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Abstract: This paper develops a thermodynamic entropy-based life prediction model to estimate the
low-cycle fatigue (LCF) life of the nickel-based superalloy GH4169 at elevated temperature (650 ◦C).
The gauge section of the specimen was chosen as the thermodynamic system for modeling entropy
generation within the framework of the Chaboche viscoplasticity constitutive theory. Furthermore,
an explicitly numerical integration algorithm was compiled to calculate the cyclic stress–strain
responses and thermodynamic entropy generation for establishing the framework for fatigue life
assessment. A thermodynamic entropy-based life prediction model is proposed with a damage
parameter based on entropy generation considering the influence of loading ratio. Fatigue lives for
GH4169 at 650 ◦C under various loading conditions were estimated utilizing the proposed model, and
the results showed good consistency with the experimental results. Finally, compared to the existing
classical models, such as Manson–Coffin, Ostergren, Walker strain, and SWT, the thermodynamic
entropy-based life prediction model provided significantly better life prediction results.

Keywords: low-cycle fatigue (LCF); cyclic viscoplasticity; thermodynamic entropy generation; life
prediction; nickel-based superalloy

1. Introduction

Nickel-based superalloys GH4169 have similar microstructure and mechanical proper-
ties to those of Inconel 718, which is the most popular superalloy in the turbine industry [1].
The applications of GH4169 is widely used in gas turbine components due to its satisfactory
elevated-temperature strength and good resistance to creep, oxidation, and corrosion [2].
The limiting temperature for GH4169 is 650 ◦C, within the operating temperature range
(600–700 ◦C) for life-limited parts [3], such as disks and shafts. These life-limited parts
experience heavy cyclic loading due to startup and shutdown procedures, which inevitably
lead to low-cycle fatigue (LCF) damage at elevated temperatures [4]. Consequently, the
LCF behavior and life prediction of nickel-based superalloys at elevated temperatures are
significant concerns in ensuring the reliability and safety of turbine engines in operation.

Predicting LCF behavior and fatigue failure life (Nf) of mechanical components re-
quires a reliable constitutive description and an accurate life prediction model. For ex-
pressing the stress–strain response behavior at elevated temperature, perhaps the best-
established constitutive model is the Chaboche unified viscoplastic constitutive model [5–8].
This model, originating from the Armstrong–Frederick [9] kinematic hardening rule, is well
capable of modeling inelastic behaviors such as cyclic hardening/softening, the Bauschinger
effect, stress relaxation, ratcheting effect, and creep. Subsequently, the Chaboche model
was modified and improved to simulate emerging stress–strain behavior under more
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complex loading conditions. For example, Bernhart et al. [10] improved the isotropic
hardening equation to describe the varying speed of cyclic softening for different loading
stages at elevated temperature. Li et al. [11] modified the unified viscoplastic constitutive
model to consider the influences of non-proportional hardening and dynamic strain aging
on stress–strain behavior under axial–torsional thermomechanical fatigue for GH4169.
Hu et al. [12] developed a modified Chaboche unified model combined with Kachanov
damage evolution to describe the deformation behavior of DZ125 considering material
anisotropy and anisothermal conditions. All these works suggest that the Chaboche model
has satisfied robustness and flexibility to deal with various loading conditions for a wide
range of materials.

Meanwhile, LCF life prediction is also critical for ensuring the operating safety of
turbine components. Life prediction models for LCF regimes are mainly categorized
into strain-based [13], strain energy-based [14], stress-based [15], and continuous damage
mechanics (CDM) [16,17], etc. Manson and Coffin [13,18] first established their life predic-
tion models based on strain, and then the Morrow model [19], Walker model [20], SWT
model [21], etc., were proposed separately to consider different influencing factors (mean
stress, load ratio, etc.). Furthermore, strain energy-based models and stress-based models
also provide competitive approaches for predicting failure life. Ostergren [14] and Liu [22]
innovatively defined a tensile hysteresis energy model and virtual strain energy model, re-
spectively, to relate the fatigue failure life. Moreover, a stress-based model generally based
on Basquin’s equation [23] and then various types of equivalent stress amplitude have
been proposed to modify this equation [24,25] to consider ratcheting effect, mean stress,
etc. CDM life prediction models stem from the non-linear fatigue damage accumulation
theory proposed by Lemaitre and Chaboche [8]. Subsequently, the CDM-based model was
combined with micro–macro variety [26], XFEM technology [27], and the critical plane
method [28], etc., to analyze different fatigue issues. Nevertheless, in recent research, many
scientists believed these approaches are largely empirical in nature and fail to unveil the
physical nature of the fatigue process, such as the mechanism of damage evolution and
accumulation [29]. Therefore, a series of fatigue assessment methods within the framework
of thermodynamics were proposed [30] and then developed into a hot topic in fatigue
fracture research.

Fatigue is a process of material degradation from nucleation and propagation of cracks
that eventually causes failure. In this process, energy is irreversibly dissipated into heat
due to internal friction and the system disorder continues to increase until fracture occurs.
According to the second law of thermodynamics, entropy can be adopted to describe
the degree of system disorder and reflect the physical mechanism of the fatigue damage
process [31]. Basaran [32] first proposed a monotonic disorder qualification function based
on Boltzmann probabilistic entropy for fatigue and tensile failure monitoring. Based
on their work, Wang and Yao [33] proposed an entropy-based failure prediction model
for creep failure. Bryant et al. [28] pointed out that entropy generation is a measure
of permanent disorganization and proposed a degradation–entropy generation (DEG)
methodology to characterize material system degradation. Recently, Khonsari et al. [29]
proposed the concept of fatigue fracture entropy (FFE), and then Amiri [34], Naderi [35],
and Liakat [36,37] confirmed that FFE is a material constant at low- and high-cycle fatigue
that is independent of factors such as loading type, specimen geometry, frequency, and
stress concentration. Compared with the empirical curve-fitting models, entropy-based
models are more fundamental from the physical perspective of energy dissipation and hold
promise to unveil underlying damage evolution and accumulation.

Recently, an entropy-based model was successfully adopted for complex conditions
such as multiaxial loading [38], thermal loading [39] and wear [40]. However, considering
the significance of the constitutive equation for accurately predicting the deformation
behavior of nickel-based superalloys applied in a turbine engine, we believe that research
on the entropy-based model requires it be combined with a suitable constitutive theory.
There are few studies in the existing literature indicating that entropy-based models have
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been investigated for nickel-based superalloys. Therefore, the present work makes the
first attempt to propose an entropy-based assessment within the framework of cyclic vis-
coplasticity and introduce the influence of loading ratio for GH4169 superalloys at elevated
temperature (650 ◦C). A MATLAB program was coded to perform cyclic viscoplasticity
analysis and entropy generation calculation in the chosen material system for establishing
the framework of entropy-based life assessment. Then, a series of experimental data was
utilized to investigate cumulative entropy generation and determine the fatigue fracture
entropy (FFE) for GH4169. Finally, a novel thermodynamic entropy-based life predic-
tion model is proposed considering the influence of load ratio, and the accuracy of this
model was validated by comparing it with the verified classical life prediction models and
experimental data.

2. Theory and Formulation
2.1. The Viscoplastic Constitutive Model

The unified viscoplastic constitutive model developed by Chaboche [6] was adopted
to represent uniaxial cyclic behavior in this paper. Based on the small-strain hypothesis, the
total strain rate

.
εt can be additively divided into an elastic part

.
εe and an inelastic part

.
εin:

.
εt =

.
εe +

.
εin (1)

The elastic strain and total stress are subjected to Hooke’s law:

.
σ= E

.
εe = E

( .
εt −

.
εin
)

(2)

where E is Young’s modulus and σ is the stress. A viscoplastic potential (Ω) is defined as:

Ω =
Z

n′+1

〈
f
Z

〉n′+1
(3)

where the symbol ⟨ ⟩ is Heaviside function, defined as ⟨x⟩= x if x > 0 and ⟨x⟩= 0 if x ≤ 0.
Z and n′ stand for viscous parameters. The yield function f is defined as:

f = J(σ − x)− R − k0 (4)

where R, X, and k0 are the drag stress, the back stress and the initial yield stress, respectively.
J denotes the scalar equivalent of deviatoric stress state:

J(σ − X) =|σ − X| (5)

Plastic flow occurs when f = 0 or ∂ f
∂σ :

.
σ > 0. For the viscoplastic constitutive model,

the stress in excess of the yield surface is acceptable and often termed “overstress”. The
inelastic strain rate

.
εin can be determined from the flow rule as:

.
εin =

∂Ω
∂σ

=
.
p

∂ f
∂σ

=

〈
f
Z

〉n′

sgn(σ − X) (6)

and:

sgn(x) =


1, x > 0
0, x = 0
−1, x < 0

(7)

where
.
p is the accumulated inelastic strain rate, given by:

.
p =

〈
f
Z

〉n′

=
∣∣ .
εin
∣∣ (8)
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Non-linear kinematic hardening is related to back stress, which can be obtained by
accumulating each component (X = ∑m

i Xi) with the same evolution law. To describe the
cyclic stress–strain hysteresis, two components are sufficient, and the back stress can be
expressed as:

X = X1 + X2 (9)

and the evolution of each component can be expressed as:{ .
X1 = C1a1

.
εin − C1X1

.
p

.
X2 = C2a2

.
εin − C2X2

.
p

(10)

where the asymptotic value of each component is given by a1 and a2. C1 and C2 indicate
the speed to reach a1 and a2, respectively. The unified equation in Equation (10) can be
expressed as

.
Xm = Cmam

.
εin − CmXm

.
p with a linear kinematic hardening term (Cmam

.
εin)

and a dynamic recovery term (CmXm
.
p), respectively. Generally, X1 can be used to determine

the initial growth stage of stress after reaching the initial yield stress k0, and X2 is used to
find the asymptotic of the cyclic stress–strain hysteresis. Then, the isotropic hardening rule
controls the evolution of drag stress R as:

.
R = b(Q − R)

.
p (11)

where b is the speed towards the saturation and Q is the asymptotic value of R.
The rate dependency of the stress is described by Norton’s creep law [41,42] as:

σv = Z
.
p1/n′

(12)

where σv is the viscous overstress, and the applied stress σ can be decomposed as:

σ = X + (R + k0 + σv) sgn(σ − X) (13)

The model in the present work contains 10 material parameters, namely, E, k0, b, Q, C1,
a1, C2, a2, Z and n′. Subsequently, a brief description of how to obtain these parameters is
given below. Young’s modulus E is the slope the of the initial linear region in the first cyclic
curve, and k0 stands for the stress value that firstly deviates from the initial linear region
and is approximately equal to the stress that causes 0.01% inelastic strain. Figure 1 presents
the identification of parameters E and k0. Then, the parameters b and Q can be determined
by integration of Equation (11) as:

R = Q(1 − e−bp
)

(14)

where the value of b is the gradient in the fit curve of ln(1 − R/Q) vs. p (≈2N∆εin) and Q is
the difference in stresses between the first cycle and the saturation.
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The estimation of parameters C1, a1, C2 and a2 can be obtained from the tensile part of
the first cyclic curve. Equation (10) can be integrated to give the following expressions:

Xm = am

(
1 − e−Cmεin

)
, m = 1, 2 (15)

Substituting Equation (15) into Equation (13) and differentiating Equation (13) with respect
to

.
εin, the logarithm form follows:

ln(
∂σ

∂εin
− ∂R

∂εin
) = ln(a2C2)− C2εin (16)

where the effects of X1 with a1 and C1 are neglected in the larger inelastic strain region. The
fitting line of ln(∂σ/∂εin − ∂R/∂εin) vs. εin is utilized to identify a2 from the y-axis intercept
and C2 from the slope of the line. Similarly, parameters a1 and C1 can be determined by the
intercept and the slope from data in the ln(∂σ/∂εin − ∂R/∂εin − ∂X2/∂εin) vs. εin plot:

ln
(

∂σ

∂εin
− ∂R

∂εin
− ∂X2

∂εin

)
= ln(a1C1)− C1εin (17)

Finally, the parameters Z and n′ can be determined from the data of multiple hardening,
relaxation tests, and creep tests. The overstress can be expressed as ln(σv) = ln(

.
εin
)
/n′ + ln Z,

and the value of Z and n′ can be obtained from the intercept and slope in the fitted line
of ln(σv) vs. ln(

.
εin
)
. More detailed descriptions can be found in Tong’s representative

work [42]. The constitutive parameters of GH4169 at 650 ◦C adopted in this paper are col-
lected from Nanjing University of Aeronautics and Astronautics’ constitutive experiments,
as shown in Table 1.

Table 1. Viscoplastic constitutive model parameters of GH4169 at 650 ◦C [43].

Viscoplastic Z = 893 MPa·s1/n′ n′ = 3.9 k0 = 678 MPa

Elastic E = 171.6 GPa

Isotropic hardening Q = −380 MPa b = 13.2

Kinematic hardening C1 = 495 a1 = 179 MPa
C2 = 350 a2 = 187 MPa

2.2. Thermodynamic Analysis of Fatigue

The irreversible process of the thermodynamic system (control volume) in fatigue
failures, including irreversible inelastic strain accumulation, dislocation movement, crack
initiation and propagation, etc., is shown in Figure 2. These irreversible phenomena
increase the disorder of the system, which is inevitably accompanied by energy dissipation
and entropy generation accumulation. To demonstrate the relationship between entropy
and disorder, Boltzmann [44] first used statistical mechanics to give a precise meaning to
the disorder and established a connection between the disorder and entropy as:

S = klnW (18)

where k is the Boltzmann constant in J/K and W is the dimensionless disorder parameter.
Then, the disorder parameter with entropy per unit mass sm (J/kg·K) can be expressed as:

W = e(ms/Nak)sm (19)

k =
Rg

Na
(20)

where ms, Na and Rg are the molar mass of the current material (kg/mol), Avogadro’s
number (mol−1), and the gas constant (J/mol·K), respectively. According to Basaran’s
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work [32], the increase in disorder can be defined as an increasing damage parameter ϕ,
expressed as:

ϕ = ϕcr
W − W0

W0
= ϕcr

(
1 − e−(ms/Rg)(sm−s0

m)
)

(21)

where W0 is the disorder corresponding to the initial state with initial entropy s0
m(

∼= 0) and
ϕcr is a proportional critical disorder coefficient that can be determined from experiments.
Equation (21) can be a basic equation to model fatigue, tensile, and even creep failure [32,33],
and the core in Equation (21) is the value of sm − s0

m during the failure process as:

sm − s0
m =

∫ t

t0

dδ

ρdt
dt (22)

where ρ is the density in kg/m3. Density can be used to calculate sm from the entropy
generation in unit volume (J/m3·K). It can be seen that the entropy in statistical physics and
in the thermodynamic sense are equivalent, and the key is to calculate the cumulative en-
tropy generation. Thus, this paper directly uses increasing entropy generation to represent
increasing damage in the fatigue failure process, as suggested by Khonsari et al. [29,34–37].
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Combining with classical thermodynamics, the first and second laws of thermody-
namics were formulated to describe irreversible processes and then applied to the control
volume system in specimens. According to the first law of thermodynamics, the total
energy change ∆U within an arbitrary control volume can change only if energy flows into
(or out of) the control volume through its boundary, and is expressed as:

∆U = δQ + δW (23)

where δQ and ∆W are the change in supplied heat and the mechanical work done on the
control volume, respectively. The unit in Equation (23) is J and the specific quantity (per
volume) of Equation (23) is as follows:

ρ
du
dt

=
( .
q−divJq

)
+σ :

.
εt (24)

where u (J/m3) is the internal energy per unit volume,
.
q (J/m3·s) is the rate of heat genera-

tion by a heat source, Jq (J/m2·s) is the rate of heat flux across the boundary, Jq = −λgradT,
and λ is the heat conduction coefficient in W/m·K. The second term on the right-hand
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side (RHS) of Equation (24) is the rate of mechanical work per unit volume. According to
Clasius-Duhem inequality, the change of entropy is:

ds =
δQirr

T
+ dδ (25)

where δQirr is the change in irreversible heat dissipation per volume (J/m3) and δ denotes
the entropy generation per volume in J/m3·K. According to Clausius–Duhem inequality,
Equation (25) can be written as:

dδ

dt
=

ds
dt

−
[ .

q
T

− div(
Jq

T
)

]
≥ 0 (26)

where:

div(
Jq

T
) =

divJq

T
−

Jq·gradT
T2 (27)

Then, Helmholtz free energy Ψ is defined as Ψ = u − Ts and then rewritten by taking
the time derivative of both sides:

du
dt

=
∂Ψ
∂t

+ s
dT
dt

+ T
ds
dt

(28)

Ψ is also the state function dependent on the elastic strain εe, temperature T and
internal material variables Vk:

Ψ = Ψ(εe, T, Vk) (29)

Using the chain rule, the rate of Helmholtz free energy is obtained:

dΨ
dt

=
∂Ψ
∂εe

:
.
εe +

∂Ψ
∂T

.
T +

∂Ψ
∂Vk

.
Vk (30)

where ∂Ψ
∂Vk

is the force of internal variables. Substituting Equation (30) into Equation (28)
yields:

du
dt

=

[
∂Ψ
∂εe

:
.
εe +

∂Ψ
∂T

.
T +

∂Ψ
∂Vk

.
Vk

]
+ s

dT
dt

+ T
ds
dt

(31)

In the framework of small strains, we have σ =ρ ∂Ψ
∂εe

, s = − ∂Ψ
∂T , and Ak = ρ ∂Ψ

∂Vk

.
Vk. Thus,

Equation (31) can be expressed as:

du
dt

= σ :
.
εe + Ak

.
Vk + T

ds
dt

(32)

Thus, by substituting Equation (24) into Equation (32) as:

( .
q−divJq

)
+σ :

.
εt= σ :

.
εe + Ak

.
Vk + T

ds
dt

(33)

Substituting Equations (33) and (27) into Equation (33), the entropy generation can be
expressed as:

dδ

dt
=

ds
dt

− [

.
q
t
− div(

Jq

T
)] =

ds
dt

− [

.
q
T
−

divJq

T
+

JqgradT
T2 ] (34)

Substituting Equation (34) into Equation (33), we can arrive at:

dδ

dt
=

σ :
.
εin

T
− Ak

.
Vk

T
−

JqgradT
T2 (35)

This is the general expression of the entropy generation rate in the control volume of
the specimen. On the RHS of Equation (35), the first term is entropy generation due to
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irreversible inelastic deformation, the second term stands for entropy generation related to
internal variables, and the third term represents entropy generation due to heat conduction.
In this paper, a specimen’s temperature is considered equal in isothermal LCF tests, and
the axial temperature gradient (along the Z-direction of the specimen, as shown in Figure 2)
∆T
∆Z is the main temperature gradient direction for heat conduction, which can be assumed
to be 0 (∆T = 0). Thus, the third term on the RHS of Equation (35) can be neglected and is
approximately equal to 0. The proof of this phenomenon in isothermal tests also can be
found in [45,46]. Thus, for isothermal tests, irreversible entropy generation for specimens
under an external applied load is assumed to be mainly dependent on the dissipation
caused by irreversible inelastic deformation (σ :

.
εin) and internal variables (Ak

.
Vk). Thus,

the composition of irreversible inelastic deformation and the specific form of the internal
variables is discussed in the following content.

3. Entropy Generation Modeling in Viscoplastic Framework
3.1. Entropy Generation Rate Model

Based on the above thermodynamic analysis, a unified viscoplastic constitutive model
is introduced to specify Equation (35) considering irreversible deformation mechanisms
for an extension of the theory. Theoretically, the inelastic strain rate in the framework of
viscoplasticity can be separated as plastic part

.
εp and viscous (creep) part

.
εv. Therefore, the

inelastic strain rate
.
εin can be rewritten as:

.
εin =

.
εt −

.
εe =

.
εp +

.
εv (36)

It should be noted that the proportion of viscous (creep) part is small under the loading
conditions in this study. A viscous (creep) effect may become significant when the loading
cycle has a longer cycle time or dwell time, and the damage failure mechanism changes
from a cycle-dependent fatigue damage mechanism to a time-dependent creep damage
mechanism, as proved in [47].

Subsequently, internal variables require specific definitions to characterize the irre-
versible deformation mechanisms related to cyclic hardening/softening or microstructural
variation. According to Haghshenas’s description [48], hardening/softening can character-
ize the energy stored in a material due to dislocation. In the first few cycles, dislocations
multiply and pile up to overcome barriers, causing inelastic deformation with isotropic
hardening. Then, dislocation multiplication and annihilation reach equilibrium when the
hardening term is mainly dominated by kinematic hardening. Therefore, Equation (29) can
be modified by decoupling elastic behavior and hardening as follows:

Ψ = Ψ(εe, T) + Ψ(r, α,mk, T) (37)

where r, α and mk represent the isotropic hardening variable (V1), kinematic hardening
variable (V2), and other internal variables (Vm). Their conjugates’ thermodynamic forces
are A1 = R = ρ(∂Ψ/∂r), A2 = X = ρ(∂Ψ/∂α) and Ak = Mk = ρ(∂Ψ/∂mk), respectively. R, X and
Mk are the drag stress, the back stress, and other corresponding thermodynamic forces,
respectively. The other thermodynamic forces can be internal friction, dislocation motions,
phase transformation, etc., and are mainly adapted to the life assessment for specimens
loaded under yield stress, which can cause high-cycle fatigue (HCF). In the LCF regime, R
and X can be the main thermodynamic forces as A1 and A2. Then, according to the evolution
functions in Equations (10) and (11), εin and p are the corresponding strain parameters for
defining thermodynamic flows (r and α). Therefore, the specific forms of r and α related to
εin and p can be expressed as [8]:

.
V1 =

.
r =

.
p =

∣∣ .
εin
∣∣ (38)

.
V2 =

.
αm =

.
εin − (

Xm

am
)

.
p, m = 2 (39)
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the corresponding entropy generation rate for isotropic hardening can be written in the
following forms:

A1
.

V1

T
=

R
.
r

T
(40)

and the entropy generation rate for kinematic hardening, expressed as:

A2
.

V2

T
=

X
.
α

T
=

X1
.
α1

T
+

X2
.
α2

T
(41)

Meanwhile, the entropy generation due to heat conduction is assumed to be neglected
in this paper, as discussed in Section 2.2. The entropy generation rate in Equation (33) can
be rewritten as:

.
δg =

σ :
.
εin

T
− R

.
r

T
− X

.
α

T
=

(|σ − X|−R − k0)
∣∣ .
εin
∣∣

T
+

k0
∣∣ .
εin
∣∣

T
+

X2
∣∣ .
εin
∣∣/α

T
(42)

This is the entropy generation rate model in the viscoplastic framework.
In addition, parts in Equation (42) can be clarified from the perspective of energy

dissipation. The numerators in the far RHS of Equation (42) are the intrinsic dissipations,
each component of which is shown in the stress-inelastic curve in Figure 3a. In addition,
the intrinsic dissipations (red area) can also be calculated in the hysteresis loop, as shown
in Figure 3b. Therefore, the method for calculating entropy generation can be based on
stress–strain responses and hardening variables.
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3.2. Entropy Generation Accumulation

The concept of energy dissipation makes the entropy-based model similar to strain
energy models. However, most of the strain energy models are essentially empirical due to
their fitting relationship between experiment lives and strain energy density at the half-life.
The entropy-based models focus on the accumulative process, and entropy generation is
the only indicator in the thermodynamic framework to relate the irreversibility of fatigue
damage evolution [49]. Naturally, the change in entropy generation during the fatigue
process is a monotonic accumulation process, and the hypothesis of fatigue failure life
being related to the entropy generation limit is utilized in this paper [33]. Therefore, the
calculation of entropy generation accumulation in fatigue is important. To reflect the cycle
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characteristic of the fatigue process, a cyclic entropy generation rate (entropy generation
accumulation per cycle) is defined as:

.
S

N
g =

∫ tN

0

.
δgdt (43)

where tN is the cycle time. Then, the integral of Equation (43) with respect to cycles provides
the accumulation of entropy generation, expressed as:

s N
g =

∫ Ntot

0

.
S

N
g dN (44)

where Ntot is the total number of cycles. When Ntot reaches fatigue failure life Nf, entropy

generation accumulation can be defined as a parameter call—FFE
(

S
N f
g

)
.

Researchers [26,27] have suggested that S
N f
g is a material constant that can provide

a threshold to monitor fatigue damage of material. However, the influence of load ratio
(Rload) on entropy generation under cyclic loading was neglected in these previous works.
Extensive literature has demonstrated that the load ratio can significantly affect the fatigue
failure life of nickel-based superalloys at elevated temperatures [50–52]. This present work
found that the load ratio can also affect the value of entropy generation before reaching a
stable state. Under the same applied load, the initial damage becomes more severe as the
load ratio increases. This paper believed that entropy generation accumulation is available
to simultaneously evaluate the fatigue failure life and introduced the influence of load ratio.
Therefore, the framework of an entropy-based life assessment and the influence of load
ratio are discussed in the following two sections.

4. Proposed Thermodynamic Entropy-Based Life Assessment Framework
4.1. Cyclic Viscoplasticity Numerical Algorithm

The primary concern in this work is how to accurately obtain the cyclic stress–strain
response. Generally, the specimen for simulations can be simplified as a single cubic element
subjected to a near-uniform macroscopic stress–strain state. For simplicity, MATLAB
language was chosen for this work to write an explicit incremental algorithm for simulating
the specimen under uniaxial cyclic loading. This method eliminates the process of modeling
and secondary development and improves the computational efficiency compared to
simulation with commercial finite element software (Abaqus, Ansys, etc.). For instance,
a calculation of 1000 cycles took only about 5 s with appropriate step-increment settings
without the process of modeling and secondary development. The flowchart of this
MATLAB program with version of 2020b is shown in Figure 4.

With constant strain rate
.
ε

t and given time increment ∆ti = ti+1− ti, the strain incre-
ment is ∆εt

i = ∆ti
.
ε

t
i . The inelastic strain increment is calculated as the following:

∆εin
i =

.
ε

in
i ∆ti (45)

where
.
ε

in
i is the inelastic strain rate at ti and

.
ε

in
i can be expressed as:

.
ε

in
i =

〈
fi+1

K

〉n
sgn(σi − Xi) (46)

where fi+1, σi, Xi and Ri are the yield function, stress, back stress and drag stress at ti,
respectively. To obtain stable calculation results, the value of ∆ti was set to 0.05, which
means a step increment of total strain ∆εt

i in the order of 10−4. Then, a return mapping
method was implemented in this algorithm that included elastic prediction and inelastic
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correction. Firstly, if strain increment during ∆ti will not form a new inelastic increment
(∆εin

i = 0), trial stress σtrial
i+1 was proposed for the elastic prediction as:

σ trial
i+1 = E(εt

i+1 − εin
t ) = σi +E∆εt

i (47)

A trial yield criterion for the step [ti, ti+1] can be written as:

f trial
i+1 =

∣∣∣σtrial
i+1 − Xi

∣∣∣− Ri − k0 (48)

According to Equation (48), if f trial
i+1 < 0, the stress can be updated as:

σi+1 = σtrial
i+1 (49)

Also, if f trial
i+1 ≥ 0, the trial stress requires an inelastic correction to update stress to consider

increased inelastic strain through:

σi+1 = σtrial
i+1 − E∆εin

i (50)

The value of fi+1 in Equation (48) is approximately equal to f trial
i+1 in uniaxial form, and then

the variables for isotropic and kinematic hardening can be updated by:

Ri+1 = Ri + ∆Ri (51)

Xi+1 = Xi +
2

∑
m=1

∆Xm
i (52)

Increments of drag stress ∆Ri and back stress ∆Xm
i are given through:

∆Ri= b(Q − Ri)|∆εin
i | (53)

∆X m
i = Cmam∆εin

i − CmX m
i |∆εin

i | (54)
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To validate the reliability of this program, the test data of GH4169 at 650 ◦C [43]
were utilized for comparison with the simulation results. All the test data were collected
from strain-controlled uniaxial tests with a specific strain rate (dε/dt =0.0001 s−1) and
load ratio (Rload = −1), and the comparisons are shown in Figure 5. The figures show the
initial (Figure 5a) and half-life cycles (Figure 5b) with a strain range of ±0.60%, ±0.80%
and ±1.00%, respectively. Obviously, there is a small discrepancy between simulated and
experimental loops. Therefore, it can be proved that this program can provide a reliable
prediction of the cyclic stress–strain response.
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4.2. Entropy Generation Calculation and Life Assessment Method

After calculating the cyclic stress–strain response, entropy generation accumulation is
investigated in this section. According to the entropy generation rate model in Section 3.1,
the entropy generation accumulation within ∆ti can be calculated utilizing the variables
stored for each step in the MATLAB program, which follows:

∆δ
g
i =

[(∣∣∣∣∣σi+1 −
2

∑
m=1

Xm
i+1

∣∣∣∣∣− Ri+1 +
2

∑
m=1

Xm
i+1

am

)∣∣∣∆εin
i

∣∣∣]/T (55)

In each cycle, the cyclic entropy generation rate (the accumulation of entropy genera-
tion within a cycle) can be calculated by:

sNi
g =

NiTN /∆t

∑
i=Ni−1TN /∆t

∆δ
g
i (56)

where i is the index for the number of cycle N starts from N0 (N0 = 0). The entropy
generation accumulation s Ntot

g from N0 until a specific total cycle Ntot can be calculated by:

sNtot
g =

Ntot

∑
i=N0

sNi
g (57)

where Ntot = Nf. Equation (57) represents the FFE s
N f

g . The procedure for this calculation
method of entropy generation accumulation in MATLAB is illustrated in Figure 6. The

ideal relationship of normalized entropy generation (s Ni
g /s

N f
g ) versus life consumption to

failure (Ni/N f ) from simulations is shown in Figure 7. In real LCF tests, the saturated stage
occupied most of the fatigue process (85–90%). However, the states of stress and strain
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may show obvious variations at the final stage, i.e., in the last 5–10% of the total life, and
the strain energy density relating to the energy dissipation will gradually decrease in the
final stage [53]. Despite there being a non-linear relationship at the beginning and the final
stages, it can be assumed that the ideal linear relationship (orange dashed line in Figure 7)

can approximately represent the whole fatigue process. Consequently, (s Ni
g /s

N f
g ) versus

(Ni/N f ) in the whole fatigue process can be expressed as:

SNi
g

S
N f
g

=
Ni
N f

(58)Entropy 2024, 26, x FOR PEER REVIEW 14 of 23 
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Then, three groups of isothermal fatigue test data were used with investigations of
entropy generation to verify the linear relationship. The test data were from 1018 carbon
steel under uniaxial tension-compression fatigue tests [54], Al7075-T651 under bending
fatigue tests [55], and SS304 under torsion tests [30]. It can be seen that all the scatter
points for the test data fall into ±20% error band, and the results representing this linear
relationship are independent of material and loading mode. Thus, Equation (58) can
represent the relationship between entropy generation and number of cycles in the entire
fatigue test process. Thus, the fatigue failure life Nf can be estimated as:

N f =

[
Ni

S Ni
g

]
S

N f
g (59)

This is the linear thermodynamic relationship for the further establishment of a life

prediction model, and the two key issues are the values of FFE (S
N f

g ) and (Ni/S Ni
g ).

5. Results and Discussion

This section is organized into three main subsections. The first describes the deter-
mination of FFE for GH4169 at 650 ◦C. Then, the effect of loading ratio Rload on entropy
generation accumulation is investigated. Finally, a thermodynamic entropy-based life
prediction model is proposed to estimate fatigue life, and its performance is compared to
both experimental fatigue life and other classical life models.

5.1. Entropy Generation Accumulation Analysis in Fatigue Process

This section first presents the entropy generation accumulation per cycle (cyclic en-
tropy generation rate) in the LCF process for GH4169 at 650 ◦C in strain-controlled mode
with load ratio Rload = −1. Figure 8a presents the overall trend in cyclic entropy generation
rate performed with different strain amplitudes (∆εa = ∆εt/2). The trend indicates a
gradual increase and eventually reaches a saturated state. The value for this saturated
state can be defined as the stable cyclic entropy generation rate

.
s N

g_stable, which is related

to (Ni/S Ni
g ). Therefore, the entropy generation accumulation in the LCF process can be

estimated by:

SNi
g =

∫ Ni

0

.
sN

g dN ≈Ni
.
sN

g_stable (60)

where Ni is the number of cycles and SNi
g is the FFE when Ni = N f .
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The experiment fatigue lives of GH4169 for modeling FFE (S
N f
g ) are listed in Table 2.

These experimental fatigue lives were collected from a series of uniaxial strain-controlled
fatigue tests at 650 ◦C with given loading ratio Rload = −1 and frequency (1 Hz). Entropy
generation accumulation versus different applied strain amplitudes is plotted in Figure 8a.
It can be observed that there is a linear growth zone at low applied strain, and then the
values of FFE floating within a ±20% band in a stable zone at a higher applied strain level.

Table 2. Fatigue lives collected from GH4169 isothermal fatigue tests at 650 ◦C to determine FFE

(S
N f
g ) [56].

Strain Amplitude ∆εa(%) Fatigue Failure Life Nf (Cycles)

1.50% 104

1.20% 213

1.00%

295
279
231
354

0.85%
395
378

0.80%
541
471
426

0.75% 589

0.70% 592

0.65%
837
934

0.60%
1036
1194

0.575% 2027

0.50% 3976

0.45% 15,497

0.40% 130,585

It can be noted that FFE can only be treated as a material constant in the range of
the stable zone. Thus, the opinion of Khonsari’s work for treating FFE as a material
constant may not be appropriate for a wide range of applied load (stress or strain). The
boundary between these two zones can be determined by the proportion of inelastic strain
amplitude in stable stress–strain hysteresis loops, defined as β (=∆εin/∆εa). According to
the simulation results, the condition of the stable zone is satisfied when β ≥ 0.25. Also, the
FFE for applied strain near the elastic limit is close to 0, which is too small compared to the
FFE value of stable zone. When the strain is applied in elastic-dominant area, fatigue life
increases and enters the high-cycle fatigue (HCF) category. In this category, the principal
factors changed are internal friction, damping, or phase lag, as described in [36]. However,
this area has not been investigated in this paper. Therefore, this paper proposes a piecewise
model for FFE mainly aimed at LCF:

S
N f
g =

{
A(∆ εa − [∆εa]

k0) 0< β ≤ 0.25
6.641 β >0.25

(61)

where A is a material parameters and its value is equal to 3338 for GH4169 at 650 ◦C.
[∆εa]

k0 is the strain amplitude corresponding to initial yield stress (elastic limit) k0 and
its value for GH4169 at 650 ◦C is about 0.003811. The average value of FFE in the stable
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zone is 6.641 MJm−3K−1. This method has the limitation that it is not applicable for HCF
related to the elastic-dominant area, since the FFE for HCF is too small to be incorporated
into the FFE model of LCF. Therefore, the FFE model for HCF requires further systematic
thermodynamic research.

5.2. Influence of Load Ratio on Entropy Generation

The influence of the load ratio Rload is investigated in this section. The evolution of the
cyclic entropy generation rate for the fatigue process performed with different Rload values
is first illustrated in Figure 8a. All the cyclic entropy generation rates eventually approach a
constant state and the stable cyclic entropy generation rate

.
sN

g_stable performed with different
load ratios can be assumed to be equal. However, the blue circle marked in Figure 9a
indicates that the entropy generation accumulation in the initial cycle shows significant
differences. Obviously, as the load ratio increases, the entropy generation accumulation in
the initial cycle increases.
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Figure 9. Entropy generation analysis considering different load ratios. (a) Evolution of cyclic entropy
generation rate with various strain amplitudes. (b) Schematic diagram of the size evolution of the
hysteresis loops from initiation to stabilization.

This phenomenon can be related to the intrinsic dissipation (Equation (42)) of the first
cycle, and the degree of intrinsic dissipation is proportional to the size of the hysteresis
loops, as shown in Figure 9b. It is observed that a larger area of the first hysteresis loops
is associated with the increase in Rload, causing larger macroscopic irreversible inelastic
deformation and microscopic dislocation pileup with multiplication (mainly manifested
as hardening/softening). Therefore, as the load ratio increases, the entropy generation
accumulation in the first cycle increases, reflecting more severe irreversible damage.

Therefore, the variation in load ratio significantly affects the entropy generation
accumulation in the first cycle, which defines a variable called initial damage entropy
generation

.
sN

g_initial. This work utilizes the value of
.
sN

g_initial to characterize the initial fatigue
damage for the further establishment of the life prediction model. Therefore, a novel
damage parameter based on entropy generation called DR can be defined as:

DR =

.
sN

g_stable
.
sN

g_inital

(62)
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and the relationship between DR and the load ratio Rload is clearly illustrated in Figure 10.
According to the fitting line (y = x), Equation (62) can be estimated as:

DR =

.
sN

g_stable
.
sN

g_inital

∼= 1 − Rload (63)

This is the expression considering the influence of the load ratio, and the role of this
parameter is investigated in the next section.
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5.3. Proposed Life Model Based on Thermodynamic Entropy Generation

As mentioned in Section 5.1, the fatigue failure life Nf: can be estimated by the linear

function expressed by Equation (59). The stable cyclic entropy generation rate
.
sN

g_stable was
introduced into this function, as follows:

N f =

(
N

S Ni
g

)
S

N f
g ∼=

 1
.
sN

g_stable

S
N f

g (64)

The value of FFE S
N f

g can be estimated using Equation (61). Subsequently, con-
sidering the initial damage parameter (DR) based on entropy generation proposed in
Section 5.2, a thermodynamic entropy-based model considering the influence of the load
ratio is proposed:

N f =

 1
.
sN

g_stable

S
N f

g

(
DR
2

)
(65)

It can be noted that when Rload = −1, Equation (63) can convert to Equation (64).
In order to validate Equation (65) with the influence of strain ratio, the predicted

lives estimated by the proposed model were compared with the results from experiments
performed with different asymmetric fatigue loading conditions (Rload = 0 and 0.1), as
shown in Figure 11. It was observed that all the predicted lives estimated by Equation (61)
fell within the error band of 2 when the influence of the loading ratio was considered.
Moreover, the proposed model improved the prediction accuracy by approximately 50%
compared to Equation (64) without considering the loading ratio. Therefore, the proposed
thermodynamic entropy-based model can better reflect the influence of loading ratio.
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Finally, a series of fatigue lives are presented from LCF experiments as well as those
predicted by employing the proposed entropy-based model and other classical life predic-
tion models, such as the Manson–Coffin model, Ostergren energy model, Walker strain
model, and SWT model. To demonstrate the contrast, all the parameters for these models
were fitted from the same group of experimental fatigue lives listed in Table 2, as shown in
Section 5.1. All the forms and parameters of these models are listed in Table 3. Obviously,
the thermodynamic entropy-based model is the most convenient as it depends only on the
single parameter A.

Table 3. Fatigue life prediction models for GH4169 alloy at 650 ◦C.

Life Prediction Models Parameters Fitting from Test Data in Table 2

Manson–Coffin model ε′f c σ′
f b

∆εt
2 = ε′f

(
2N f

)c
+

σ′
f

E

(
2N f

)b 0.5771 −0.727 1423 −0.079

Ostergren energy model M C

(σmax∆εin)N f
M= C 0.538 170.65

Walker strain model m u v

σmax
E

(
∆εt

σmax/E

)m
= u

(
N f

)−v
0.8020 0.0477 0.2130

SWT model ε′f c σ′
f b

σmax∆εt
2 = σ′

f ε′f

(
2N f

)b+c
+

(
σ′

f

)2

E

(
2N f

)2b 0.5771 −0.727 1423 −0.079

Thermodynamic entropy-based model A

N f =

(
1

.
sN

g_stable

)
S

N f
g

(
1−Rload

2

)
S

N f
g =

{
A(∆ εa − [∆εa]

k0 ) 0< β ≤ 0.25
6.641 β >0.25

3338

Subsequently, groups of experimental fatigue life tested with different loading ratios
(Rload = −1, 0 and 0.1) were utilized to validate the accuracy of life prediction. Figure 12a–f
graphically presents the comparison between the experimental results and the predicted
life obtained by applying different life models. Therein, Figure 12a,c,e are the ∆εa − N
curves and Figure 12b,d,f are the predicted life versus experimental life with scatter bands.
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Also, a common index R2 was introduced to clearly quantify the accuracy of different life
models, which can be expressed as:

R2 = 1 −
M

∑
i=1

(
yri − ypi

)2/
M

∑
i=1

(yri − ym)
2 (66)

where ypi and yri are the predicted and actual values, respectively, ym is the average of yri,
and M represents the number of the fatigue lives. The R2 values corresponding to each life
model are given in the legends of ∆εa−N curves for different loading ratios. As illustrated
in Figure 12a,b, the proposed thermodynamic entropy-based model and other classical
life prediction models can provide relatively close accuracy when Rload = −1. Almost all
the predicted lives can fall within the scatter band with a factor of 2 compared to the
experimental results, and all the R2 values for each life model are within 0.9–0.96. However,
for other classical life models, the fatigue lives are overestimated under asymmetric loading
conditions (Rload = 0 and 0.1), as shown in Figure 12c–f. Obviously, only the entropy-based
model has the maximum value of R2, and the deviations in its life predictions can all fall
into the scatter band with a factor of 2. Thus, the proposed entropy-based model can
provide the best prediction of lives compared to the other life models. Therefore, it can
be concluded that entropy generation combined with the unified viscoplastic constitutive
model can provide an effective way to evaluate fatigue life.
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6. Conclusions

The LCF fatigue life for GH4169 at 650 ◦C can be estimated based on entropy gen-
eration combined with the Chaboche unified viscoplastic constitutive theory. A damage
parameter DR was proposed based on initial cyclic entropy generation

.
sN

g_inital to represent
initial fatigue damage. Based on this parameter, the influence of load ratio was intro-
duced to establish a novel entropy-based life prediction model. The conclusions drawn are
as follows.

(1) The cyclic entropy generation rate is approximately a constant value when the cyclic
stress–strain response is stable. The entropy generation accumulation during fatigue

life, called fatigue fracture entropy FFE (S
N f

g ), can be calculated with the stable cyclic
entropy generation rate and estimated by a piecewise FFE model related to the applied
strain in the LCF category.

(2) Entropy generation under different loading ratios was investigated, and the initial

cyclic entropy generation rate
.
sN

g_inital is the main difference. A damage parameter DR

based on
.
sN

g_inital was defined to represent this difference and introduce the effect of
load ratio in LCF.

(3) A thermodynamic entropy-based model with the damage parameter DR was proposed
to estimate fatigue life. The predicted results from the proposed model show good
concordance with the experimental results. Compared with the classical models,
such as Manson–Coffin, Ostergren, Walker strain, and SWT, the results indicated
that the proposed model can provide better prediction accuracy with higher R2 and
smaller dispersion.
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