for the dynamical evolution of an initial quantum state.
As a consequence, substantial differences between the classical and quantum dynamics can
emerge in the limit of “sufficiently long” timescales.

The additional pathways afforded via DT influence several observables of interest,
with relevance to a wide range of physical systems [3]. In the molecular context, examples
come from high-resolution spectra wherein “clumps” of spectral lines are associated with
the vibrational superexchange mechanism [4,5] and related to quantum vibrational energy
flow in molecules [6–8]. Additional examples include the generation of NOON states
in ultracold bosonic atoms [9,10], the efficacy of coherent control in driven [11–14] and
kicked [15,16] systems, stability of quantum discrete breathers [17,18], and fragmentation
of trapped Bose–Einstein condensates [19,20]. Furthermore, dynamical tunneling has been
shown to play a crucial role in a variety of “engineered” systems [21–34].

Interestingly, although it is a purely quantum effect, it has been established that the
nature of the classical phase space has a strong influence on DT. Indeed, the proposed
mechanisms typically invoke specific structures in the phase space. For example, the
importance of nonlinear resonances, chaos, Kolmogorov-Arnold-Moser (KAM), and partial
barriers in the multidimensional phase space has been clearly established. Thus, the
resonance-assisted (RAT) [35–40] and chaos-assisted tunneling (CAT) [41,42] mechanisms
have been studied rather extensively in the context of Hamiltonian systems with two
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degrees of freedom. The former is relevant in near-integrable systems wherein near-
degenerate quantum states can mix due to the presence of specific nonlinear resonances. For
smaller effective h̄ the near-degenerate states can be coupled via a multitude of nonlinear
resonances [37,39]. In the case of CAT, one invokes a coupling between the symmetric
regular islands and the chaotic sea. The chaotic sea is modeled via random matrix theory
with a typical three-level scenario that involves avoided crossing of the tunneling doublet
with a chaotic state [41,43]. In mixed systems, one needs to invoke [36] both RAT and
CAT in general for a proper quantitative description of DT. A comprehensive review of
the different mechanisms and their interplay can be found in the articles in the two edited
volumes [44,45]. On the other hand, Shudo and coworkers have recently suggested [46–48]
that in the limit of “ultra” near-integrable systems, enhancements in tunneling probabilities
may not correspond to any classical phase space structure and a careful look at the complex
phase space dynamics is necessary. Nevertheless, in this review, the former viewpoint is
taken for a couple of reasons. First, typical physical systems are far from the ultra near-
integrable limit and have mixed regular–chaotic phase space. One anticipates that the extent
of modulation of DT due to the phase space features will outweigh any purely quantum
contribution. Second, as exemplified by the RAT and CAT studies, identifying specific
phase space structures as dominant contributors allows for a predictive semiclassical
theory [2,41,48].

Despite extensive investigations of DT over the past few decades, the fact remains that
to date, very few studies have been performed for systems with three or more degrees of
freedom [49–52]. There are several reasons for this. Chief among them has to do with the
nontrivial change in the phase space topology, and hence transport, in going from f = 2 to
f ≥ 3 Hamiltonians. As is well known, whereas mixed regular–chaotic phase spaces can
manifest in both cases, in the f ≥ 3 case, the chaotic regions are no longer disconnected.
Specifically, the chaotic regions associated with the destroyed separatrices of the various
nonlinear resonances form an intricate network known as the Arnold web. It is thus possible
for “distant” regions in the phase space to be connected by purely classical transport. One
such mechanism for phase space transport in the near-integrable limit is known as Arnold
“diffusion”, which is expected to occur on exponentially long timescales. It should be noted
here that the transport in the connected chaotic layer due to the Arnold mechanism is not
necessarily a normal diffusive process over moderately long timescales. Thus, associating a
diffusion constant with the process is questionable [53,54]. One may perhaps argue that
the Arnold diffusion timescale is much longer than DT (or, for that matter, any physically
relevant) timescale, and hence of limited interest—a sentiment already expressed by Davis
and Heller [1] when they concluded their classic study by saying that “Identification of
dynamical tunneling in multidimensional systems may be a matter of comparing a small
flow classically to a large quantum mechanical coupling”. However, for f ≥ 3, Arnold
diffusion is not the only mechanism that leads to transport. In the nonintegrable limit,
there are indications [50,55–61] that it is possible to have different mechanisms that lead to
relatively faster exploration of the phase space. It is important to note that many of these
mechanisms are operative only for systems with f ≥ 3 since they require the connected
Arnold web structure. One key example involves a feature on the Arnold web known as a
resonance junction wherein several independent resonances can intersect on the constant
energy surface. Depending on the coupling regime, the junctions can give rise to local
pockets of chaos. Classical trajectories can also become trapped for a finite amount of time
leading to several interesting and dynamically relevant consequences [62–68]. Similarly,
concepts such as trapping due to partial barriers and “sticky” dynamics in f ≥ 3 have been
investigated [62,69–73] over the past decade in some detail. The jury is still out, but the
indications are that there are substantial mechanistic differences in the transport mechanism
for f ≥ 3 when compared to the fairly well-understood f = 2 case.

The key question, then, is to what extent are the proposed low-dimensional mecha-
nisms for RAT and CAT valid for f ≥ 3 systems? Does this connectedness of the phase
space lead to novel mechanisms for DT? That there must be some nontrivial consequences
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for DT is evident from a very early, and possibly the first, study [49] on a model f = 3
system. There, it was explicitly shown that quantum state mixing due to RAT can be clearly
understood from the structures on the Arnold web. More recently, it has been shown [52]
using a model 4D map that for f ≥ 3 one should anticipate the tunneling enhancements
to show complicated peak structure due to the presence of resonance junctions (double or
rank-2 resonance) and even drastic suppression of tunneling. The importance of resonance
junctions to DT has also been brought up recently in model Hamiltonians relevant for
IVR [51] and trapped ultracold atoms [19]. Thus, although there is some progress, answer-
ing the questions posed above in general presents several challenges. First, visualization of
the phase space is nontrivial but necessary to some extent in order to ascertain the local
structures present near the location of the initial quantum state of interest. There has been
some progress recently in this regard [74,75]. Second, constructing the Arnold web at a level
of detail concomitant with the effective Planck constant h̄ (see next section) is a numerically
demanding task. Thirdly, given that the resonances are dense everywhere on the web, an
estimate of the classical transport timescale connecting two or more quantum states that
are involved in DT is needed. This is important to establish if the state mixing is purely
quantum mechanical or not. Substantial progress [53,60,76–78] has been made recently
in terms of estimating the timescale for various model Hamiltonians in the context of
Arnold diffusion and Nekhoroshev stability. However, attempts to adapt such techniques
to models wherein DT can occur are still lacking.

In the context of the remarks made above, several studies have focused on searching for
explicit quantum signatures of the novel phase space transport mechanisms. For instance,
Martens analyzed [79] a model three-resonance Hamiltonian to see if the excited eigenstates
are delocalized along the resonance channels. Although such delocalized eigenstates were
observed, whether or not one can associate them with the Arnold diffusion alone was
not clear. In fact, a recent study [51] on the same system (see next section) shows that
the observed delocalization can also be due to extensive dynamical tunneling. Leitner
and Wolynes quantized the three-resonance model (also known as the stochastic pump
model) and noted [80] the equivalence to transport along a disordered wire. Consequently,
for any finite value of h̄, quantum localization was predicted. Importantly, localization
length was shown to scale as h̄−3, and arguments were provided for the possibility of
enhanced transport near the intersection of two independent resonances on the Arnold
web. Manifestation of Arnold diffusion in quantum systems has also been studied by
Malyshev and coworkers in a series of papers [81–83]. It was concluded that if the density
of states inside the chaotic layers is large enough (so-called Shuryak border) then quantum
Arnold diffusion can occur. Note that an example[84] in the molecular context also indicates
that quantum selection rules may limit the extent of diffusion. However, it has also
been pointed out [82] that this threshold may not be crucial in driven systems. Indeed,
extended diffusion has been observed in a driven two-dimensional optical lattice [85]
model. Nevertheless, as concluded by Leitner and Wolynes earlier [80], “quantum” Arnold
diffusion is weaker than the classical counterpart due to quantum localization effects. The
fact that a combination of quantum localization and novel classical transport can have
profound effects has been brought out very nicely by the Dresden group. For example,
Stöber et al., in their recent study [86] on coupled kicked rotors, have shown that partial
barriers in 4D maps are more restrictive for quantum transport when compared to the 2D
maps. A further example comes from the work of Schmidt et al. wherein, using a “synthetic”
Hamiltonian, it has been argued [87] that classical drift along a sufficiently wide resonance
channel can destroy quantum localization. Consequently, quantum dynamics ensuing from
an initial quantum state can explore large regions of the Arnold web. Please note that
such extensively delocalized eigenstates have been observed earlier [51] in the context of
the Martens model. Moreover, studies [88,89] do indicate that nonlinear interactions can
destroy quantum localization.

In what follows, a few of the models are presented along with the key observations.
The discussions are by no means exhaustive and certainly no replacement for the original
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literature, but they do highlight the complexity of DT in f ≥ 3 cases. The review ends with
a partial list of questions that remain unanswered.

2. Arnold Web: Definition, Construction, and Examples

Given the importance of the Arnold web to DT in f ≥ 3 systems, it is imperative to
start with a definition of the web and the generic features. For this purpose, consider a
general Hamiltonian of the form

H(J, θ) = H0(J) + ϵV(J, θ) (1)

with (J, θ) ≡ (J1, J2, . . . , J f , θ1, θ2, . . . , θ f ) being the action-angle variables of the f -degrees
of freedom system. The zeroth-order part H0 is assumed to be non-degenerate and in-
tegrable. The perturbation is denoted by V(J, θ) with ϵ representing the strength of the
perturbation. Typically, for ϵ ̸= 0, the system is nonintegrable, and depending on the
perturbation strength, the phase space may vary from being near-integrable to strongly
chaotic. Please note that in many instances, one may not be able to explicitly determine
the canonical transformations that bring the Hamiltonian to the above form. Nevertheless,
for near-integrable systems and in the context of RAT, the Hamiltonian in Equation (1)
is an appropriate starting point. As we see below, the classical limit Hamiltonians corre-
sponding to the Bose–Hubbard model for trapped cold atoms and effective spectroscopic
model for molecules are naturally of the form considered. Moreover, the correspondence
Jk ↔ (nk + µk/2)h̄ between the classical actions and the quantum numbers nk, with the
associated Maslov index µk, provides a convenient platform to compare and contrast the
classical and quantum dynamics. From a zeroth-order perspective, one can then define the
nonlinear frequencies

Ω0
k(J) ≡

∂H0(J)
∂Jk

(2)

which depend on the actions due to the condition of non-degeneracy. The various frequen-
cies can satisfy commensurability conditions of the form

r(α) · Ω0(J) =
f

∑
k=1

r(α)k Ωk(J) ≈ 0 (3)

with r(α) = (r(α)1 , r(α)2 , . . . , r(α)f ) being an integer vector. The condition in Equation (3)

represents a nonlinear resonance in the action space of order Oα = ∑
f
k=1 |r

(α)
k | with a width

scaling as
√

ϵ and exponentially with the order. Typically, low-order resonances dominate
the early time dynamics, whereas high-order resonances become important for longer
periods. In the quantum context, one must also compare the effective h̄ with the resonance
width to assess the importance of the specific resonance to the dynamics. Interestingly,
this dynamical hierarchy of the resonances in terms of their order plays a crucial role in
modeling the IVR dynamics in large polyatomic molecules [90].

The resonances defined by Equation (3) are hypersurfaces in the action space that can
intersect the constant zeroth-order energy surface H0(J) = E. For f = 2 the intersections
are at isolated points, whereas for f ≥ 3, the resonances are no longer isolated, and as
seen in Figure 1a, giving rise to a connected network of resonances known as the Arnold
web. In Figure 1b, an enlarged portion of the web is shown as an example to indicate
that the resonances are dense everywhere and form several resonance junctions. Thus, the
resonances of various orders form an intricately connected region over which classical and
quantum transport can occur. This aspect implies that any initial state is bound to be under
the influence of several resonances. Nevertheless, as indicated in the introduction, one
anticipates that only resonances up to a certain maximal order might be relevant for the
timescale of interest. What determines this maximal order? Nekhoroshev’s theory [91]
is ideally suited for answering this question. In this approach, one restricts attention to
resonances up to a maximum order Oα = K(ϵ). Thus, as sketched in Figure 2 for f = 3,
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the Arnold web can now be divided into various domains. The no-resonance domain
comprises all points in the action space that are sufficiently far from resonances of order K.
In this case, the Hamiltonian is integrable, and frequencies do not vary with time except
for an exponentially small diffusion caused by resonances of order higher than K. In the
single resonance domain, it is possible to transform the Hamiltonian to an integrable single
resonance of order Oα ≤ K. One has a fast bounded drift transverse to the resonance line.
In the double resonance domain, one has two independent resonances intersecting to form
a junction, and the resulting system is nonintegrable. The chaotic motion is bounded and
can happen in the region around the junction. Please note that for f > 3 one has resonance
planes, and it is possible to have m ≤ f − 1 independent resonances that can intersect to
form rank-m (or multiplicity-m) junctions.

24 THE MOTHER OF ALL REVIEWS ON IVR IN MULTIMODE SYSTEMS

1

2
3

Constant energy
surface

I

I IResonance

Irrational/partial
barrier

Figure 1.4 Sketch of the resonance network i.e., Arnol’d web for a three mode
system. The resonances, with varying thickness representing varying strengths, form
an intricate network over which dynamics of specific ZOBS (circles) occurs. Possible
barriers to the transport are indicated by dashed lines. Note the “hubs” in the network
corresponding to the intersection of several low and high order resonances. Compare
to the state space picture shown in the earlier figures.
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J3
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4.00(a) (b)

Figure 1. (a) A sketch of the Arnold web for f = 3 formed by resonance surfaces intersecting the
constant energy surface. The circles indicate possible initial classical or quantum states. Partial
barriers formed by pairwise noble tori may also be present. (b) Enlarging the blue shaded region in
(a) indicates that the resonances are dense everywhere on the Arnold web.

r(α) ⋅ Ω0(J) ≈ 0r(β) ⋅ Ω0(J) ≈ 0

Figure 2. Inclusion of resonances to a certain maximal order. Defining the single, double, and
no-resonance domains in Nekhoroshev theory. Fast drift (gray double arrows) occurs transversely to
the individual resonances. Exponentially slow Arnold diffusion (thick blue arrow) can occur along
the resonance. Figure adapted with permission from the PhD thesis [92] of S. Karmakar, which is
based on the figure in [93].
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The above picture of working with a finite set of resonances leads to Nekhoroshev’s
famous stability estimate. For ϵ ≪ 1, an initial condition (J(0), θ(0)) on the Arnold web
satisfies

|J(t)− J(0)| ≤ J0ϵa (4)

for 0 < ϵ < ϵ0 and times

t ≤ t0 exp
[( ϵ0

ϵ

)b
]

(5)

with (J0, t0) being positive constants. The stability exponents are estimated to be a = b =
1/2( f − m) in the resonance domains. The bound in Equation (4), apart from indicating
stability on an exponential time scale, also implies increased stability near resonance
junctions. Interestingly, the stability increases with the increasing rank of the junction.
However, in the present context, the relevant timescale is that of DT, which is determined
by the precise set of resonances that mediate RAT. Thus, given the sensitivity of RAT to
even fairly weak and high-order resonances, an a priori knowledge of the maximal order is
not obvious. In addition, for systems with small effective h̄, the density of near-degenerate
states is high near junctions with possible involvement of CAT due to the bounded chaos
in the vicinity of the junctions. In fact, provided CAT is occurring, the DT timescale may
be considerably short, and hence, interesting competition between classical and quantum
transport may manifest near the junctions.

The zeroth-order picture is valid for ϵ ≪ 1, and with increasing perturbation strength,
the resonances widen, leading to overlaps and the generation of large regions of chaos.
The system transitions from the Nekhoroshev regime to the Chirikov regime, as shown
in Figure 3 for the example of a model Hamiltonian [94]. In the deep Chirikov regime,
there is perhaps no meaningful way to define DT, a statement that is true even in the
f = 2 case. Theoretically, the former regime, flanked by the Kolmogorov-Arnold-Moser
(KAM) and Chirikov regimes, is fairly narrow, and one may rightfully question if a typical
physical system can be in such a regime. However, as noted [95] by Morbidelli and Froeschlé,
in practice, there is a wider range of ϵ value which characterizes the Nekhoroshev regime.
Consequently, studies on DT in model systems in the vicinity of rank-m junctions are relevant.

set that is a small deformation of the unper-
turbed one. Conversely, nothing is predicted by
KAM theory for initial conditions in the neigh-
borhood of the set made of invariant unper-
turbed tori with frequencies that satisfy a reso-
nance condition !i ki"i # 0 with some integers
(k1, . . . , kn) ! Zn!0, within a suitable accuracy
that increases with the order (11) !iki. There-
fore, in the neighborhood of such a set, which is
called the Arnold web, the motions of the sys-
tem can exhibit chaotic features.

The topology of the Arnold web is peculiar.
To describe it, we resort to the frequency space
"1, . . . , "n. In this space, the Arnold web
projects on the frequencies satisfying !i ki"i #
0 with a neighborhood that decreases with
the order !iki. Therefore, it is open and
dense, and if the perturbation is suitably
small, it has a small relative measure. This
structure was explained analytically in (3)
but only for very restrictive conditions (es-
pecially on the magnitude of the perturba-
tion). In addition, the rigorous proof of the
existence of instability and irregularity in
the Arnold web is a delicate, not complete-
ly solved problem. For physically interest-
ing systems, recent successful approaches
are based on numerical investigations (12).
In different fields of physics, the question
of the stability of quasi-integrable Hamil-
tonian systems in the sense of the KAM
theorem is important, because for the ma-
jority of initial conditions it provides sta-
bility for infinite times and describes mo-
tions. In beam-beam interactions (13), there
is the problem of having to remain as close
as possible to given computed orbits in
order to indeed have interaction between
particles. Within the old and not-yet-solved
problem of the stability of the solar system,
it is not completely clear whether the orbits
of some planets (14 ) and of a significant
number of asteroids (15) will change or not
in an important way. Previous work has
been based on numerical applications of the
frequency-map analysis (16 ). Here we give
a graphical representation of the Arnold
web, obtained with a numerical test of reg-
ularity of the solutions of the system, with
a sharpness never seen before.

We consider a system with the following
Hamilton function

Hε "
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I 2
2
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# I3
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cos$1 % cos$2 % cos$3 % 4" (1)

where I1, I2, I3 ! R and $1, $2, $3 ! S are
canonically conjugated (17 ), and ε is a pa-
rameter that the larger it is, the more per-
turbed the problem becomes. The canonical
equations of the integrable Hamiltonian H0

are integrated: I1, I2, I3 stay constant while
the angles at time t $1(t) # $1(0) % I1t, $2(t)

# $2(0) % I2t, $3(t) # $3(0) % t rotate with
constant angular velocity. Therefore, each
couple of actions I1, I2 characterizes an in-
variant torus T3, and all motions on the con-
sidered torus are quasi-periodic with frequen-

cies "1 # I1, "2 # I2, "3 # 1. Conversely,
for any small ε different from zero, Hε is not
expected to be integrable. However, we ex-
pect that the KAM theorem applies, and con-
sequently the phase space is filled by a large
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Fig. 2. Evolution of the Arnold web for increasing values of the perturbation parameter. The lowest
values of the FLI appear in black and they correspond to the resonant islands of the Arnold web;
the highest values appear in yellow and they correspond either to chaotic motion rising at the
crossing nodes of resonant lines or to the presence of separatrix. The FLIs of all the KAM tori have
about the same value, and therefore they appear with the same purple color. The choice of the
color scale is suited to the value of the perturbation parameter and to the integration time. (Left
column) A large portion of the action plane. Top: ε # 0.001, t # 1000; middle: ε # 0.01, t #
1000; bottom: ε # 0.04, t # 1000. (Right column) Enlargement of the figures on the left obtained
with a large integration time in order to see smaller details. Top: ε # 0.001, t # 4000; middle: ε #
0.01, t # 2000; bottom: ε # 0.04, t # 2000.
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crossing nodes of resonant lines or to the presence of separatrix. The FLIs of all the KAM tori have
about the same value, and therefore they appear with the same purple color. The choice of the
color scale is suited to the value of the perturbation parameter and to the integration time. (Left
column) A large portion of the action plane. Top: ε # 0.001, t # 1000; middle: ε # 0.01, t #
1000; bottom: ε # 0.04, t # 1000. (Right column) Enlargement of the figures on the left obtained
with a large integration time in order to see smaller details. Top: ε # 0.001, t # 4000; middle: ε #
0.01, t # 2000; bottom: ε # 0.04, t # 2000.
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set that is a small deformation of the unper-
turbed one. Conversely, nothing is predicted by
KAM theory for initial conditions in the neigh-
borhood of the set made of invariant unper-
turbed tori with frequencies that satisfy a reso-
nance condition !i ki"i # 0 with some integers
(k1, . . . , kn) ! Zn!0, within a suitable accuracy
that increases with the order (11) !iki. There-
fore, in the neighborhood of such a set, which is
called the Arnold web, the motions of the sys-
tem can exhibit chaotic features.

The topology of the Arnold web is peculiar.
To describe it, we resort to the frequency space
"1, . . . , "n. In this space, the Arnold web
projects on the frequencies satisfying !i ki"i #
0 with a neighborhood that decreases with
the order !iki. Therefore, it is open and
dense, and if the perturbation is suitably
small, it has a small relative measure. This
structure was explained analytically in (3)
but only for very restrictive conditions (es-
pecially on the magnitude of the perturba-
tion). In addition, the rigorous proof of the
existence of instability and irregularity in
the Arnold web is a delicate, not complete-
ly solved problem. For physically interest-
ing systems, recent successful approaches
are based on numerical investigations (12).
In different fields of physics, the question
of the stability of quasi-integrable Hamil-
tonian systems in the sense of the KAM
theorem is important, because for the ma-
jority of initial conditions it provides sta-
bility for infinite times and describes mo-
tions. In beam-beam interactions (13), there
is the problem of having to remain as close
as possible to given computed orbits in
order to indeed have interaction between
particles. Within the old and not-yet-solved
problem of the stability of the solar system,
it is not completely clear whether the orbits
of some planets (14 ) and of a significant
number of asteroids (15) will change or not
in an important way. Previous work has
been based on numerical applications of the
frequency-map analysis (16 ). Here we give
a graphical representation of the Arnold
web, obtained with a numerical test of reg-
ularity of the solutions of the system, with
a sharpness never seen before.

We consider a system with the following
Hamilton function

Hε "
I 1

2

2
#

I 2
2

2
# I3

# ε! 1
cos$1 % cos$2 % cos$3 % 4" (1)

where I1, I2, I3 ! R and $1, $2, $3 ! S are
canonically conjugated (17 ), and ε is a pa-
rameter that the larger it is, the more per-
turbed the problem becomes. The canonical
equations of the integrable Hamiltonian H0

are integrated: I1, I2, I3 stay constant while
the angles at time t $1(t) # $1(0) % I1t, $2(t)

# $2(0) % I2t, $3(t) # $3(0) % t rotate with
constant angular velocity. Therefore, each
couple of actions I1, I2 characterizes an in-
variant torus T3, and all motions on the con-
sidered torus are quasi-periodic with frequen-

cies "1 # I1, "2 # I2, "3 # 1. Conversely,
for any small ε different from zero, Hε is not
expected to be integrable. However, we ex-
pect that the KAM theorem applies, and con-
sequently the phase space is filled by a large
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Fig. 2. Evolution of the Arnold web for increasing values of the perturbation parameter. The lowest
values of the FLI appear in black and they correspond to the resonant islands of the Arnold web;
the highest values appear in yellow and they correspond either to chaotic motion rising at the
crossing nodes of resonant lines or to the presence of separatrix. The FLIs of all the KAM tori have
about the same value, and therefore they appear with the same purple color. The choice of the
color scale is suited to the value of the perturbation parameter and to the integration time. (Left
column) A large portion of the action plane. Top: ε # 0.001, t # 1000; middle: ε # 0.01, t #
1000; bottom: ε # 0.04, t # 1000. (Right column) Enlargement of the figures on the left obtained
with a large integration time in order to see smaller details. Top: ε # 0.001, t # 4000; middle: ε #
0.01, t # 2000; bottom: ε # 0.04, t # 2000.
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J1

J2

Nekhoroshev Chirikov
ε = 0.001 ε = 0.04ε = 0.01

Figure 3. An illustration of the transition from Nekhoroshev to the Chirikov regime with increasing
coupling strength ϵ. The figure is adapted from the work [94] of Guzzo et al wherein the model f = 3
Hamiltonian with H0(J) = J3 + (J2

1 + J2
2 )/2 and V(J, θ) = ϵ(4 + ∑3

k=1 cos θk)
−1 is used. The web is

constructed using the FLI method. Low FLI values (black) represent the resonance zones. High FLI
values in yellow correspond to chaotic motion at the intersection of the resonances or separatrices
associated with the single resonance zones.

Construction of the Arnold Web

There are several methods to numerically construct the Arnold web. The essence is
to use a measure that can unambiguously distinguish between non-resonant KAM tori,
resonance zones, and chaotic regions. Although computing the Lyapunov exponents would
be ideal, the numerical overhead is rather large. Consequently, there is considerable interest
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in numerical approaches that are relatively fast and modest in efforts to map out vast regions
of the Arnold web quickly. This would then allow for further studies on the classical transport
timescales and comparison with quantum dynamics of specific initial states.

The example shown in Figure 3 is constructed using the method of fast Lyapunov
indicator (FLI). The advantage of using the FLI is that one can use finite time dynamics to
distinguish between the different dynamical regions. A review of the FLI approach can
be found in the original literature. The FLI belongs to a class of variational methods and
other measures such as the orthogonal [96] FLI (OFLI), mean exponential growth of nearby
orbits [97] (MEGNO), small/general alignment index [98] (SALI/GALI), and relative
Lyapunov indicator [99] (RLI) has been proposed. We refer the reader to the review [100]
for a comparison of the different chaos indicators and a recent compendium of articles [101]
for further information. More recently, Giordano and Cincotta have introduced [102] the
Shannon entropy as an efficient measure to construct the Arnold web. Other approaches
like the maximum eccentricity-based method [103], frequency map analysis [56,62,104] and
wavelet-based measures [105–107] provide a fairly powerful approach for construction of
the Arnold web.

It is worth noting that, to date, the focus has been on mapping the Arnold web for
f = 3 Hamiltonian systems. In this case, one can still project the web on an appropriate two-
dimensional space, for example, the two independent frequency ratio space [62]. However,
for f > 3 the situation becomes more complicated, and a different approach, such as
the one proposed [108] by Fuji and Toda, may prove useful. In addition, anticipating
the increased numerical effort, techniques such as the one based on using the graphic
processing unit [109] and Lyapunov weighted dynamics [110] might be more appropriate.

3. Dynamical Tunneling and the Arnold Web: Some Examples
3.1. Martens’ Three-Resonance Model

The model Hamiltonian introduced by Martens [79] is a fairly good one to study
various aspects of DT. The quantum Hamiltonian is given by

H =
3

∑
i=1

[
ωi

(
a†

i ai +
1
2

)
+

1
2

αi

(
a†

i ai +
1
2

)2
]
+

3

∑
i=1

τiVi (6)

where the perturbation terms are given by

V1 = (a†
1)

2a2 + a2
1a†

2

V2 = (a†
1)

3a2
2 + a3

1(a†
2)

2 (7)

V3 = a†
2a2

3 + a2(a†
3)

2

The operators ai, a†
i , and a†

i ai are the destruction, creation, and number operators. One
can imagine the model in Equation (6) to be an effective “rotating-wave” limit approxi-
mation to a more general Hamiltonian. The mode frequencies and anharmonicities are
denoted by ωi and αi, respectively . The zeroth-order quantum states are the Fock states
|n1, n2, n3⟩ with the associated zeroth-order energies E0

n.
The dynamics of the various initial Fock states can then be studied for a wide range

of coupling strengths using measures such as the inverse participation ratio and survival
probability. Such a detailed study is described in the recent review [7]. However, the focus
here is on a specific class of initial states that are involved in DT. Therefore, it is important
to study classical dynamics since otherwise, it is not possible to unambiguously associate
DT with quantum dynamics. For this purpose, the classical limit of the Hamiltonian
Equation (6) is constructed using the Heisenberg correspondence

ak ↔
√

Jk exp(−iθk) ; a†
k ↔

√
Jk exp(iθk) (8)
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The classical Hamiltonian can be expressed as

H(J, θ) =
3

∑
i=1

[
ωi Ji +

1
2

αi J2
i

]
+ 2

3

∑
α=1

ταgα(J) cos(r(α) · θ) (9)

It is easy to check that the above Hamiltonian is a f = 3 system since there are no con-
served quantities except the total energy. Using Equation (2), the three different resonance
planes and their intersection with the constant energy surface H0(J) ≈ E yields the zeroth-
order Arnold web. For concreteness, at this stage we choose the zeroth-order Hamiltonian
parameters to be (ω1, ω2, ω3) = (1.1, 1.7, 0.9) and (α1, α2, α3) = (−0.0125,−0.02,−0.0085)
in scaled units. The parameters are essentially chosen so that various structures on the
Arnold web at the energy of interest can manifest. Thus, by varying the parameters of the
zeroth-order Hamiltonian, one can “engineer” different scenarios in terms of the location of
the single resonances and the total number of resonance junctions. An example is shown in
Figure 4 wherein the different web structures with changing ω2 and E can be clearly seen.
For example, at E = 20 and ω2 = 1.3, the resonance planes do not manifest, and hence
there is no web structure expected. On the other hand, for ω2 = 1.5 and E = 40, all three
resonances can be seen, and one of the junctions appears around (J1, J2) ≈ (28, 0), i.e., at
the “edge” of the action space. Similarly, at ω2 = 1.9 the resonances R3 and R1 intersect for
E = 30, whereas they do not intersect for E = 20. We mention, without going into details,
that there are certain conditions known as steepness in order for the Nekhoroshev theorem
to hold. The Martens’ model does not satify the steepness condition. However, suffice it to
note that for the parameter choices made, our system is quasi-convex in the action region
of interest.

Fig. 3.4: Location of the resonances as a function of energy and one of the frequency Ê2
keeping other frequencies Ê1 and Ê3 fixed. The values of anharmonicity parameters
–i’s are given in Table 3.1.

V (J,✓) =
3ÿ

i=1
—iVi

= 2—1

Ò
J2

1J2 cos(2◊1 ≠ ◊2) + 2—2

Ò
J3

1J
2
2 cos(3◊1 ≠ 2◊2)

+ 2—3

Ò
J2J2

3 cos(◊2 ≠ 2◊3)

(3.8)

Note that each Fermi resonance in eq 3.3 maps to a classical nonlinear resonance.
The first (V1) is a 2:1 resonance (R1), denoted as (2,≠1, 0), between the first and
the second modes, the second term (V2) is a (3,≠2, 0) resonance (R2) between the
first and the second modes and the third term (V3) is a (0, 1,≠2) resonance (R3)
between the second and the third modes. The order of any resonance (k1, k2, k3) is
defined as Îk1Î + Îk2Î + Îk3Î. Thus, the order of the three resonances R1, R2, and
R3 are three, five and three respectively.

3.3 The analogous classical Hamiltonian 61

Figure 4. Zeroth-order Arnold web prediction for the model Hamiltonian Equation (9) with varying
total energy E and harmonic frequency ω2 of the second mode. The other two mode frequencies are
fixed at ω1 = 1.1 and ω3 = 0.9. Please note that for every choice of ω2 (a given panel), the resonances
at three energies E = 20 (small blue circle), E = 30 (medium red circle), and E = 40 (large black circle)
are shown. If a particular color line is missing, it implies that the corresponding resonance does not
appear at that energy. Figure taken with permission from the PhD thesis [92] of S. Karmakar.
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The zeroth-order analysis and expectation can be made more precise by numerically
mapping the Arnold web using the FLI technique. Details of the computation can be found
in the earlier publication [51]. Briefly, a large grid of initial conditions on the (J1, J2) plane
is selected for a specific angle slice. The action J3 is selected using energy conservation, and
the resulting ensemble of initial conditions is propagated to a sufficiently large time so that
the FLI can clearly distinguish between the different dynamical behaviors. As an example,
the Arnold web for a total energy E ≈ 40 is shown in Figure 5, indicating the existence
of two prominent resonance junctions labeled A and B. These arise from a crossing of the
r(3) ≡ (0, 1,−2) (denoted as R3 in Figure 5) with the r(1) ≡ (2,−1, 0) (denoted as R1) and
r(2) ≡ (3,−2, 0) (denoted as R2) resonances, as also predicted by the zeroth-order analysis
in Figure 4. Note that the web is sparse because we have picked a model with exactly three
primary resonances Alternatively, one can think of the Hamiltonian arising from restricting
the resonancesto a maximum order, as in the Nekhoroshev approach.

J 1

J 2

R1

R3

J 3

J 2
J 1

R1

R2
R2

R3

R3

R1

R2

 1J

J 2

(a)

A

B C

(b) (c)

A B C

J 1

J 2

R1

R3

J 3

J 2
J 1

R1

R2
R2

R3

R3

R1

R2

 1J

J 2

(a)

A

B C

(b) (c)

A B C

Figure 5. Arnold web for the model Hamiltonian Equation (9) at total energy E ≈ 40 constructed
using the FLI technique. The initial angle slice is (π/2, π/2, π/2) and the resonant coupling strengths
are taken as [τ1, τ2, τ3] = [5, 1, 5]× 10−5. The FLI scale is shown with FLI values greater than 3.7,
indicating chaotic regions (in yellow), while the lowest FLI value (in blue) highlights the resonance
zone. Two prominent junctions labeled A and B can be seen. The zeroth-order prediction of the
resonance center lines is indicated in purple. Another junction, C, arises out of the intersection of
higher order and induces resonances. (Inset) An enlarged plot of the region near junction A is shown.
The FLI scale is the same as in the main plot. Figure adapted from [51].

A few points are worth noting. First, Figure 5 is not close to the Chirikov limit yet.
Nevertheless, the chaotic regions near the rank-2 resonances are evident (see the inset).
Second, the two junctions are well separated, which is ideal for investigating RAT in such
regions. Third, previous work [7] has shown that the dynamics near the two junctions
are quite different. With the Arnold web structure established for the given energy and
coupling values, we can now study the RAT mechanism far from and near a specific
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resonance junction. In Figure 6, we show the quantum and classical dynamics of the initial
Fock state |n⟩ = |22, 1, 19⟩ in terms of the survival probability

Pn(t) ≡ |⟨n| exp(−iHt/h̄)|n⟩|2 (10)

The location of the initial state on the Arnold web is also shown in the figure. Clearly,
the initial state is in the vicinity of the R1 resonance and away from the junction. Figure 6
shows that this is DT mediated by the nonlinear resonance since the classical dynamics
is localized. This is also clear from the classical dynamics projected onto the Arnold web
(green dot). In contrast to the classical dynamics, the quantum counterpart shows coherent
oscillations with a period of about T∼1300 (∼400T2 in terms of the harmonic mode time
period T2 = 2π/ω2) and nearly mimics a two-state Rabi oscillation. Further analysis shows
that the second state involved in the quantum dynamics is |20, 2, 19⟩ which lies nearly
symmetric about the R1 resonance center line (indicated by a red dot on the Arnold web in
Figure 6). Further analysis shows that the observed DT can be accounted for using the RAT
theory [35] involving the R1 resonance.

 1

 3

 5

 7

 21  23  25  27

 11

 12

 13

 17  18  193000 6000 9000

0.98

1

3000 6000 9000

0

0.2

0.4

0.6

0.8

1

J1

J2

(b)

(d)

P(t)

(a)

(c)

Time (t)

 1

 3

 5

 7

 21  23  25  27

 11

 12

 13

 17  18  193000 6000 9000

0.98

1

3000 6000 9000

0

0.2

0.4

0.6

0.8

1

J1

J2

(b)

(d)

P(t)

(a)

(c)

Time (t)

Pn(t)

Time (t)
Figure 6. Classical (solid line) and quantum (dashed line) survival probabilities of the initial state
|22, 1, 19⟩ (black) and the state |20, 2, 19⟩ (red). The location of the two states on the Arnold web is
shown in the right panel. Parameters as in Figure 5 and the projected classical flow of the initial state
are shown in green. Please note that the zeroth-order energies of the two states are E0

22,1,19 ≈ 40.28
and E0

20,2,19 ≈ 40.27. Figure adapted from [51].

How does the above single resonance picture change if the initial Fock state is located
close to the R1 − R3 resonance junction? Given the fact that an infinity of resonances of
various orders exists at the junction, one anticipates a more complicated picture when
compared to the above single resonance case. This is illustrated in Figure 7 for the dynamics
of the initial state |25, 4, 9⟩. For low coupling strengths Figure 7a shows that there are three
other states |s1⟩ = |23, 5, 9⟩, |s2⟩ = |25, 3, 11⟩, and |s3⟩ = |23, 3, 13⟩ that mix significantly.
These states do not mix classically, and hence, quantum mixing is an example of DT.
The mixing between the initial state and the states |s1⟩ and |s2⟩ can be associated with
RAT mediated by the resonances R1 and R3, respectively. However, the state |s3⟩ mixes
coherently on a timescale of ∼10,000 T2. This is a clear influence of the junction since one
can show that the (2, 0,−2) induced resonance at the junction mixes |s2⟩ and |s3⟩. This
induced resonance is visible in Figure 7a, and the timescale is much longer due to the
effective coupling strength being τ1 τ3∼10−9, i.e., nearly four orders of magnitude smaller
than the primary resonances. Despite this, it is observed that the populations of all three
states involved are nearly the same (∼15 %) at ∼10,000 T2.



Entropy 2024, 26, 333 11 of 21

 2

 4

 6

 8

 21  23  25  27
 2

 4

 6

 21  23  25  27

15000 30000 45000

0.2

0.4
2000 4000

0.2

0.4

1000 2000

0.2

0.4

0.6

250 500 750

0.2

0.4

2500 5000 7500

0.1

0.2

1000 2000

0.1

0.2

250 500 750
0

0.1

15000 30000 45000

0

0.5

1 (21,4,13)
(21,5,11)
(23,3,13)
(23,4,11)
(23,5,9)
(25,3,11)

2500 5000 7500

0.2

0.4

J1

J2

(l)

(d)(c)(a)

(e) (g) (h)

(k)(j)(i)

(f)

(b)

Time (t)

P
 (

t)
P

 (
t)

Fig. 3.10: Classical cross survival probabilities (top panel) of the initial ZOBS |25, 4, 9Í for
different coupling strengths [—1,—2,—3] (a) [5, 1, 5] (b) [10, 1, 10] (c) [20, 1, 20] (d)
[50, 5, 50]. The corresponding quantum results are shown in the middle panel.
The legend in (a) indicates the states of interest. The bottom panel shows the
initial ZOBS (arrow), classical dynamics of the ZOBS (maroon points, upto total
time T = 10000), and the location of the mixing states in the vicinity of junction-A
on the Arnold web. Note that states which are mixing only quantum mechanically
are shown as green dots and the states which mix both classically and quantum
mechanically are shown as red dots.

74 Chapter 3 Classical versus quantum IVR pathways: Dynamical tunneling on the Arnold web

(a) (b)

Figure 7. Quantum and classical dynamics for the initial state |25, 4, 9⟩ (shown by red arrow) located
near the junction. (a) For coupling strengths [τ1, τ2, τ3] = [5, 1, 5]× 10−5 three other quantum states
(shown in green) |s1⟩ (circle), |s2⟩ (square), and |s3⟩ (triangle) participate in the dynamics. The classical
dynamics is localized (brown dots) (b) For coupling strengths [τ1, τ2, τ3] = [10, 1, 10]× 10−5 more
states participate in the dynamics. However, certain states (in red) mix classically, whereas certain
other states (green) mix only quantum mechanically. An example of the latter is state |s4⟩ = |21, 5, 11⟩
whose location is indicated by a white arrow. The brown dots show a typical classical trajectory
projected on the Arnold web. Figure adapted from [51].

A more surprising and key aspect of the influence of a junction on DT occurs upon
increasing the resonance strengths. As shown in Figure 7b, increasing the R1 and R3
resonance strengths leads to many more states that mix due to DT. However, some of the
states mix classically as well. In fact, states |s1⟩ and |s2⟩ are now classically connected on
timescales similar to the quantum. However, the quantum probabilities are larger and
inverted relative to the classical result. Moreover, new states like |s4⟩ = |21, 5, 11⟩ gain
significant populations (∼30%) within a timescale of about ∼800 T2 whereas the state |s3⟩,
although still mixing solely due to DT, only gains about ∼5%. Note that the suppression
in the population of |s3⟩ happens despite the effective resonance strength being nearly an
order of magnitude larger than in Figure 7a. Perhaps this suppression comes about due to
the “canceling paths” proposed in the recent work [52] of Firmbach et al. Confirming this
requires further study in terms of an appropriate effective Hamiltonian near the junction of
interest. It is expected that variation of the effective h̄ can lead to a better understanding
of the results in Figure 7b. However, note that this is numerically challenging since the
density of states increases rather rapidly for the Martens’ model. Thus, for h̄eff∼0.01 one
may need to diagonalize very large matrices even for restricting attention to eigenstates
in a narrow energy range. For example, with h̄ = 1, there are nearly 150 near-degenerate
states for ∆ E ∼0.1 around E = 40. In any case, the model Hamiltonian in Equation (9)
needs further studies over a wider parameter range to bring out the influence of the Arnold
web on the DT process.

3.2. Trapped Ultracold Atoms

Another system wherein DT is expected to play a significant role is the optically
trapped ultracold atoms [111,112] which can be usefully analyzed in terms of the
Bose–Hubbard Hamiltonian (BHH).There is an interesting parallel between the BHH
and the effective spectroscopic Hamiltonian of the form in Equation (6)—The number of
sites (wells) in an optical trap and the number of particles on each site correspond with
the number of vibrational modes and the excitation quanta of each mode, respectively.
Thus, N particles trapped in a ( f + 1) site potential can be described by a f degrees of
freedom Hamiltonian since the total particle number is conserved. The hopping terms in
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the BHH correspond to nonlinear resonances in the classical limit, which is approached
for many trapped atoms since h̄eff∼N−1. For the 2-site BHH studies have shown that one
can predict and experimentally observe [113] interesting phases such as the macroscopic
quantum self-trapping (MQST) phase by analyzing the classical limit Hamiltonian [114].
In particular, MQST arises due to the interplay between the hopping (tunneling) and the
interaction strengths. Wüster et al. have shown [115] that MQST also emerges in the
context of dynamical tunneling of a driven Bose–Einstein condensate in a single well. It
is, therefore, interesting to ask if other novel phases can emerge in multi-site BHH models
and if the existence of such phases can be correlated with the features on the Arnold web.

Clearly, the first requirement of addressing the question above is to construct the
Arnold web, and a minimal model is a 4-site system. Recently [51] such a system was
analyzed where the BHH H = HT + HM was considered with

ĤT =
U
2

3

∑
j=1

n̂2
j −

K
2 ∑

j=2,3

(
â†

j â1 + h.c.
)

(11)

and

ĤM =
U
2

n̂2
0 −

Kc

2

3

∑
j=1

(
â†

j â0 + h.c.
)

. (12)

The model above is taken from the work [116] of Khripkov, Cohen, and Vardi. The site
energies are denoted by U, and K, Kc are the hopping amplitudes. Essentially, as indicated
in Figure 8 inset, HT describes a 3-site linear trimer coupled to a monomer via HM. Please
note that for Kc = 0 the monomer decouples from the system and X ≡ n1 + n2 + n3 is a
conserved quantity. On the other hand, for Kc ̸= 0, the conservation of X is violated, but the
total particle number N ≡ X+ n0 is conserved. Thus, the eigenstates of the full Hamiltonian
can be expressed as a linear combination of the Fock states |n; N⟩ ≡ |n1, n2, n3; N⟩.

0
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1

K

K

Kc

Kc

Kc

P(
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10−2

1

X
20 25 30 35

Figure 8. The distribution of X = n1 + n2 + n3 at time Kt = 1000 for three example trimer eigenstates
upon coupling the monomer. The selected trimer eigenstate belongs to the X = 25 (blue squares),
X = 24 (red triangles), and X = 23 (green circles) manifold. (Inset) A schematic of the four-site
Bose–Hubbard model with the site numbering used in the text. The value of the parameters used are
U = 0.5, K = 0.1, Kc = 0.05, and N = 40. Figure adapted from [19].

An aspect of interest for such bipartite models is to compare classical versus quantum
thermalization [117] triggered by a weak monomer coupling. For instance, Figure 8 shows
the extent to which eigenstates of the trimer are delocalized in the X direction since
[H, X] ̸= 0 for finite values of Kc. Three example trimer eigenstates are shown, and it
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is clear that the spreading in the X direction can be extensive for certain states. The
question is whether this spreading in X is entirely due to DT or whether there is some
classical contribution as well. To address this issue, one can study the dynamics of specific
initial states |n; N⟩ for Kc ̸= 0, particularly those that contribute dominantly to the trimer
eigenstate spreading seen in Figure 8.

Among the several initial states studied in a recent work [19], we illustrate the dy-
namics of the state |16, 0, 8; 40⟩. This state is chosen since it is representative of the class
of states for which the dynamics have both classical and quantum contributions. As seen
from Figure 9, for Kc = 0, the state is localized and not affected by the monomer. For
finite Kc, the trimer is perturbed by the monomer, and the quantum survival probability
decays, exhibiting multiple timescales. The shortest timescale in Figure 10a, of Kt∼0.5
shows coherent oscillations involving the initial state and two other states due to the a1a†

0
hopping term. The analogous classical computations shown in Figure 10b indicate that
there is a flow to the states corresponding to Figure 10a, albeit on a longer timescale.

On the other hand, Figure 10c shows that the longer timescale of Kt∼100 seen in
Figure 9 for Kc ̸= 0 correlates with significant population flow into multiple number of
states. However, as Figure 10d shows, there is no classical probability flow to the states in
Figure 10c, even on fairly long timescales. Thus, Figures 10b,c represent classes of states
that are connected and not connected by the classical flow, respectively. It is also worth
noting that while the quantum dynamics exhibits coherent oscillations over a timescale of
Kt∼500, the classical dynamics “thermalizes” by Kt∼20. Thus, there is a distinct difference
between the classical and quantum dynamics of the initial state of interest.

P n
(t)

0

0.2

0.4

0.6

0.8

1.0

Time, t
0 1000 2000 3000 4000 5000

Figure 9. Survival probability of the initial Fock state |16, 0, 8; 40⟩ for Kc = 0 (blue) and Kc = 0.05
(gray). Parameters fixed at U = 0.5, K = 0.1, and N = 40. Figure adapted from the PhD thesis [92] of
S. Karmakar.
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Figure 10. Dynamics of the Fock state |16, 0, 8; 40⟩ for parameters U = 0.5, K = 0.1, and N = 40.
(a) Survival probability of |16, 0, 8; 40⟩ (black) and probability flow into states |15, 0, 8; 40⟩ (red),
|17, 0, 8; 40⟩ (circles) on short timescales. (b) Classical survival probability of |16, 0, 8; 40⟩ (black) and
probability flow into states |15, 0, 8; 40⟩ (red), |17, 0, 8; 40⟩ (circles). (c) Quantum probability flow into
states |8, 0, 16; 40⟩ (purple), |9, 0, 13; 40⟩ (orange), and |8, 0, 15; 40⟩ (blue shaded). (d) Classical analog for
the results shown in (c) indicates localization. Figure adapted from the Ph.D. thesis [92] of S. Karmakar.

Understanding the results shown in Figure 10 requires a careful study of the classical
dynamics. As before, using the Heisenberg correspondence, the classical Hamiltonian can
be expressed as

H(J, θ) = H0(J) + V(J, θ) (13)

with H0(J) ≡ U ∑3
j=0 J2

j /2 and

V(J, θ) ≡ −K ∑
j=2,3

√
J1 Jj cos θ1j − Kc

3

∑
j=1

√
J0 Jj cos θ0j (14)

where we have denoted θkl ≡ θk − θl . Using the zeroth-order nonlinear frequencies
Equation (2), the five primary resonances of the above Hamiltonian can be determined
along with their projections on a specific set of action planes of interest. For instance, in
(I2, I3) space the three trimer-monomer resonances (denoted RMk) can be expressed as

Ω0(J) = Ω1(J) =⇒ RM1 : J3 = (2Xc −N )− J2

Ω0(J) = Ω2(J) =⇒ RM2 : J2 = N − Xc (15)

Ω0(J) = Ω3(J) =⇒ RM3 : J3 = N − Xc

whereas the two resonances within the trimer subspace are

Ω1(J) = Ω2(J) =⇒ RT1 : J3 = Xc − 2J2

Ω1(J) = Ω3(J) =⇒ RT2 : 2J3 = Xc − J2 (16)

In the above Xc ≡ ∑3
k=1 Jk and N ≡ J0 + Xc being the classical analog of the quantum

total particle number N. The expectation is that if the initial state is in the vicinity of the
junctions formed by the intersection of RMk and RTk, then substantial perturbation of the
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trimer dynamics can occur for Kc ̸= 0. Moreover, several RAT pathways can open up at the
junction and result in the multiple timescales seen in Figure 9.

To confirm the above “suspicion”, we construct the Arnold web for specific (Xc,N )
using the FLI technique. Computations show that varying the trimer population Xc for
the fixed total number of particles reveals the Arnold web [19] structure changing in terms
of the type and number of resonance junctions. A typical web with several junctions is
shown in Figure 11a for X = 36 and N = 40. In the context of the dynamics shown
in Figures 9 and 10, the relevant portion of the Arnold web in (J1, J0) space is shown in
Figure 11b along with the location of the initial state. The quantum dynamics of the initial
state are shown in terms of the probability flow through the quantum number space up to
a maximum time Kt∼1000. A few observations can be made at this stage. First, the initial
state is located within the RM1 resonance. Consequently, the population can resonantly
transfer between the monomer and site 1 of the trimer. Second, significant delocalization
can be observed around the resonance junction. However, on this timescale, it is clearly
non-uniform—the probability of population transfer to the monomer is larger. Thirdly, the
dynamics for the various states shown in Figure 10b,c are clearly identified on the Arnold
web and confirm the role of the resonance junction. Specifically, the states connected by
double arrows in Figure 11b are precisely the ones that are involved in DT in Figure 10c.
Thus, based on the observed dynamics near the junction, a possible dominant path that
connects the states |n1, n2, n3; N⟩ = |16, 0, 8; 40⟩ with the state |8, 0, 16; 40⟩ is as follows

|16, 0, 8; 40⟩ −→ |15, 0, 8; 40⟩ DT−→ |13, 0, 9; 40⟩ −→ |9, 0, 13; 40⟩ DT−→ |8, 0, 16; 40⟩

where paths are occurring due to DT, and hence classically forbidden, are indicated. The
equivalent chain of paths in the |n0, n1, n2; N⟩ representation is

|16, 16, 0; 40⟩ −→ |17, 15, 0; 40⟩ DT−→ |18, 13, 0; 40⟩ −→ |18, 9, 0; 40⟩ DT−→ |16, 8, 0; 40⟩

which can be directly correlated with Figure 11b. It can be shown (argued) that the first
(last) of the DT paths occur due to RAT involving a third (sixth) order resonance induced
at the resonance junction. At this juncture, it is useful to recollect the previous discussion
on the issue with a maximal order choice within the Nekhoroshev approach. Clearly,
the DT timescales are sensitive to fairly high-order resonances). Hence, the probability
flow in Figure 10c is a clear f = 3 effect. One may argue that the initial and final states
can be connected simply by the RT2 resonance. However, this is not very probable since
the process involves eight particle exchanges between sites one and three of the trimer.
Moreover, if that were to be the case, then the survival probability in Figure 9 would have
decayed even for Kc = 0.

Again, the above example is a hint at the possible effect of the resonance junctions on
DT. Much more can be learned from this model by looking at wider parameter regimes. A
start has been made in the recent work [19], and it would be interesting to study aspects
of thermalization in such systems [118] due to the presence of the resonance junctions.
Please note that in the context of unimolecular decay reactions, there is [68] already a strong
connection between the junctions and non-statistical dynamics.
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(a) (b)

Figure 11. (a) An example Arnold web for (X, N) = (36, 40) mapped using the FLI technique. The
yellow regions represent chaos. Based on the zeroth-order predictions, the trimer subspace resonance
RTk centers are shown in red, and the monomer–trimer resonance RMk centers are shown in cyan,
white, and purple colors. (b) A close-up of the resonance junction in (J1, J0) space formed due to the
intersection of RM1 and RT2 resonances. The initial Fock state |n0, n1, n2; N⟩ = |16, 16, 0; 40⟩ (same
as the state |n1, n2, n3; N⟩ = |16, 0, 8; 40⟩) is shown as a black dot. The quantum probability flow to
different participating Fock states at times Kt = 0, 10, 20, . . . , 1000 are shown as yellow circles with
radius ∝ probability. The white arrows connecting a pair of states correspond to classically forbidden
but quantum mechanically allowed processes. Figure adapted from [19].

4. Final Thoughts

This review has attempted to highlight the complexity of studying DT in systems with
three or more degrees of freedom. Although a fair amount of progress has happened over
the past decade, there are still several questions that remain unanswered. Here is a partial
list of questions:

1. Almost all the examples shown here suffer from one key issue. There is simply no
accurate estimate of classical stability times and their comparison to the DT timescales.
Moreover, a careful study of the DT process by scaling the effective h̄ needs to be done.
In this regard, it may be worthwhile to study Martens’ model from the stochastic
pumping (or three-resonance) model perspective.

2. For mixed regular–chaotic phase spaces in f = 2, a combination of RAT and CAT is
operative. Models combining the nonlinear resonances and random matrix theory
have been relatively successful in understanding tunneling splittings. For f ≥ 3, the
local chaos near the junctions may not be amenable to a random matrix approach.
How does one account for the role of CAT, if relevant, near junctions?

3. The focus, understandably so, has been on f = 3 systems. What about f > 3 systems?
Higher rank junctions are now possible. Moreover, the argument [80] that quantum
Arnold diffusion may delocalized in analogy with the transport along disordered
wires is no longer valid. Similarly, whether the destruction of quantum localization on
the Arnold web due to classical drift [87] holds in the presence of higher rank junctions
is not clear at the present moment. Already for f = 3, the results in Figures 7 and 10b
seem to suggest a stronger Nekhoroshev stability for the quantum dynamics. Of course,
one needs to ask: is there a “quantum” Nekhoroshev theorem? Some subtle issues in
this regard have been outlined in the paper by Fontanari et al. [119].

4. Much of the arguments invoking the Nekhoroshev exponential stability need mod-
ification when the quasi-convexity or steepness assumptions are violated. In such
instances, one can have fast transport on the Arnold web. Does this then invalidate the
notion of DT in such systems? Even for such systems, are there phase space regions
that are classically disconnected over physically relevant timescales? In an impressive
study, Pittman, Tannenbaum, and Heller have [50] made a start in terms of non-convex
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model Hamiltonians. In fact, and relevant to the previous point, they studied DT in
systems with f = 3, 4, and 5 and argued that DT can be faster than the fast classical
transport and hint at mechanisms different from RAT. However, certain coupling
schemes can result in comparable timescales for classical and quantum transport.
More extensive studies on this and other such models would yield important insights.

The list (admittedly partial) of questions above indicates that our understanding of
DT in f ≥ 3 systems is still in its infancy. However, answers to the questions are expected
to shed light on issues ranging from IVR in polyatomic molecules to thermalization in
interacting many body systems.
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