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Abstract: Determining criteria weights plays a crucial role in multi-criteria decision analyses. Entropy
is a significant measure in information science, and several multi-criteria decision-making methods
utilize the entropy weight method (EWM). In the literature, two approaches for determining the
entropy weight method can be found. One involves normalization before calculating the entropy
values, while the second does not. This paper investigates the normalization effect for entropy-based
weights and Hellwig’s method. To compare the influence of various normalization methods in both
the EWM and Hellwig’s method, a study evaluating the sustainable development of EU countries
in the education area in the year 2021 was analyzed. The study used data from Eurostat related
to European countries’ realization of the SDG 4 goal. It is observed that vector normalization and
sum normalization did not change the entropy-based weights. In the case study, the max–min
normalization influenced EWM weights. At the same time, these weights had only a very weak
impact on the final rankings of countries with respect to achieving the SDG 4 goal, as determined by
Hellwig’s method. The results are compared with the outcome obtained by Hellwig’s method with
equal weights. The simulation study was conducted by modifying Eurostat data to investigate how
the different normalization relationships discovered among the criteria affect entropy-based weights
and Hellwig’s method results.

Keywords: MCDM; entropy-based weights method; normalization; Hellwig’s method; sustainable
development; education

1. Introduction

Multiple criteria decision-making (MCDM) has evolved as a crucial component of
operations research, focusing on developing mathematical tools to facilitate the subjective
evaluation of performance criteria by decision-makers [1]. MCDM techniques address
situations where decisions involve multiple, often conflicting, criteria or objectives. These
methods help decision-makers assess and prioritize various alternatives based on different
criteria, taking into account the inherent complexity and subjectivity of decision-making
processes. Several approaches within MCDM have been investigated, each customized to
suit the specific decision contexts and preferences of decision-makers [1–3].

The weights assigned by decision makers (DMs) to differentiate the importance of cri-
teria play a pivotal role in the multi-criteria decision-making process. Numerous methods
exist for determining these weights for DMs [4–6] that can be classified into two categories
of approaches [7,8]: subjective and objective. The subjective approach relies on evalua-
tions provided by DMs, whereas the objective approach relies on intrinsic information
contained in the dataset describing the criteria performances. Various subjective methods
are available, including the analytic hierarchy process (AHP) [9,10], rank-based [11,12],
direct rating [13,14], Delphi method [15], and point allocation methods [13,14]. On the
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other hand, examples of objective approaches include CRiteria Importance Through Inter-
criteria Correlation (CRITIC) [16], standard deviation (SD), and the entropy weight method
(EWM) [15]. Among methods for determining objective weights, the EWM is widely
adopted and particularly valuable in decision-making processes, especially when there is a
lack of prior knowledge about the relative importance of criteria. In the literature, there are
two approaches to determining the EWM: one involves normalizing the decision matrix
before calculating the entropy value for each criterion, and the other calculates the entropy
value directly from the decision matrix [17]. The first approach commonly employs the
max–min normalization method.

Let us note that normalization stands as a crucial stage in most MCDM methods,
aligning all criteria onto a uniform scale and enabling a comparison among alternatives.
Several papers argue the importance of the choice of normalization techniques and their
impact on different rankings of alternatives [18–20]. Although two variants of entropy-
based weights are frequently used in the research (see Section 2.2), only studies [17,21]
analyzed the effects of normalization in the EWM on TOPSIS. Therefore, it is vital to analyze
the effects of normalization in the EWM using other multi-criteria techniques.

This paper addresses the impact of normalization on entropy weights and the resulting
rank ordering in Hellwig’s method. Hellwig’s method is a multi-criteria decision-making
technique that facilitates ranking alternatives based on their proximity to the ideal solu-
tion [22,23]. In the classical Hellwig’s approach, standardization (S) is used based on mean
and standard deviations from the set of observations to handle performances measured
by different scales before determining the distances. However, in some studies, S was
replaced by max–min normalization or vector normalization. Therefore, it would also be
vital to analyze the effects of different normalization methods on Hellwig’s approach to
rank-ordering alternatives.

We use the problem of evaluating sustainable development in the education of EU
countries based on real-world Eurostat data to show the influence of various normalization
methods on entropy-based weights and Hellwig-based rankings. Surprisingly, the results
in our specific decision-making context show that despite having a potential impact on
significant differences in the determination of weights, they may only marginally influence
the final rankings. Therefore, the simulation study was conducted to verify if these results
may have a more general interpretation when the decision-making context changes. In a
series of replications, we modified Eurostat data to investigate and discuss the compatibility
between entropy-based weights and Hellwig’s method.

The objectives and contributions of this study are as follows:

• Compare the performance of two variants of entropy-based weight methods in assess-
ing sustainable development in education.

• Evaluate the effectiveness of three normalization formulas in Hellwig’s method for
assessing sustainable development in education.

• Investigate and compare the combined performance of entropy-based weight methods
and normalization within Hellwig’s method for assessing sustainable development in
education.

• Conduct the simulation study by modifying Eurostat data to discuss and investigate
the sensitivity of the obtained results and provide more general conclusions regarding
the influence of normalization on entropy-based weights in Hellwig’s approach.

The rest of the paper is structured as follows: Section 2 introduces the concept of
the EWM and a short literature review concerning the application of entropy weights in
decision-making. Section 3 introduces Hellwig’s method. Section 4 presents the results,
and Section 5 discusses the findings from the simulation study. Finally, Section 6 presents
the conclusions.

2. The Preliminaries and Literature Review

This section introduces the concept of the entropy-based weight method and presents
related work that encompasses the EWM in decision-making problems.
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2.1. Entropy-Based Weight Method

The concept of entropy, originally developed by Claude Shannon [24] in his seminal
paper titled ‘A Mathematical Theory of Communication’ published in 1948, has become
a significant measure widely used in information theory. In information theory, entropy
measures the uncertainty or randomness associated with a random variable. It quantifies
the average amount of information required to describe the outcomes of a random process.
The higher the entropy, the greater the uncertainty.

In decision theory, entropy is often used to assess the uncertainty or information
content of different alternatives, particularly in determining the weight of criteria in the
MCDM process. The decision matrix contains a certain amount of information. Since
each column of this matrix describes a single-criterion performance of alternatives, the
EWM may allow for the objective calculation of weights based on differences in amounts
of information ensured by each criterion. Thereby, the impact of subjective judgments is
minimized [25–28]. For instance, a criterion has less influence when all alternatives share
similar values for that specific criterion. Additionally, if all values are the same, it becomes
possible to eliminate that attribute from consideration [15]. In the literature, two variants of
the entropy-based weight method are presented. The first variant of the EWM involves
no normalization, while the second one includes normalization, usually max–min, before
calculating the entropy value for each criterion [17].

Let us assume that we have m alternatives A1, A2, . . . , Am and n decision criteria
C1, C2, . . . , Cn. The general framework for calculating the EWM in multiple-criteria decision-
making is outlined as follows:

Step 1. Determination of decision matrix.

The decision matrix D has the form:

D =
[
xij

]
(1)

where xij is the value of the j-th criterion for the i-th alternative i = 1, 2, . . . , m,
j = 1, 2, . . . , n.

Step 2 (optional). Normalization of decision matrix.

A normalized decision matrix has the form:

Z =
[
zij

]
(2)

where zij is the normalized value xij of the j-th criterion for the i-th alternative
i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Step 3. Calculation of the information entropy of each criterion.

The information entropy Ej for the j-th criterion is calculated by the following equation:

Ej = − 1
ln m ∑m

i=1 pij ln pij, j = 1, 2, . . . , n. (3)

where

pij =
xij

∑m
i xij

for the EWM without normalization, i. e. , Step 2 is omitted, (4)

or
pij =

zij

∑m
i zij

for the EWM with normalization in Step 2. (5)

In particular, when xij = 0 (or zij = 0), then it is assumed that pij ln pij = 0 for
convenience in calculations. To avoid xij = 0 or zij = 0, Zhu et al. [29] proposed the
following modified formula:
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pij =
xij + C

∑m
i (xij + C)

(or pij =
zij + C

∑m
i (zij + C)

) (6)

where C is a constant that should at least satisfy xij + C > 0 (zij + C > 0).

Step 4. Calculation of weights.

The weight of the j-th criterion is calculated by the following equation:

wj =
1 − Ej

∑n
j=1

(
1 − Ej

) =
1 − Ej

n − ∑n
j=1 Ej

, j = 1, 2, . . . , n, (7)

where Ej is an extended and normalized information entropy calculated using Formula (3).
It is easy to check that 0 ≤ wj ≤ 1 (j = 1, . . . , n) and ∑n

j=1 wj = 1, according to the
properties of entropy.

The lower the information entropy Ej, the higher the weight j. In other words, the
higher the entropy value of 1 − Ej, the greater the weight assigned to the j-th criterion.
Increased entropy values 1 − Ej signify heightened uncertainty, resulting in a greater
weight assigned to the criterion as it holds more decision-relevant information. Conversely,
decreased entropy indicates a more predictable criterion, leading to a lower weight. Hence,
entropy offers an objective approach to establishing criterion weights. Tackling uncertainty
through entropy enhances the robustness of decision-making, especially in scenarios with
incomplete or ambiguous information.

The sum method (SM) and vector normalization (VN) are two frequently used nor-
malization formulas in decision-making methods. The calculation equations of the sum
method (SM) and vector normalization (VN) are as follows [15]:

zij =
xij

∑m
i=1 xij

(sum method) (8)

zij =
xij√

∑m
i=1 xij

2
(vector normalization). (9)

We can verify that the SM and VN will not alter the entropy-based weights [17];
therefore, there is no point in using them when calculating the EWM in Step 2. It is easy to
verify with:

pij = zij/∑m
i zij = xij

∑m
i xij

/ ∑m
i xij

∑m
i xij

= xij/∑m
i xij for the SM normalization (10)

and

pij = zij/∑m
i zij = xij√

∑m
i=1 xij

2
/ ∑m

i xij√
∑m

i=1 xij
2
= xij/∑m

i xij for the vector normalization. (11)

According to the literature gathered in Section 2.2, the max–min (MM) normalization
formula is the most commonly employed in the EWM in Step 2. The calculation equation
for the MM method is as follows:

zij =


xij−min

i
xij

max
i

xij−min
i

xij
for benefit criterion

max
i

xij−xij

max
i

xij−min
i

xij
for cost criterion

(max–min) (12)

Therefore, in further analyses, we will concentrate on two variants of the EWM: one
without normalization (EWMn) and the other with MM normalization (EWMM) before
calculating the entropy value of each criterion.
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2.2. Literature Review

The entropy-based weight method is a technique widely utilized in MCDM for as-
sessing the relative importance of criteria [15,21,29–31]. The effect of normalization on the
entropy-based TOPSIS method has been analyzed by Chen [17]. Numerous studies have
explored and applied the EWM in various fields, such as management [32], finance [33],
environmental quality [34], sustainable energy [8,27], water resources management [6],
location selection [35], urban air quality [36], and tourism [8,37].

Dong et al. [32] investigated the risk assessment of water security during drought peri-
ods using entropy-weighted methods. Zhang et al. [28] applied TOPSIS and entropy-based
weights to evaluate the competitiveness of tourism destinations. Zhang and Wang [38]
employed an entropy-weight approach to assess Chongqing’s water resource security
between 2000 and 2011. This evaluation aimed to identify the origins of pressure on the
water resources system and gauge the effectiveness of current response measures. Wu
et al. [39] investigated the sensitivity of entropy-based weights for assessing water quality,
employing large stochastic samples in their study. Ding et al. [40] presented a comprehen-
sive evaluation of urban sustainable development in China based on the TOPSIS method
with entropy-based weights. Zeng and Huang [41] proposed a synthetic assessment and
analysis method incorporating nine risk indices guided by natural disaster risk assessment
principles. The AHP method was combined with entropy theory to calculate the weights
of indicators that integrated subjective and objective weights. Xu et al. [42] proposed an
integrated methodology by incorporating an urban flood inundation model, an improved
entropy weight method, and a k-means cluster algorithm to evaluate urban flood risk.
The weights were calculated by integrating the entropy weight method and the analytic
hierarchy process (AHP) method. Shen and Liao [43] utilized the AHP and the entropy
method to develop a risk evaluation model for the food cold chain. Mukhametzyanov [26]
conducted a comparative analysis of three objective methods for determining criteria
weights in multi-criteria decision-making. The methods examined were entropy, CRITIC,
and standard deviation, and various propositions for the aggregation of weights were
presented. The common feature of the studies mentioned above is applying the max–min
method to the EWM determination in Step 2.

At the same time, in a series of papers, Step 2 has been omitted from the EWM
calculation [33,34,44,45]. Aras et al. [33] assessed Garanti Bank’s corporate sustainability
performance by examining economic, social, and environmental factors using TOPSIS with
an entropy-based weighting method. Dang and Dang [34] assessed the environmental
quality of the Organization for Economic Co-operation and Development (OECD) countries
using the VIKOR method. The weights of the criteria were determined through the entropy
weight method. Tian [45] incorporated the EWM into TOPSIS to evaluate corporate internal
control. Hafezalkotob and Hafezalkotob [44] proposed the MULTIMOORA technique,
a form of the comprehensive multi-objective optimization based on the ratio analysis
(MORRA) technique, with incorporated entropy-based weights for the analysis of the
material selection process.

He et al. [25] introduced a method for determining weights and aggregating models
in multi-group decision-making. They utilized the entropy weighting technique and the
principle of minimum cross-entropy in their approach. Yue [31] applied entropy-based
weights in group decision-making with hybrid preference representations. The paper
proposes a comprehensive group decision model that combines crisp values with interval
data utilizing entropy-based weights.

3. The Hellwig’s Method

Hellwig’s method [22,23] allows for determining the ranking of objects under consid-
eration (alternatives) considering multiple variables (criteria) by calculating the distances
between the ideal object (ideal solution) and the objects (alternatives). Designed initially for
crisp data, this method has been extended to address various problems and scenarios. This
extension involves adapting the method to handle situations where the data are not strictly
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crisp but possess some level of uncertainty or imprecision [46–50]. Hellwig’s method has
been applied in multidimensional socio-economic analyses, such as socio-economic devel-
opment [51–54], sustainable development [55,56], agriculture development [57–60], human
capital [61], innovation [62], quality of life [47,48,50], and education [63,64]. Hellwig’s
method has also been applied to support decisions, for instance, in negotiation [49,50], the
Football League [65], and the selection of locations [66].

The general framework of Hellwig’s method is as follows:
We have m objects (alternatives) A1, A2, . . . , Am and n variables (criteria) C1, C2, . . . , Cn.

In the first step, the data matrix is established:

D =
[
xij

]
, (13)

where xij is the value of the j-th variable (criterion) for the i-th object (alternative)
i = 1, . . . , m, j = 1, . . . , n.

Next, the vector of weights is determined:

w = [w1, . . . , wn] (14)

where wj > 0 (j = 1, . . . , n) is the weight of the variable (criterion) Cj and ∑n
j=1 wj = 1.

It is worth noticing that in the original Hellwig’s framework, equal weights are
assumed.

Also, the variables (criteria) are categorized as stimulant (positive) corresponding to
benefit criteria, and destimulant corresponding to cost criteria.

The ideal solution I is built using the following equation:

I =
[
x+1 , . . . , x+n

]
(15)

where:

x+j =

max
i

xij for stimulant

min
i

xij for destimulant
(16)

for j = 1, . . . , n.
In the next step, the normalized matrix Z is determined:

Z =
[
zij

]
(17)

where zij is a normalized value of xij (i = 1, . . . , m, j = 1, . . . , n).
In the classical Hellwig’s approach, the standardization formula (S) is used to normal-

ize data from the decision matrix, i.e.,

zij =
xij − xj

Sj
(18)

where xj =
1
m ∑m

i=1 xij, Sj =
√

1
m ∑m

i=1
(
xij − xj

)2.
Such an approach is utilized in [53–55,61,62,67]. The max–min normalization

(Formula (12)) is occasionally also used, for instance, in [68–70].
In the following step of Hellwig’s algorithm, the weighted normalized matrix, denoted

as D̃, is defined as:
D̃ =

[
x̃ij

]
, (19)

where:
x̃ij = wjzij (20)

Next, the distances of the i-th alternative Ai from the ideal I are calculated using the
following formula:

di(Ai, I) =

√
∑n

j=1

(
x̃ij − x̃+j

)2
(21)
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where x̃ij, x̃+j are weighted normalized values xij and x+j , respectively.
The Hellwig’s measure Hi is determined as follows:

Hi = 1 − di
d0

(22)

where d0 = d + 2S for d = 1
m ∑m

i=1 di, S =

√
1
m ∑m

i=1 (di − d)
2
.

Finally, a ranking of objects (alternatives) is provided based on the descending values
of Hi. The higher the Hellwig’s value, the higher the ranking position for the respective
object (alternative).

4. A Case Study: Evaluation of Sustainable Development in the Education Area by
Hellwig’s Framework
4.1. The Source of Data

The 2030 Agenda for Sustainable Development, adopted by all United Nations Mem-
ber States in 2015, presents a collective roadmap for fostering peace and prosperity for
both people and the planet, spanning the present and the future. At its core are the 17
Sustainable Development Goals (SDGs), which serve as a pressing call to action for all
nations, irrespective of their development status, to engage in a global partnership [71].
Education is pivotal for economic growth and job creation, as it improves employability,
productivity, innovation, and competitiveness. In a broader context, education is also
a prerequisite for achieving many other Sustainable Development Goals (SDGs) [72,73].
Monitoring progress on SDG 4, referred to as ‘Quality Education,’ in the EU context, focuses
on primary education, higher education, adult learning, and digital skills [63,64,74].

This study aims to assess and compare the implementation of SDG 4 across European
Union member states using Hellwig’s method with various entropy-based weights. We
employed data from Eurostat for 2021, focusing on Sustainable Development indicators
related to education (SDG 4) [75] for this year. Education, as a complex phenomenon, was
characterized using five criteria [75]:

• C1 : Early leavers from education and training (%) [sdg_04_10a] (destimulant)
• C2: Tertiary educational attainment (%) [sdg_04_20] (stimulant)
• C3: Participation in early childhood education (%) [sdg_04_31] (stimulant)
• C4: Adult participation in learning in the past four weeks (%) [sdg_04_60] (stimulant)
• C5: Share of individuals having at least basic digital skills (%) [sdg_04_70] (stimulant)

The set of indicators for SDG 4 encompasses key aspects intended to monitor progress
across diverse educational levels and domains. Table 1 illustrates five indicators measuring
the assessment of SDG 4 in EU countries in the year 2021.

Table 1. Indicators measuring the assessment of SDG 4 in EU countries in the year 2021.

EU Country C1 C2 C3 C4 C5

Austria 8.0 42.4 89.0 14.6 63.33
Belgium 6.7 50.9 97.9 10.2 54.23
Bulgaria 12.2 33.6 79.4 1.8 31.18
Croatia 2.4 35.7 77.8 5.1 63.37
Cyprus 10.2 58.3 85.8 9.7 50.21
Czechia 6.4 34.9 84.2 5.8 59.69

Denmark 9.8 49.7 97.0 22.3 68.65
Estonia 9.8 43.2 91.5 18.4 56.37
Finland 8.2 40.1 90.6 30.5 79.18
France 7.8 50.3 100.0 11.0 61.96

Germany 12.5 36.9 93.1 7.7 48.92
Greece 3.2 44.2 68.8 3.5 52.48
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Table 1. Cont.

EU Country C1 C2 C3 C4 C5

Hungary 12.0 32.9 93.4 5.9 49.09
Ireland 3.3 61.7 96.4 13.6 70.49

Italy 12.7 28.3 91.0 9.9 45.60
Latvia 7.3 45.5 94.5 8.6 50.80

Lithuania 5.3 57.5 92.1 8.5 48.84
Luxembourg 9.3 62.6 88.9 17.9 63.79

Malta 10.7 42.5 86.2 13.9 61.23
Netherlands 5.1 55.6 93.0 26.6 78.94

Poland 5.9 40.6 90.4 5.4 42.93
Portugal 5.9 47.5 90.5 12.9 55.31
Romania 15.3 23.3 75.6 4.9 27.82
Slovakia 7.8 39.5 77.4 4.8 55.18
Slovenia 3.1 47.9 92.3 18.9 49.67

Spain 13.3 48.7 96.0 14.4 64.16
Sweden 8.4 49.3 96.1 34.7 66.52

Min 2.40 23.30 68.80 1.80 27.82
Max 15.30 62.60 100.00 34.70 79.18

Mean 8.24 44.58 89.22 12.65 56.29
Standard deviation 3.37 9.68 7.50 8.19 11.88

Coefficient of variation 40.84 21.72 8.40 64.73 21.10
Source: Eurostat [SDG 4] [75]. Data for Greece for criterion C3 were estimated.

4.2. Results

To observe the impact of normalization on Hellwig’s results, we designed a compar-
ative study in which we considered a combination of normalization mode for the EWM
and normalization formula for Hellwig’s method: combination mode I (CMI): none in the
EWM and S in Hellwig’s method; combination mode II (CMII): MM in the EWM and S in
Hellwig’s method; combination mode III (CMIII): none in the EWM and MM in Hellwig’s
method; combination mode IV (CMIV): MM in the EWM and MM in Hellwig’s method;
combination mode V (CMV): none in the EWM and VN in Hellwig’s method; combination
mode VI (CMVI): MM in the EWM and VN in Hellwig’s method.

The calculation of the entropy-based weights without normalization (EWMn) and
with MM normalization (EWMMM) in Step 2 is presented in Table 2.

Table 2. Entropy-based weights obtained using different formulas.

Variants of EWM C1 C2 C3 C4 C5

EWMn 0.263 0.072 0.011 0.584 0.070
EWMMM 0.184 0.168 0.124 0.374 0.150

Source: Authors’ calculations.

The Garuti’s G compatibility index [76] is employed for comparing weight systems,
and its calculation is as follows [76]:

GEWMn
EWMMM =

n

∑
j=1

min
(

wEWMn
j , wEWMMM

j

)
max

(
wEWMn

j , wEWMMM
j

) ·

(
wEWMn

j + wEWMMM
j

)
2

 (23)

The index G = 1 indicates full compatibility of two systems of weights, while G = 0
signifies total incompatibility. The Garuti index value in our study, GEWMn

EWMMM = 0.573,
confirms the weak compatibility of the systems of weights. Let us note that the weight
coefficients correspond to their coefficients of variation (see Table 1). The most important
criterion is C4 (64.73%), followed by C1 (40.84%), C2 (21.72%), and C5 (21.10%) in that order.
The least important criterion is C3, corresponding to a variability of 8.40%.
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The comparison of two systems of weights is presented in Figure 1. We can observe
that the max–min method in the EWMMM resulted in a flattening of the differences between
criteria values. The most important criteria (C1, C4) obtained lower weights, while the least
important ones (C2, C3, C5) received higher weights compared to the EWMn.
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The ideal solution I (Formulas (15) and (16)) has the form [2.40, 62.60, 100.00, 34.70,
79.18] The criteria values are normalized using the standardization (Formula (18)), max–min
(Formula (12)), and vector normalization (Formula (9)) methods. Next, the values of
distance measures between the alternatives (countries) and I are calculated (Formula (21)).
Finally, Hellwig’s measures with six combination modes are determined (Formula (22)). The
Hellwig’s measure values and the rankings of countries obtained by combination modes
(two variants of entropy-based weights and three normalization formulas in Hellwig’s
method) are presented in Table 3.

While analyzing the positions of the EU countries in the overall rankings obtained
using six combination modes of Hellwig’s method, one may observe that the rankings are
very similar, as confirmed by the Kendall tau coefficients (Table 4). What is interesting is
that the differences between the rankings are one or two positions.

Moreover, the disparities in Hellwig’s values are minimal, as evidenced by Pearson’s
coefficients (Table 5).

Basic descriptive statistics for six combination modes of Hellwig’s measures are pre-
sented in Table 3 and Figure 2.

When examining the box plots representing Hellwig’s values, we can observe that the
distributions obtained for various combination modes are very similar. The differences in
Hellwig’s values among the EU countries range from 0.722 to 0.763. The mean falls between
0.387 and 0.402, with a standard deviation of 0.191 to 0.201. At the same time, no matter
which combination mode was used, the results indicate similar significant disparities
among EU countries in achieving the SG4 goal (the pattern of differences was preserved).
No country excelled or lagged in all criteria. Sweden, the Netherlands, and Finland received
the top scores across all Hellwig’s modes among EU countries in 2021. High Hellwig’s
scores were also attained by Denmark, Slovenia, Estonia, and Luxembourg. Conversely,
Bulgaria, Romania, and Greece recorded the lowest scores in 2021.

It is indeed a surprising finding that using various techniques for data normalization
for EWM-based weights and for Hellwig’s algorithm does not cause significant changes in
the final evaluation, although it significantly affects the weights. This phenomenon requires
deeper consideration and analysis, which we will conduct in the following section.
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Table 3. The values and rank-ordering of EU countries obtained by the combination modes of
Hellwig’s measures.

Country CMI Rank
CMI CMII Rank

CMII CMII Rank
CMII CMIV Rank

CMIV CMV Rank
CMV CMVI Rank

CMVI

Austria 0.454 9 0.451 9 0.452 9 0.449 9 0.462 8 0.459 8
Belgium 0.353 14 0.379 14 0.353 14 0.378 14 0.353 14 0.354 14
Bulgaria 0.097 27 0.066 26 0.095 27 0.067 26 0.116 27 0.106 27
Croatia 0.231 21 0.232 22 0.233 21 0.232 22 0.225 22 0.225 22
Cyprus 0.315 16 0.331 16 0.313 16 0.329 16 0.327 15 0.326 15
Czechia 0.240 20 0.244 18 0.241 19 0.243 18 0.239 20 0.238 20

Denmark 0.615 4 0.616 4 0.610 4 0.610 4 0.643 4 0.637 4
Estonia 0.525 6 0.502 7 0.521 6 0.499 7 0.548 6 0.539 6
Finland 0.794 2 0.712 3 0.788 2 0.708 3 0.839 2 0.813 2
France 0.367 13 0.400 13 0.367 13 0.397 13 0.370 13 0.372 13

Germany 0.241 19 0.238 20 0.237 20 0.234 21 0.264 19 0.257 19
Greece 0.190 25 0.182 25 0.192 25 0.185 25 0.183 25 0.185 25

Hungary 0.202 24 0.197 24 0.199 24 0.193 24 0.221 23 0.214 23
Ireland 0.454 8 0.498 8 0.455 8 0.496 8 0.448 9 0.453 9

Italy 0.287 18 0.243 19 0.283 18 0.240 19 0.318 16 0.302 18
Latvia 0.308 17 0.324 17 0.308 17 0.324 17 0.309 18 0.309 17

Lithuania 0.315 15 0.342 15 0.316 15 0.343 15 0.312 17 0.314 16
Luxembourg 0.523 7 0.538 6 0.520 7 0.534 6 0.539 7 0.538 7

Malta 0.410 11 0.405 12 0.407 11 0.400 11 0.431 10 0.425 10
Netherlands 0.777 3 0.777 1 0.776 3 0.776 1 0.781 3 0.781 3

Poland 0.231 22 0.234 21 0.232 22 0.236 20 0.229 21 0.227 21
Portugal 0.425 10 0.432 10 0.425 10 0.433 10 0.425 12 0.424 11
Romania 0.135 26 0.050 27 0.130 26 0.050 27 0.177 26 0.154 26
Slovakia 0.209 23 0.210 23 0.209 23 0.210 23 0.210 24 0.209 24
Slovenia 0.585 5 0.556 5 0.586 5 0.560 5 0.585 5 0.579 5

Spain 0.390 12 0.409 11 0.383 12 0.400 12 0.426 11 0.421 12
Sweden 0.824 1 0.775 2 0.817 1 0.771 2 0.879 1 0.857 1

Mean 0.389 0.383 0.387 0.381 0.402 0.397
SD 0.194 0.192 0.193 0.191 0.201 0.198

Min 0.097 0.050 0.095 0.050 0.116 0.106
Max 0.824 0.777 0.817 0.776 0.879 0.857

Source: Authors’ calculations.
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Table 4. Kendall tau coefficients between rankings obtained by six combination modes of Hellwig’s
measures.

Kendall Tau
Coefficient

Rank
CMI

Rank
CMII

Rank
CMIII

Rank
CMIV

Rank
CMV

Rank
CMVI

Rank CMI 1.000
Rank CMII 0.954 1.000
Rank CMIII 0.994 0.960 1.000
Rank CMIV 0.954 0.989 0.960 1.000
Rank CMV 0.954 0.920 0.949 0.920 1.000
Rank CMVI 0.972 0.937 0.966 0.937 0.983 1.000

Table 5. Pearson coefficients between rankings obtained by six combination modes of Hellwig’s
measures.

Pearson Coefficient CMI CMII CMIII CMIV CMV CMVI

CMI 1.0000
CMII 0.9874 1.0000
CMIII 0.9999 0.9884 1.0000
CMIV 0.9874 0.9999 0.9885 1.0000
CMV 0.9968 0.9757 0.9958 0.9751 1.0000
CMVI 0.9987 0.9831 0.9980 0.9825 0.9993 1.0000

5. Discussion

Chen [17] investigated the impact of max–min normalization on the EWM and the
relationships between the EWM and TOPSIS with various normalization approaches in
TOPSIS. The studies showed that normalization can influence the decision outcomes of the
entropy-based TOPSIS method. Max–min normalization affects the EWM results and fails
to represent the raw data’s diversity accurately. The examples presented by Chen show that
the system of weights differs in values and the order of importance of criteria. Chen [17]
also does not recommend MM for the entropy weight method, and VN is advised for the
TOPSIS method. He claims that the weights become meaningless if MM is employed for
the EWM.

The original Hellwig approach used equal weights for criteria. Maggino and Ru-
viglioni [77] observed that equal weights were commonly employed in many applications.
Greco et al. [78] argued in favor of equal weights for various reasons, such as simplicity
of implementation, the absence of a theoretical foundation to support a differentiated
weighting scheme, disagreement among decision-makers, and insufficient statistical or
empirical evidence. Therefore, to analyze more deeply the impact weights on the final
ranking, we compared the results presented in Table 3 with the results of Hellwig’s method
H_S, H_MM, and H_VN for the equal weights and S, MM, and VN normalization formulas,
respectively (Table 6).

Similarly, as with entropy-based weights applied in the Hellwig measure (Tables 4 and 5),
the rankings and the disparities in Hellwig’s values obtained by H_S, H_MM, and H_VN
with equal weights are similar (Tables 7 and 8).

Strong Pearson correlations were obtained for different systems of weights and the
same data normalization procedure. For S normalization, we obtained the following: P(H_S,
CMI) = 0.872, P(H_S, CMII) = 0.936; for MM normalization: P(H_MM, CMIII) = 0.873, P(H_S,
CMIV) = 0.994; and for the VN formula: P(H_VN, CMV) = 0.956, P(H_VN, CMVI) = 0.965.
The Kendall tau correlation coefficients were not that high but still indicated moder-
ately strong associations, yielding the following results: K(H_S, CMI) = 0.783, K(H_S,
CMII) = 0.829; for MM normalization: K(H_MM, CMIII) = 0.772, K(H_MM, CMIV) = 0.812;
and for the VN formula: K(H_VN, CMV) = 0.818, K(H_VN, CMVI) = 0.835.
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Table 6. The values and rank-ordering of EU countries obtained by the equal weights of Hellwig’s
measures.

Country H_S Rank H_S H_MM Rank H_MM H_VN Rank H_VN

Austria 0.467 11 0.462 11 0.445 9
Belgium 0.476 10 0.475 10 0.374 13
Bulgaria 0.022 26 0.026 26 0.056 26
Croatia 0.278 20 0.279 20 0.263 18
Cyprus 0.363 17 0.360 17 0.310 17
Czechia 0.303 18 0.301 18 0.259 19

Denmark 0.595 4 0.582 4 0.570 5
Estonia 0.456 12 0.451 12 0.475 8
Finland 0.588 5 0.580 5 0.693 3
France 0.506 8 0.500 8 0.387 11

Germany 0.245 21 0.236 22 0.202 24
Greece 0.179 25 0.186 24 0.226 21

Hungary 0.214 23 0.206 23 0.170 25
Ireland 0.647 3 0.644 3 0.501 7

Italy 0.179 24 0.172 25 0.213 23
Latvia 0.400 15 0.400 14 0.321 16

Lithuania 0.439 13 0.445 13 0.346 14
Luxembourg 0.548 6 0.540 6 0.509 6

Malta 0.388 16 0.379 16 0.379 12
Netherlands 0.776 1 0.773 1 0.773 1

Poland 0.294 19 0.300 19 0.244 20
Portugal 0.480 9 0.482 9 0.437 10
Romania −0.107 27 −0.107 27 0.024 27
Slovakia 0.239 22 0.240 21 0.226 22
Slovenia 0.530 7 0.540 7 0.570 4

Spain 0.415 14 0.395 15 0.341 15
Sweden 0.672 2 0.664 2 0.729 2

Mean 0.392 0.389 0.372
SD 0.196 0.195 0.186

Min −0.107 −0.107 0.024
Max 0.776 0.773 0.773

Source: Authors’ calculations.

Table 7. Kendall tau coefficients between rankings obtained by Hellwig’s measures with equal
weights.

Kendal Tau Coefficient Rank H_S Rank H_MM Rank H_VN

Rank H_S 1.000
Rank H_MM 0.983 1.000
Rank H_VN 0.840 0.846 1.000

Table 8. Pearson coefficients between rankings obtained by Hellwig’s measures with equal weights.

Pearson Coefficient H_S H_MM H_VN

H_S 1.000
H_MM 0.999 1.000
H_VN 0.946 0.946 1.000

Our study noticed that weights obtained from non-normalization and the MM ap-
proach in the EWM are not strongly compatible (Garuti index 0.573). However, they
preserve the order of importance of the criteria. It is not unexpected that different objective
weighting methods lead to different systems of weights. However, one might be surprised
that such distinct systems of weights across three different normalization formulas in
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Hellwig’s measure result in highly similar rankings (see Tables 1 and 4) and a very strong
correlation between Hellwig’s values (Tables 1 and 5).

Therefore, we decided to check if this situation is related to the structure of the Eurostat
data used for analysis (i.e., whether it is case-specific). The Pearson correlation coefficients
between criteria are presented in Table 9.

Table 9. Pearson correlation coefficients between criteria.

Pearson
Coefficient C1 C2 C3 C4 C5

C1 1.000
C2 −0.437 1.000
C3 0.037 0.452 1.000
C4 −0.075 0.411 0.506 1.000
C5 −0.383 0.520 0.393 0.706 1.000

It is clear that in our case, some countries’ single-criterion performances are moderately
to highly correlated. Thus, we decided to check whether this correlation may be considered
a factor affecting similarities in ranking despite dissimilarities in weights. We organized
two simulation studies, each with two scenarios, that amounted to experimenting with
different modifications of Eurostat data.

In Study 1, in each replication (repeated 1000 times), we simulated a data structure
similar to data from Table 1, i.e., consisting of 27 alternatives and five evaluation criteria. We
sampled the performances of alternatives for each criterion, using the normal distribution
observed for each criterion in original Eurostat data and their actual means. Additionally,
we enforced the correlations among the single-criterion performances as determined for
Eurostat data (see Table 6). In the simulation, we only compared Hellwig’s results obtained
for two different setups, CMI and CMII, i.e., those that differ in using (or not) MM nor-
malization when determining weights, keeping the same standardization-based approach
in Hellwig’s algorithm. This way, we can observe how the specificity of such non-trivial
single-criterion correlations of performances may affect EWM weights and their impact on
Hellwig’s rank orders of alternatives.

The results of simulation study 1 show that the correlations between Hellwig’s indexes
for CMI and CMII, as well as the resulting rankings, are high. However, they are not as
high as in our real-world case of evaluating the EU countries (see Figure 3A).

Entropy 2024, 26, x FOR PEER REVIEW 13 of 19 
 

 

K(H_S, CMII) = 0.829; for MM normalization: K(H_MM, CMIII) = 0.772, K(H_MM, CMIV) 

= 0.812; and for the VN formula: K(H_VN, CMV) = 0.818, K(H_VN, CMVI) = 0.835. 

Our study noticed that weights obtained from non-normalization and the MM ap-

proach in the EWM are not strongly compatible (Garuti index 0.573). However, they pre-

serve the order of importance of the criteria. It is not unexpected that different objective 

weighting methods lead to different systems of weights. However, one might be surprised 

that such distinct systems of weights across three different normalization formulas in 

Hellwig’s measure result in highly similar rankings (see Tables 1 and 4) and a very strong 

correlation between Hellwig’s values (Tables 1 and 5). 

Therefore, we decided to check if this situation is related to the structure of the Euro-

stat data used for analysis (i.e., whether it is case-specific). The Pearson correlation coeffi-

cients between criteria are presented in Table 9. 

Table 9. Pearson correlation coefficients between criteria. 

Pearson 

Coefficient 
𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 

𝐶1 1.000     

𝐶2 −0.437 1.000    

𝐶3 0.037 0.452 1.000   

𝐶4 −0.075 0.411 0.506 1.000  

𝐶5 −0.383 0.520 0.393 0.706 1.000 

It is clear that in our case, some countries’ single-criterion performances are moder-

ately to highly correlated. Thus, we decided to check whether this correlation may be con-

sidered a factor affecting similarities in ranking despite dissimilarities in weights. We or-

ganized two simulation studies, each with two scenarios, that amounted to experimenting 

with different modifications of Eurostat data. 

In Study 1, in each replication (repeated 1000 times), we simulated a data structure 

similar to data from Table 1, i.e., consisting of 27 alternatives and five evaluation criteria. 

We sampled the performances of alternatives for each criterion, using the normal distri-

bution observed for each criterion in original Eurostat data and their actual means. Addi-

tionally, we enforced the correlations among the single-criterion performances as deter-

mined for Eurostat data (see Table 6). In the simulation, we only compared Hellwig’s re-

sults obtained for two different setups, CMI and CMII, i.e., those that differ in using (or 

not) MM normalization when determining weights, keeping the same standardization-

based approach in Hellwig’s algorithm. This way, we can observe how the specificity of 

such non-trivial single-criterion correlations of performances may affect EWM weights 

and their impact on Hellwig’s rank orders of alternatives. 

The results of simulation study 1 show that the correlations between Hellwig’s in-

dexes for CMI and CMII, as well as the resulting rankings, are high. However, they are 

not as high as in our real-world case of evaluating the EU countries (see Figure 3A). 

  
(A) Study 1 (B) Study 2 

Figure 3. Box plots for correlation coefficients between CMI and CMII results in simulation studies
with Ghaziri indexes of quality of sampling.

We may see that the average Pearson coefficient between counties’ performances
measured by Hellwig’s index equals 0.863 in simulation. Moreover, even a third quartile
(0.93) is smaller than the value we obtained for our case, i.e., 0.987. In fact, the relative
frequency of obtaining results that are at least as correlated as in our real-world case is as
small as 0.1% (observed in one replication only). The same applies to comparing Kendall
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ordinal correlations, though the differences are even more visible here. The Garuti index
that measures the similarity of two systems of weights for our simulation data equals 0.45.
It is not very different from what we observed in empirical data (0.54). However, when
we look in detail at the relationships among the weights of subsequent criteria obtained in
each iteration for the EWMn and EWMMM methods, we will find that in 13 replications
only (1.3%), the order of weights was the same as it was for the EWMn and EWMMM
determined for empirical data. The same systems of weights have a Kendall tau index
equal to 1. In our simulation, the average Kendall tau was 0.194. To be sure the results we
obtain are reliable, i.e., adequately resembling the situation of intercorrelated criteria, we
determined the adjusted RV Ghaziri index [79] between the correlation matrices of criteria
for data matrices sampled for each iteration and the correlation matrix from Table 6. The
Ghaziri index was 0.92, which proves extreme similarity.

From the above, one may conclude that case-specificity may be an issue here and
impacts the similarity of rankings despite the dissimilarity of weights. It is, however, an
important finding that clearly shows that a higher correlation among the performances of
alternatives makes the Hellwig results less sensitive to the criteria weights.

In view of the above results, in Study 2, we decided to relax the requirements for
the correlation of criteria within decision matrices. Therefore, we sampled 1000 decision
matrices, in which we only ensured that the data for each criterion came from the normal
distribution and had the means and standard deviations equal to the empirical ones. Then,
we determined the same comparative indexes as for the results in Study 1. Their general
distributions are shown in Figure 3B. Here, the differences in Hellwig’s CMI and CMII
results seem more evident. The average Kendall and Pearson correlations between CMI
and CMII are 0.510 and 0.656, respectively. These correlations are significantly smaller
than those obtained in Study 1 (at p < 0.001 in the Mann–Whitney test). It clearly shows
that the rankings and ratings start to differ for the EWMn and EWMMM-based weights if
the correlations do not bind the single-criterion performances. The significant differences
between the sampled performance matrices and the empirical ones in terms of correlations
of criteria are proven by the distribution of the adjusted RV Ghaziri index (with an average
value equal to 0).

Interestingly, in Study 2, the sampled data allowed for generating the systems of
weights according to the EWMn and EWMMM, which were more similar than those in
Study 1. The average Garuti index in Study 2 equals 0.585, and the Garuti’s distribution is
significantly different in Studies 1 and 2, at p < 0.001 in the Mann–Whitney test. However,
the similarity of the results (rankings or ratings) is still weaker in Study 2. It strengthens
our earlier observation that the correlation of the criteria may make the results insensitive
to the normalization methods used, no matter how similar or different the EWM weights
they produce.

6. Conclusions

This research aligns with the broader context of studies related to the impact of
certain factors on the final ranking obtained through multiple-criteria decision-making
methods. In this study, we addressed how selecting variants of entropy-based weights and
normalization formulas influences the ranking obtained through Hellwig’s method. Four
primary scientific goals were achieved in this paper.

The first goal was to analyze the impact of two variants of entropy-based weights
(with and without max–min normalization) on the outcome obtained by Hellwig’s method.
It is important to emphasize that the major advantage of entropy-based weight methods is
their ability to handle the lack of knowledge about important criteria through simple and
uncomplicated calculations using only information provided by the criteria and an intuitive
interpretation of the entropy measure. The second goal of the paper was to analyze the
impact of three different normalization methods (standardization, max–min, and vector
normalization) on the outcome obtained by Hellwig’s method. The comparative analysis
focused on the most commonly used normalization methods in Hellwig’s and other MCDM
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methods. The third goal was to analyze the impact of the combination of entropy weight
methods and normalization formulas (six combination modes) on the outcome obtained
by Hellwig’s method. The final goal was to compare the performance of different variants
of Hellwig’s method for analyzing sustainable development in the education sector. We
compared the rankings obtained by Hellwig’s method using different combination modes.

The study successfully achieved its objectives by comprehensively analyzing the
impact of entropy-based weights and different normalization methods on the outcomes
derived from Hellwig’s method. This thorough examination provided valuable insights
into the effectiveness of various approaches in the decision-making process. The research
contributes to the existing literature by offering a unique perspective on the combined use
of entropy-based weights and normalization techniques within the context of Hellwig’s
method. To the best of our knowledge, no prior studies have explored this aspect to
such a degree, making our work a significant contribution to the field of multi-criteria
decision-making.

The study also analyzes the impact of both entropy-based weights and normalization
methods in evaluating sustainable development in the education area. In summary, the
differences between the systems of weights obtained by two entropy-based methods are
significant. The impact of the normalization formula on the final ranking obtained by
Hellwig’s method while maintaining the weight system is negligible. However, surprisingly,
the combination modes of Hellwig’s measure and the normalization formula did not
significantly affect the results in our real-world problem, i.e., positioning EU countries in
the rankings. In each of the obtained rankings, the countries with the highest levels of
realization of SDG goals in the education sector were Sweden, Finland, and the Netherlands,
while the lowest-ranked countries were Bulgaria, Romania, and Greece. However, we
proved that the lack of significant differences in the EU case is related to the specificity of
the problem and the more than average correlation of some criteria in the decision matrix.
Our simulation studies showed that the result could be more different when we compare
data samples with similar distributions and correlations. If the correlation weakens, the
normalization techniques significantly affect differences in Hellwig’s rankings and ratings.

Despite the valuable insights presented in this study, it allowed us to acknowledge
some limitations associated with the research design, particularly in the context of the data
sample structure. The real-world data may reveal some interdependencies that make the
use of different normalization and MCDM techniques lead to similar results. In view of
them, an empirical study’s findings may be constrained by the representativeness of the
primary data set used (here, the Eurostat records of EU countries’ performances). A more
extensive and diverse set of samples could provide a broader understanding of the problem
and indicate whether the regularities observed are case-specific only.

Therefore, there is a need for further research to delve into the in-depth analysis of
the relationship between the number of alternatives, criteria, and data structure, measured
by correlations between criteria. The simulation experiments with different levels of
correlations among criteria could provide better-grounded conclusions on how Hellwig’s
method performs depending on the version of the EWM applied in advance to produce the
system of weight for MCDM analysis. Additionally, exploring criteria of various descriptive
statistics (e.g., mean, standard deviation, coefficient of variation, presence of outliers) and
examining the resulting weighting systems obtained through entropy methods and the
consistency of rankings obtained by other multiple criteria methods alternative to Hellwig’s,
such as TOPSIS or VIKOR, could tell us more about which of these techniques is more
resistant to the peculiar patterns of the correlations among the evaluation criteria.
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Abbreviations

The following abbreviations are used in this manuscript:
AHP analytic hierarchy process
CMI combination mode I: none in EWM and S in Hellwig’s method
CMII combination mode II: MM in EWM and S in Hellwig’s method
CMIII combination mode III: none in EWM and MM in Hellwig’s method
CMIV combination mode IV: MM in EWM and MM in Hellwig’s method
CMV combination mode V: none in EWM and VN in Hellwig’s method
CMVI combination mode VI: MM in EWM and VN in Hellwig’s method
CRITIC CRiteria Importance Through Inter-criteria Correlation
DM decision maker
EWM entropy weight method
EWMn entropy weight method without max–min normalization
EWMMM entropy weight method with max–min normalization
MCDM multi-criteria decision-making
MM max–min normalization
MORRA multi-objective optimization based on the ratio analysis
S standardization
SD standard deviation
SDG Sustainable Development Goal
SN sum normalization
TODIM An acronym in Portuguese for Interactive and Multi-criteria Decision Making
TOPSIS Technique for Ordering Preferences by Similarity to Ideal Solution
VN vector normalization
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