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Abstract: Quantum annealers are suited to solve several logistic optimization problems expressed in
the QUBO formulation. However, the solutions proposed by the quantum annealers are generally
not optimal, as thermal noise and other disturbing effects arise when the number of qubits involved
in the calculation is too large. In order to deal with this issue, we propose the use of the classical
branch-and-bound algorithm, that divides the problem into sub-problems which are described by a
lower number of qubits. We analyze the performance of this method on two problems, the knapsack
problem and the traveling salesman problem. Our results show the advantages of this method, that
balances the number of steps that the algorithm has to make with the amount of error in the solution
found by the quantum hardware that the user is willing to risk. The results are obtained using the
commercially available quantum hardware D-Wave Advantage, and they outline the strategy for a
practical application of the quantum annealers.

Keywords: quantum annealing; binary linear problem; knapsack problem; traveling salesman
problem; branch and bound

1. Introduction

A Logistic optimization problem, whose goal is to find the solution which minimizes
a suitable cost function given a set of constraints, can often be expressed in terms of binary
combinatorial problems. One way to tackle this kind of problem consists of exploring all
possible solutions, thus pursuing a brute-force strategy. A better strategy is found in the so
called branch-and-bound (BB) algorithm [1] that explores sub-combinations of the problem
and excludes those that either do not satisfy the constraints or those whose value of the cost
function is higher than the solutions previously investigated. Paradigmatic examples that
can be solved with the BB algorithm [2–5], are given by (i) The Knapsack Problem (KP) [2],
in which one searches for the selection of objects (from a predefined set) that maximizes
the load’s value while adhering to the capacity constraint of the carrier; (ii) The Traveling
Salesman Problem (TSP) [3,6], which aims to find the minimal route that passes through
different cities, with the constraint that the path crosses all of the cities exactly once.

In recent times, with physical platforms that have been made available to researchers,
attention has been driven by the possibility that quantum computers can speed up the
resolution of several NP-hard problems [7]. In this work we analyze a particular quantum
computer, the quantum annealer of D-Wave, which is expected to be particularly suitable
for solving binary optimization problems. It accomplishes optimization by translating a
binary linear optimization problem (BLOP) with constraints into a quadratic unconstrained
binary optimization (QUBO) problem. In this way the optimal solution of the BLOP
can be described by the ground state of an equivalent Ising problem, which can natively
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be mapped on the quantum hardware manufactured by D-Wave Quantum Systems Inc.
(Burnaby, BC, Canada).

The two problems mentioned above are perfect examples of combinatorial problems
that may benefit from the use of a quantum computer. However, few works have been
done on the actual resolution of the D-Wave machine. In Ref. [8] the authors tried to solve
small KP using the D-Wave quantum annealer, finding results far from the global optimum.
In Ref. [9] the authors analyzed the shortest path problem, a slight variant of the TSP. They
successfully determined the optimal solution for graphs composed of up to six nodes, a
limitation that may not align with current practical requirements. In fact, the quantum
annealer is still a developing technology, currently affected by noise that makes it unable to
find the global solution even to simple problems.

In order to overcome the apparent failure of the fruitful use of this device in the near
period, we propose to use a classical–hybrid protocol, in which the quantum hardware
is used as a subroutine for a variant of the classical BB algorithm. In particular, we show
that thanks to the BB algorithm we can reduce the size of the problem down to a number
of instances that are feasible for the quantum computer. With this strategy, the quantum
computer can fully show its potential and find an optimal solution to the problem.
Our findings show that we can exploit near-term quantum computers to speed up the
solution of a problem, reducing the number of queries to both the quantum and the classical
computer. However, there is a trade off between the quality of the found solution, measured
in terms of its proximity to the global optimal solution, and the achievable speed-up. A
similar idea has been proposed in Ref. [10], where the BB algorithm was applied to a large
number of QUBO problems by simulating the quantum annealer on a classical computer.

In the paper, we apply a hybrid algorithm to study both the KP and the TSP, making
use of the real D-Wave machine Advantage [11–13]. The content is as follows. In Section 2.1
we review the definition of the TSP and the KP and we explain how they can be solved
using the BB algorithm. In Section 2.4 we show how we can encode the optimal solution
of the TSP and the KP as the ground state of a suitable Hamiltonian for the quantum
annealer. In Section 3.1 we first discuss the issues related to directly solve the integer linear
problems via an unrestricted algorithm on the quantum hardware. Next, we define our
hybrid classical–quantum algorithm and study its performance on examples of the KP and
TSP problems. In Section 4 we draw our conclusions and present outlooks.

2. Materials and Methods
2.1. The Binary Linear Problem

The BLOP aims to find the minimum of the cost function z(x) over a set of possible
solutions Ω, namely

minx∈Ω (x) = cTx (1a)

s.t. Ax ≤ b (1b)

x ∈ {0, 1}N , (1c)

with c being an N-dimensional vector, A being an m × N matrix, and b being an m di-
mensional vector. x is an N dimensional vector whose components take a value of 0 or 1.
Although the simple form of Equation (1), the BLOP is generally NP-hard [14].

In this section we explore one algorithm that is used to solve BLOPs, the BB algorithm.
The core procedure of the BB algorithm for finding the solution to the problem PΩ on the
set Ω consists of analyzing the restrictions RΩ̄ of the original set Ω̄ ⊂ Ω.

The lowest value of the cost function of the original problem minx∈Ω z(x) is a lower
bound of the minimum of the cost function of the restricted problem minx∈Ω̄ z(x). As we
are dealing with a linear problem, the minimum and the maximum of the cost function
is to be found at the borders of the set Ω. However the optimal solution could have
non-binary values.

Dividing the original problem into sub-problems allows us to consider the restricted
problems separately and choose the one with minimum cost. Figure 1a shows the procedure
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of the BB algorithm when applied to a three-dimensional system. In Figure 1b the procedure
is represented as a tree, where each branch represents a restriction of the problem into a
selected subset.

(a) (b)

Figure 1. (a) Visualization of the BB algorithm in the three-dimensional space [0, 1]3 with constraint
Ax ≤ b. Each restriction R represents a subset of [0, 1]3 where one or more variables have been
constrained to a binary value. (b) Schematic representation of the BB algorithm as a tree. At each
step BB checks if the constraints are satisfied and if the cost function of the node is lower than the
current upper bound. When the branching has terminated, the bounding process takes place and
the value of the upper bound zP is updated (green node). If the next branch finds a value of z > zP
(yellow nodes) the branch is not explored further. The same happens if the constraints are violated
(red node).

We define zP as the current upper bound of the cost function. We initialize it to the
upper bound of the cost function over the set Ω. This is done at the root of the tree and
is equivalent to initializing zP to the value ∞. In the example shown in Figure 1, we
analyze the restricted problem R0, where Ω̄ is a lower dimensional set that has the value
of the first variable fixed to zero, i.e., x1 = 0. The lower bound of the cost function in the
restricted region is zR0 < zP , because of the original large value of zP . We then proceed
by restricting the second variable x2 = 0, thus defining the problem R00, and finally
the third one x3 = 0 in order to specify the problem R000 and find the value of the cost
function z(0, 0, 0) for this restriction. This procedure is called branching and stands for the
subsequent restriction of the problem into different sub-problems. Once the value of the
cost function for a certain branch has been found, we proceed with the bounding procedure.
The current upper bound zP is updated to zR000 . From now on, we consider only subsets
where the optimal cost function is less than the updated zP . We now relax the problem,
going back to R00, and set x3 = 1. If zR001 < zP , the latter is updated to this value.

We analyze other values of the variables, relaxing the problem and applying different
restrictions, as long as we explore all the solutions. If the lower bound of the cost function
zRi in the follow-up restriction Ri is greater than the current upper bound zP , we do not
need to investigate that restricted region, and we can skip to another branch. If a node in
the tree (a restricted subset) does not satisfy the constraints, the node is not considered
valid and the bounding process does not take place.

In the tree of Figure 1a each branch develops on the assumption that the value of a
variable is fixed to either 0 or 1, but the same method can be applied to integer values of
the variables.

Finally, the optimal solution will minimize the cost function while satisfying
the constraints.
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2.2. The Knapsack Problem

In the KP, we have N objects, each with a value vi and a weight wi, for i = 1, . . . , N.
The problem consists of choosing the items to put in the knapsack so that their total value is
maximum while not exceeding the knapsack capacity. This problem can be formulated by
using N binary variables xi (i = 1, · · · , N), with xi = 1 if the object i enters in the knapsack,
and xi = 0 if it does not. The values and the weights can be collected in two vectors, v and
w, respectively. The BLOP (1) is written as

minx z(x) = −vTx (2a)

s.t. w(x) = wTx ≤ W, (2b)

x ∈ {0, 1}N . (2c)

The KP can be solved using the BB algorithm. As we assume that all the weights wi
and the values vi are positive numbers for all i = 1, . . . , N, we can slightly modify the BB
algorithm in order to make it more efficient. We call this version KP-BB. We start from
the string x0 = (0, . . . , 0) , which describes the empty knapsack. The value function z and
the weight function w are both zero. The first branch has the value of the first variable
set, x1 = 1. The value function z is updated to −v1 and the weight function takes value
w1. The k-th branch sets the k-th variable xk = 1 and sets the previous (k − 1) variables to
zero. At each k-th branch, the value function is −vk and the weight function is wk. With
this ordering, each of the k branches defines a new knapsack problem, where the k-th object
has been chosen and the problem is to choose among the remaining N − k objects. The
loading capacity of the new problem is W − wk and the value of the empty knapsack is
initialized to −vk. The KP-BB algorithm recursively applies this restriction of the problem
to each branch, following a so-called depth-first search, where the search scouts a tree until
it ends, then traces back its steps. At this point, the algorithm passes to another branch.
In Figure 2 we show the tree representation of the KP-BB algorithm for a problem with
three objects. In the node’s box the value of the upper bound of the cost function is shown.
When a new solution is explored, the algorithm identifies it as optimal (green), valid but
not optimal (yellow), or not valid (red). It stops either when all the variables have been
considered, or when the total weight of the knapsack has exceeded its limit.

Figure 2. Schematic representation of the KP-BB algorithm as a tree, when applied to a knapsack
problem with three objects. The nodes represent a solution as written above them. In the boxes we write
the value of the cost function for that solution. The knapsack is initially empty x = (0, 0, 0), z = 0 and it
is filled with the first object, described by the solution vector (1, 0, 0). The value function is updated to
−v1 and the weight to w1. Hence, a new KP problem is defined as described in the text. A green node
represents a valid solution that is currently optimal. A yellow node represents a solution that is valid,
but not optimal. A red node represents a non-valid solution, where the constraints are not satisfied.

2.3. The Traveling Salesman Problem

The traveling salesman problem describes an agent that has to visit different cities
starting from the depot and returning to it at the end of the journey. The problem consists
of finding the route with the lowest cost that visits all the nodes exactly once, where the
cost can describe time, distance or money used during the travel. TSP can be modeled by a
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weighted graph, where the nodes are the cities and the weights of the edges represent the
transportation cost from one node to another one. One can always assume the graph to be
fully connected, by putting the corresponding cost to be very high (possibly infinity) if two
cities are not actually connected by a direct path.

The graph is represented by the pair G = (V, C), with V = {d, 1, 2, . . . , N − 1} being
the set of N vertices and C being the weighted adjacency N × N matrix of the graph. The
component Cij represents the cost of traveling from node i to node j and it is not necessarily
symmetric. A solution for the TSP is the cycle path along the edges of the graph that
starts from the depot node, named d, passes through all the other N − 1 nodes exactly
once, and ends in the initial node d. One mathematical description of TSP is given by
the Dantzig–Fulkerson–Johnson formulation [15], which considers N2 binary variables xij,
each representing the edge that connects the node i with the node j. The corresponding
linear problem is obtained in the form of Equation (1), collecting the binary variables xij
into a N × N matrix x.

minx z(x) = Tr[Cx] = ∑i ̸=j Cijxij, (3a)

s.t. ∑n
j=1 xij = 1, ∀i (3b)

∑n
i=1 xij = 1, ∀j (3c)

∑i,j∈S xij ≤ |S| − 1, (3d)

∀S ⊂ V, 2 ≤ |S| ≤ N − 2,

xij ∈ {0, 1}. (3e)

The first line, Equation (3a) is the objective function that we want to minimize. The
other equations are the constraints given by the TSP. In particular, Equations (3b) and (3c)
state that each vertex must have one inward and one outward edge, respectively.
Equation (3d) avoids the presence of sub-paths that do not cover the whole set of ver-
tices. Here, S is a subset of V and |S| is the number of elements in S. Equation (3e) states
that the xij are binary variables.

The TSP can be solved with the BB algorithm [3,4]. Similar to the knapsack problem,
the BB algorithm offers a strategy to systematically explore all solutions, which can be
tailored for the specific problem at hand. We refer to this customized version of the
branch-and-bound algorithm as TSP-BB.

We start from the depot with initial cost function z = 0 and we choose the path to
one of the N − 1 cities, that we denote with k . Then, the TSP-BB algorithm defines a new
TSP made of N − 2 cities, where the cost matrix is modified to include the previous choice.
The new TSP has N − 1 vertices and new adjacency matrix C′ with adjacency components
C′

ik
= Cid. Thus, the initial cost of the new TSP has the updated value z → z+Cdk. Different

from the KP-BB defined before, the TSP-BB has a best-first search approach, where the
next node analyzed by the algorithm is the one with the current best z value. When all the
variables have been explored in one branch, we define the upper bound of the travel cost
z. Any time the initial travel cost of a branch exceeds z, we neglect that branch. On the
contrary, we explore the branches with a travel cost lower than z until we find the optimal
solution. Figure 3 shows a schematic representation of the TSP-BB algorithm as a tree when
applied to a graph with 5 cities.
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Figure 3. Schematic representation of the TSP-BB algorithm applied to a traveling salesman problem
with 5 nodes. Once an edge is chosen, the problem reduces to another TSP with one node less. The
initial travel cost is obtained summing up the partial travel costs written on the branches. The travel
cost of the colored path is z = cd2 + c24 + c43 + c31 + c1d. Then, this value is compared to the travel
cost of the unexplored branches. If a branch has an initial travel cost lower than the current optimal
value, the branch is explored next by the algorithm.

2.4. The QUBO and Ising Formulation

In this work we analyze the use of the D-Wave Advantage quantum computer to solve
the combinatorial problems introduced in the previous sections. The D-Wave machine
belongs to the class of quantum annealers that work through the application of a global
time-dependent Hamiltonian. An introduction to quantum annealers is presented in
Appendix A.

The D-Wave machine evolves with an Ising-like Hamiltonian,

H(s) = −A(s)∑
i

σ̂i
x (4)

+B(s)
(

∑
i

hiσ̂
i
z + ∑

i>j
Jijσ̂

i
zσ̂

j
z

)
.

The coefficients A(s), B(s) have the role of the schedule function f in Equation (A2)
and s is the adimensional time s = t/ta, normalized with respect to the annealing time.

We can write any binary linear problem with constraints as an Ising problem. In
fact, any BLOP can be written as a quadratic unconstrained binary optimization (QUBO)
problem. This defines a new cost function

Q = −
N+n′

∑
i=1

cixi +
m

∑
j=1

λj(bj −
N+n′

∑
i=1

Aijxi)
2, (5)

where we have introduced new n′ = log2(max(bj)+ 1) binary slack variables that make the
problem unconstrained. Each additional i-th slack variable with i = N + 1, . . . , N + n′ has
cost coefficient ci = 0 and constraint matrix components Aij = 2i−1/2N , with j = 1, . . . , m.
The m parameters λj are called Lagrange multipliers. Generally speaking, if λj are too
small, the minimization of the first term is favored, which corresponds to the minimization
of the cost function without any constraints. On the other hand, if λj is too large, the second
term acquires more importance and the optimal solution tends to satisfy the j-th constraint,
ignoring the other terms. There is a range of values for each λj s.t. and the optimal solution
of Q is the optimal solution of Equation (1). However, this range of values is both problem
and size dependent.

In order to pass from binary variables into spin variables we define M = N + n′

new variables

si = 2xi − 1, si ∈ {−1, 1}, (6)
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and set

hi =
ci
2
+

m

∑
j=1

λjbj Aij −
m

∑
j=1

λj

2
Aij

M

∑
k=i

Akj

Jij =
m

∑
k=1

λk
2

Aik Ajk, (7)

that transform the QUBO function Q of Equation (5) into

HQ = ∑
i

hisi + ∑
i>j

Jijsisj, (8)

whose minimal energy solution corresponds to the ground state of the quantum Hamilto-
nian (4) at t = ta.

Although we have a variety of results that show the power of quantun annealers, other
results show that when the number of qubits is large the D-Wave machine has difficulty
finding the global solution [8]. In the next section we are going to propose a way to
circumvent this problem.

3. Results
3.1. Efficient Use of Quantum Annealers in Hybrid Classical–Quantum Algorithm

In this section we propose a hybrid way to use the currently available quantum
annealers to produce reliable solution to some NP-hard problems. In Section 2.1 we
explained how the BB algorithm can be used to treat either the KP and the TSP. Here, we
apply this algorithm to both the problems, stopping when the restricted sub-problems have
a size that is small enough that the optimal solution can be obtained by the D-Wave machine.

3.2. The Knapsack Problem

Suppose we want to solve a KP with N objects and capacity W. In order to be able
to tract the optimal solution of problem (2), we choose N objects with increasing value
vi = i and with same weight wi = 1 for i = 1, . . . , N. Thus, the optimal solution is the
knapsack filled with just the last W objects with the highest value, xopt = (0, . . . , 0, eW),
with eW being the W-dimensional vector of ones, eW = (1, . . . , 1), and with the total
value zopt = W[N + 1

2 (1 − W)]. After including the slack variables, the vector xopt has
M = N + ⌈log2(W + 1)⌉ components.

The QUBO function (5) is

Q = −
M

∑
i=1

vixi + λ(W −
M

∑
i=1

wixi)
2. (9)

Using Equations (2) and (6) we can write the Ising Hamiltonian of the problem.
Because Equation (2) has only one constraint, we just need to adjust the one parameter λ.
In order to find the optimal value of λ we proceed as follows.

We suppose y is a solution that satisfies the constraint. If we add a single object, say
xl , that overloads the knapsack, the QUBO function should be s.t.

Q(y + xl) > Q(y). (10)

As it has to be valid for any possible solution, we need to take the maximum of the right side
of Equation (10). Thus, we set λ = maxi vi + 1. This choice ensures that the Hamiltonian
ground state is also the optimal solution of the KP.

We have performed an analysis of the bandgap for this particular configuration and
we have seen that it scales polynomially with the size of the problem as M−α. For some
exponent α, see Appendix B. This is a promising feature which means the total annealing
time scales as ta ∼ Mα, and therefore, makes the problem solvable in polynomial time. We
have to stress the fact that the polynomial scaling refers to this particular configuration of
the problem, and it is not applicable to all the possible KPs.
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Let us first examine what happens when we solve the unrestricted BLOP on the D-Wave
machine. In this case, we find that not only is the solution not the optimal one but also the
constraint is not satisfied. Indeed, when the number of qubits is too large, the system is not
able to act as an ideal quantum annealer [8], as the results are affected by thermal noise [16].
One may think of increasing the value of the parameter λ in order to force the system to
prefer the fulfillment of the constraint. We have analyzed the measured state with lowest
energy for different values of λ within the range where the ground state is the optimal
solution of our problem, but we have not seen any changes in the outcomes distribution.

Furthermore, we have analyzed how the probability p0 of measuring the ground
state depends on the annealing time, finding it is almost independent of the annealing
time, reaching a plateau of the probability. This occurs for any case we consider, including
the simple case W = N when the capacity constraint (but not slack variables) becomes
ineffective. This is shown in Figure 4, where we plot p0, obtained as the frequency of the
ground state appearing as the outcome, measured out of 1000 reads for different annealing
times ta, calculated for a KP with N-objects and capacity W = N.

Figure 4. Measured probability p0 as a function of the annealing time for different N-objects knapsack
problems with W = N. The value is the average over 20 runs, with 1000 measurements per run.

In Figure 5 we show also the mean value of the minimal energy found on 20 runs of
the quantum annealer, each with 1000 measurements. We see that the result is independent
of the annealing time. A similar result was found in [9]. The authors analyzed another
combinatorial problem, the shortest path problem, with the D-Wave quantum processor
and they did not find correspondence between the annealing time and the frequency nor
the energy distribution. This means that the behavior of the processor is not dependent on
the annealing time, although the theory says otherwise. These results allow us to fix our
annealing time to a value of 10 µs.

Figure 5. Mean value of the minimal energy found for the N-objects knapsack problems with W = N
for different annealing times. The value is an average over 20 runs, with 1000 measurements per run.
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To better analyze the quality of the results obtained by the quantum annealer, we
can introduce the following three figures of merit that estimate the quality of the obtained
solution xa with respect to the optimal one xopt:

– The normalized knapsack value distance

∆ṽ =
z(xa)− z(xopt)

z(xopt)
; (11)

– The normalized knapsack weight

w̃ =
w(xa)

W
; (12)

– The Hamming distance H [7]

H(xa, xopt) =
M

∑
i=1

(xi
a ⊕ xi

opt). (13)

Where M is the string length of the solutions and ⊕ stands for the sum module 2.
Figure 6 shows these metrics as a function of the number of qubits M used by the

quantum annealer in the the case W = N. The width of the shaded region is the variance
calculated over 20 different runs. We see that already for M > 8 the result can differ from
the optimal solution and have a variance different from zero.

Figure 6. The figure shows ∆ṽ, w̃, and H of Equations (11)–(13), respectively, between the solution
found by the quantum annealer xa and the optimal solution xopt. The shaded regions accounts for
the variances calculated over 20 runs. In this plot we consider the case W = N.

A good trade-off between the certainty of the result and the size of the problem can
be provided by the BB algorithm that divides the problem into sub-problems that are
described by a lower number of qubits, for which the quantum annealer can provide more
reliable solutions.

The BB algorithm applied to the knapsack problem, as explained in Section 2.1, ex-
plores a number of nodes that go as O(2N), since any time they explore a new branch, they
create a new KP with one less object and an updated knapsack capacity. In the toy problem

we are considering, the number of nodes that saturate the constraint are
(

N
W

)
= N!

W!(N−W)! ,

that is, the number of combinations with W objects chosen from a set of N. This corresponds
to the exploration by the KP-BB algorithm of a number of branches

nb =
W

∑
k=1

(
N
k

)
. (14)

This value is lower than the exponential value obtained by applying the BB algorithm
depicted in Figure 1 and the reason why is that the optimized KP-BB algorithm makes
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restrictions on more than one variable at once. But there is no point in making use of a
quantum processor, since, for each node, all the variables have been set to a fixed value.

Here, we propose an alternative scheme: we can devise a hybrid classical–quantum
protocol by first exploiting the advantage of the BB algorithm to reduce the problem down
to a chosen size N′, which corresponds to a number of variables M = N′ + log2(W

′ + 1)
given by the number of remaining objects N′ and by the remaining loading capacity of the
knapsack W ′. Then, we solve the residual problem with the quantum annealer, which might
be efficient to solve problems with a relatively small number of qubits; see the diagram in
Figure 7.

Initialize
the problem

Restrict the
problem size

using BB

Problem
size < M?

Solve with
quantum
annealer

Post-processingYesNo

Figure 7. The pseudocode diagram of the hybrid–BB algorithm. We start from the problem P and
we apply the BB algorithm to reduce the problem size down to the chosen number of qubits M. At
this point we pass the problem to the quantum annealer. A post-processing step could be required to
improve the results.

We consider a KP with N = 25 objects and loading capacity W = 10. The problem can
be described as QUBO by a number of binary variables MP = 29.

Figure 8 shows the number of branches explored by the BB algorithm (green squares)
and the number of calls made to the quantum annealer (red circles) as a function of the
chosen size M. The horizontal dotted blue line represents the number of branches explored
by the optimized KP-BB algorithm, which is constant since it depends on N, W only. We
see that when the number of qubits M > 14, the number of times the branch-and-bound
procedure is applied in the hybrid algorithm is lower than the number of times this is
done in the optimized KP-BB algorithm. Each reduced problem is eventually solved by the
quantum annealer. In the extreme case of M = MP , the number of branches operated by
the classical algorithm is one, as the original problem is defined and promptly sent to the
quantum annealer.

Figure 9a–c shows the metrics defined in Equations (11)–(13) for the best obtained
solution xa as a function of the number of available qubits M for a KP with N = 25 and
W = 10. The width of the shaded region is the variance obtained over 20 different runs.
The results are compared with a random outcome of strings, constructed as follows. In
order to make a proper comparison, we randomly extract 1000 strings, as many as the
number of measurements taken per sample. Then, we choose as our optimal solution the
one that has a lower energy, in analogy with the procedure of the D-Wave machine. We
then repeat the procedure 1000 times in order to get the statistics.
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Figure 8. The number of steps of the hybrid–BB algorithm performed on the classical (green squares)
and quantum (red circles) computers for a KP with W = 10 and N = 25 as a function of the
maximum number of qubits M used by the quantum annealer. The classical calls count the branching
and the bounding procedures, while the quantum calls count the queries to the quantum annealer.
This has to be compared with the number of times the fully classical KP-BB algorithm performs
branch-and-bound (dotted horizontal blue line).

(a) (b) (c)

Figure 9. (a) The normalized value distance ∆ṽ, (b) the normalized knapsack weight w̃, and (c) the
Hamming distance H between the best solution obtained by the quantum annealer and the optimal
solution obtained for a KP with N = 25, W = 10, solved with the hybrid–BB algorithm with M
qubits and averaged over 20 runs. The result is compared to what is obtained by random instances as
described in the text.

We see that the outcomes of the quantum annealer are not comparable with random
guesses. Figure 9a,b shows that the solution found by the D-Wave machine has a cost value
closer to the optimal one and loading closer to the threshold set by the loading capacity.
Finally, Figure 9c shows that the Hamming distance is lower than the one reached by
random outcomes.

Depending on what is our tolerance with respect to the different quality measures
∆ṽ, w̃, and H, we may decide to restrict our problem until a certain number of qubits,
thus speeding up the resolution of the problem. For instance, we may choose the value
∆ṽ = 0.1 as acceptable, and consider valid any solution that has the constrained satisfied
(w̃ ≤ 1) and a discrepancy between the optimal knapsack value and the obtained value of
10%. In this case, we have analyzed what is the maximum number of qubits M10% that
are necessary to obtain the desired solution. We have kept the knapsack capacity fixed to
W = 10 and varied the number of items N, thus changing the total size of the problem
MP = N + 4. For each MP we have applied the hybrid–BB algorithm with different values
of M. We have then measured 1000 times the system and we have considered only the
states for which the constraint was satisfied, discarding the others.

Figure 10a shows the values of M10% that we obtained for different values of MP .
We see that the scaling is almost linear, with a relation M ∼ 0.87MP . The linear scaling
is provided by the extra care used to choose the acceptable measurement outcomes. For
these cases, we plot in Figure 10b the number of branches generated by the BB algorithm
(green squares) and the number of runs of the quantum annealer (red circles). We see that
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the important variable here is the difference MP − M that defines the size of the problem
tackled by the BB algorithm.
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Figure 10. We analyze the resources that are needed to obtain a solution where the constraint is
satisfied (w̃ ≤ 1) and the knapsack value differs by a maximum of 10% from the optimal value
(∆ṽ ≤ 0.1). The analysis was performed by keeping W = 10 and by varying N. Figure (a) shows
the maximum number of qubits M10% for different problem sizes MP . Figure (b) shows the number
of steps the hybrid–BB algorithm performed on the classical (green squares) and quantum (red
circles) computers, to be compared with the number of branches generated by the classical algorithm
(blue stars).

Figure 11a–c shows the same experiment performed keeping W = 10 and varying
the number of objects N and using the maximum number of necessary qubits M = N + 4.
Although the optimal solution is never reached, the D-Wave machine performs better than
random guessing even in this case, as is evident from the results of the metrics. In fact,
although the average ∆ṽ of the D-Wave outcomes is larger then the corresponding value
for random guessing, Figure 11a, this is mainly due to the fact that the machine tries to
satisfy the capacity constraint, as shown in Figure 11b. Hence, it prioritizes a lower number
of objects over the desire for a higher load value. The better performance of the D-Wave
machine is captured by the lower value of the Hamming distance in Figure 11c.

(a) (b) (c)

Figure 11. (a) The normalized value distance ∆ṽ, (b) the normalized knapsack weight w̃, and (c) the
Hamming distance H between the best solution obtained by the quantum annealer and the optimal
solution obtained for a KP with varying N and fixed W = 10, completely solved by the quantum
processor using M = MP = N + 4 qubits and averaged over 20 runs. The result is compared to what
is obtained by random instances as described in the text.

3.3. The Traveling Salesman Problem

Let us move now to solve a TSP with N cities using the quantum annealer, by means
of a hybrid classical–quantum protocol similar (but not equal) to the one presented for
the KP.

The first step is to write the QUBO formulation of the problem as a function of a N2

binary vector x with components xi,j, with i, j = 1, . . . , N. We use here the formulation
suggested in Ref. [17], such that the first subscript indicates the city and the second indicates
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the step. Thus, xi,j = 1 if the i-th city is visited at step j. Following Equation (3) we can
write the QUBO function (5) as [17]

QTSP(x) =
N

∑
i,j=1

Cij

N

∑
k=1

xi,kxj,k+1

+λ
N

∑
i=1

(
1 −

N

∑
j=1

xi,j

)2

(15)

+λ
N

∑
j=1

(
1 −

N

∑
i=1

xi,j

)2

,

where the choice λ > maxij Cij ensures that the state with minimal energy is the optimal
solution of the TSP.

The TSP-BB algorithm differs from the KP-BB algorithm as it has to cross all the N cities.
The maximum number of branches explored by the TSP-BB algorithm is ∑N−1

n=1 (N − n)!.
If we decide to stop the BB algorithm when the total size of the problem is M2 (with M
cities left), the number of branches explored by the BB algorithm would be at maximum
∑N−1

n=M(N − n)! and the total number of calls to the D-Wave machine would be in the worst
case scenario N!/M!. However, for the large majority of the problems we have examined,
the D-Wave processor is called a very small number of times.

Let us consider a scenario of N = 10 cities, all connected together by a route, with a
non-symmetric cost matrix given by Cij = (i − j)modN. The optimal solution xopt of this
problem has components xij = 1 if i = j and 0 otherwise. This means that the nodes are
crossed in the same order that they are labeled.

We have applied the hybrid algorithm to solve this problem and we have obtained
a number of calls of the quantum hardware equal to 10 for a number of qubits between
36 (M = 6) and 81 (M = 9). Clearly these numbers are problem-dependent, but they give a
good indication of the small number of calls to the quantum hardware when the hybrid
approach is used.

For this problem, as a figure of merit of the quality of the protocol, we now use:

– The travel cost of the found solution xa, normalized to the travel cost to the optimal
solution xopt:

c̃ =
z(xa)

z(xopt)
; (16)

– The Hamming distance H = H(xa, xopt) of Equation (13).

These two metrics are shown in Figure 12a and Figure 12b, respectively, as function of
the chosen number of qubits M. As in the previous section, the results are compared with a
random path throughout the cities. Contrary to the KP problem, the random solutions can
be chosen here to strictly satisfy the constraints, since it suffices to generate the solution
with a random ordering of the M cities.

The normalized travel cost is lower than the one obtained for random paths for all
the instances analyzed, up to a maximum of 100 qubits (M = 10). We see that the optimal
solution has been obtained only for the cases with M = 3, 4, whereas for larger TSP the
D-Wave machine was not able to find it. Also, comparing Figures 12a,b, we see that the
Hamming distance alone does not effectively measure the quality of the solution. Already
for a TSP with M = 7 cities, the results are not distinguishable from random outcomes in
terms of H, yet they exhibit a significantly lower travel cost value.
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(a) (b)

Figure 12. (a) The normalized travel cost c̃ and (b) the Hamming distance H between the best solution
obtained by the quantum annealer and the optimal solution, obtained for a TSP with N cities solved
with the hybrid–BB algorithm with M2 qubits and averaged over 20 runs. The result is compared to
what is obtained by random instances as described in the text.

4. Conclusions

In this paper we have investigated the resolution of two binary linear problems, the
knapsack problem and the traveling salesman problem, that are known to be NP-hard.
These are often solved with the branch-and-bound algorithm that we have described in
Section 2.1. After introducing the two problems we have moved our attention to the
quantum annealer in Section 2.4, which is a quantum computer that offers a global method
for the resolution of binary linear problems. In this work we have merged the classical and
quantum method for resolution of these NP-hard problems in order to show the advantage
of a hybrid approach. In fact, the branch-and-bound algorithm does not offer a significant
speed-up with respect to brute force strategies, whereas quantum annealers suffer from
a low reliability when the number of instances is large. However, when merged together,
branch-and-bound defines a new problem with a smaller size that can be handled efficiently
by the global quantum solver.

Our findings in Section 3.1 show that, despite the annealer itself not demonstrating
the theoretical expected sensitivity to variations of the annealing time, its outcomes prove
to be significantly better than random, suggesting that a potential advantage can be indeed
be obtained within a tailored hybrid framework. Importantly, the hybrid–BB algorithm
emerges as a powerful tool which drastically reduces the number of branches generated
in comparison with the completely classical counterpart. This, combined with the post-
processing step where we select only the solutions that satisfy the constraint, enables us to
achieve good results with remarkably few quantum computations (of the order of tens to
hundreds). These findings underline the importance of developing hybrid strategies that
leverage the strengths of quantum annealers while mitigating their limitations. Further
research should explore refined annealing protocols and alternative optimization heuristics
to fully unlock the potential of quantum annealing for real-world problems.
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Appendix A. Quantum Annealers

Quantum annealers are a class of quantum computers which make use of a time-
dependent evolution Hamiltonian to solve combinatorial problems.

The adiabatic theorem [18,19] is the basis of the computation with quantum annealers.
Suppose that a quantum system is subject to a time evolving Hamiltonian H(t), and at
time t, the system is in the j-th eigenstate |ϵj(t)⟩, such that H(t)|ϵj(t)⟩ = ϵj|ϵj(t)⟩. The
eigenvalues ϵj are sorted in increasing order and non-degenerate. The adiabatic theorem
states the if the evolution is performed slowly enough, the quantum system stays in the
evolved j-th instantaneous eigenstate of the Hamiltonian H(t). Understanding what
“slowly enough” means is the role of the adiabatic theorem. Several versions of the theorem
have been developed during the years, depending on the initial conditions of the system.
The Kato version [18] of the adiabatic theorem gives a lower bound for the annealing time
ta in terms of the first and second derivatives of the Hamiltonian H(t), and in terms of the
minimum value assumed during the evolution by the energy gap ∆ij = |ϵj − ϵi|, ∀i ̸= j.
An approximate version of the theorem yields the inequality [19]

max
s∈[0,1]

|⟨ϵi(s)|∂sH(s)|ϵj(s)⟩|
∆ij(s)2 ≤ ta, ∀i ̸= j. (A1)

Since we are interested in the ground state, for our purposes, we consider only the
energy gap between the instantaneous ground state and the first energy level ∆ = |ϵ1 − ϵ0|.

The time-dependent Hamiltonian H(t) is composed by two terms, namely [20]

H(t) = A(t/ta)H0 + B(t/ta)H1, (A2)

where H0 and H1 are two non-commuting Hamiltonians and ta is the total annealing time.
The evolution functions A, B, are such that B(0) = 0 and A(1) = 0.

The Hamiltonian H0 has a ground state that is easy to prepare, whereas H1 is a
Hamiltonian for which the ground state corresponds to the classical optimal solution of the
combinatorial problem. Thus H1 is the term that encodes our optimization problem.

At time t = 0 the system is prepared in the ground state of the Hamiltonian H0. For
a sufficiently long t = ta, the adiabatic theorem ensures that the state of the system is the
solution of our classical problem, that we will recover measuring the system at this time.

The energy gap plays a crucial role in adiabatic quantum computation, and under-
standing how it scales with problem size is essential. The efficiency of a quantum annealer
compared to a classical algorithm largely hinges on the scaling of the band gap. However,
it is important to note that the schedule influences the derivative of the Hamiltonian and,
consequently, impacts the satisfaction of the inequality (A1).

In order to understand the computational advantage of the quantum annealer we
need to define the quantum speed up. One definition [19] takes into account the speed
up with respect to existing algorithms. Another useful definition is the limited quantum
speed up [19], which compares a quantum algorithm with its classical analogue, that is
an algorithm that proceeds through the same steps in the classical regimes. The classical
version of the adiabatic quantum computation is the simulated annealing where the thermal
fluctuations allow the exploration of different solutions. Both the classical and quantum
annealing algorithms usually find approximations to the global solutions, although we
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have evidence that quantum annealing reaches the global solutions more often [21] and
with shorter annealing time [22–24].

Appendix B. The Energy Gap

In this appendix we consider the Knapsack problem with fixed loading capacity W
and increasing number of objects N ≥ W. As in we did in the main text, all the objects have
weight 1 and they are sorted by increasing value vi = i, for i = 1, . . . , N. The number of
qubits needed to describe the problem is M = N + ⌈log2(W + 1)⌉.

In order to be general, we have calculated the minimum value of the energy band
gap ∆, considering a one to one embedding into the hardware and considering the sched-
ule functions A, B of Equation (A2) and their magnitudes as provided by D-Wave [25].
Figure A1 shows the minimum of the band gap that is reached during the annealing process.
From our simulations, we see that the minimum of the band gap goes as a polynomial of
the number of qubits ∆E ∝ M−c. The polynomial scaling of ∆E is promising, as it reflects
the polynomial scaling of the annealing time needed to find the optimal solution.

Figure A1. The minimum of the ground state energy band gap ∆E varying the number of qubits M
for some KPs with fixed loading capacity W.

However, this result is affected by the topology of the D-Wave quantum annealer. In
fact, the results that we found are applicable to an ideal completely connected quantum
computer, where Hamiltonian (A2) can be directly implemented. Because of the constrained
topology [25] of the machine, several ancillary qubits are used to embed the problem into
the quantum annealer, therefore changing the scaling of the band gap. In this work we
have used the embedding tool that is implemented in the SDK D-Wave Ocean. Hence we
averaged the results over 20 runs, each with a different embedding onto the machine.

Because of the embedding, We can not use the results that we have shown in this
appendix to obtain the minimum value of the annealing time through the adiabatic theorem.
However, we believe they provide an understanding of the problem and an hardware-
agnostic analysis of the energy band gap.
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