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Abstract: Long-range interactions are relevant for a large variety of quantum systems in quantum
optics and condensed matter physics. In particular, the control of quantum–optical platforms promises
to gain deep insights into quantum-critical properties induced by the long-range nature of interactions.
From a theoretical perspective, long-range interactions are notoriously complicated to treat. Here,
we give an overview of recent advancements to investigate quantum magnets with long-range
interactions focusing on two techniques based on Monte Carlo integration. First, the method of
perturbative continuous unitary transformations where classical Monte Carlo integration is applied
within the embedding scheme of white graphs. This linked-cluster expansion allows extracting high-
order series expansions of energies and observables in the thermodynamic limit. Second, stochastic
series expansion quantum Monte Carlo integration enables calculations on large finite systems. Finite-
size scaling can then be used to determine the physical properties of the infinite system. In recent
years, both techniques have been applied successfully to one- and two-dimensional quantum magnets
involving long-range Ising, XY, and Heisenberg interactions on various bipartite and non-bipartite
lattices. Here, we summarise the obtained quantum-critical properties including critical exponents
for all these systems in a coherent way. Further, we review how long-range interactions are used to
study quantum phase transitions above the upper critical dimension and the scaling techniques to
extract these quantum critical properties from the numerical calculations.

Keywords: quantum spin systems; long-range interactions; Ising interactions; XY interactions;
Heisenberg interactions; Monte Carlo; series expansion; perturbative continuous unitary transformation;
stochastic series expansion; quantum phase transitions; critical exponents; quantum simulation

1. Introduction

Since the advent of the theoretical description of classical and quantum phase tran-
sitions (QPTs), long-range interactions between degrees of freedom challenged the es-
tablished concepts and propelled the development of new ideas in the field [1–5]. It is
remarkable that, only a few years after the introduction of the renormalisation group (RG)
theory by K.G. Wilson in 1971 as a tool to study phase transitions and as an explanation
for universality classes [6–11], it was used to investigate ordering phase transitions with
long-range interactions. These studies found that the criticality depends on the decay
strength of the interaction [1–3]. It then took two decades to develop numerical Monte
Carlo (MC) tools capable of simulating basic magnetic long-range models with thermal
phase transitions following the behaviour predicted by the RG theory [12,13]. The results of
these simulations sparked a renewed interest in finite-size scaling above the upper critical
dimension [12,14–19] since “hyperscaling is violated” [13] for long-range interactions that
decay slowly enough. In this regime, the treatment of dangerous irrelevant variables (DIVs)
in the scaling forms is required to extract critical exponents from finite systems.

Meanwhile, a similar historic development took place regarding the study of QPTs
under the influence of long-range interactions. By virtue of pioneering RG studies [20,21],
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the numerical investigation of long-range interacting magnetic systems has been trig-
gered [22–38]. In particular, Monte Carlo-based techniques became a popular tool to gain
quantitative insight into these long-range interacting quantum magnets [22,25,26,29–40].
On the one hand, this includes high-order series expansion techniques, where classical
Monte Carlo integration is applied for the graph embedding scheme, allowing extracting
energies and observables in the thermodynamic limit [25,29]. On the other hand, there is
stochastic series expansion quantum Monte Carlo [39], which enables calculations on large
finite systems. To determine the physical properties of the infinite system, finite-size scaling
is performed with the results of these computations. Inspired by the recent developments
for classical phase transitions [15–19,41], a theory for finite-size scaling above the upper
critical dimension for QPTs was introduced [32,34].

When investigating algebraically decaying long-range interactions ∼ r−(d+σ) with
the distance r and the dimension d of the system, there are two distinct regimes: one
for σ ≤ 0 (strong long-range interaction) and another one for σ > 0 (weak long-range
interaction) [5,42–45]. In the case of strong long-range interactions, common definitions of
internal energy and entropy in the thermodynamic limit are not applicable and standard
thermodynamics breaks down [5,42–45]. We will not focus on this regime in this review.
For details specific to strong long-range interactions, we refer to other review articles such
as Refs. [5,42–45]. For the sake of this work, we restrict the discussion to weak long-range
interaction or competing antiferromagnetic strong long-range interactions, for which an
extensive ground-state energy can be defined without rescaling of the coupling constant [5].

The interest in quantum magnets with long-range interactions is further fuelled by
the relevance of these models in state-of-the-art quantum–optical platforms [5,46–87]. To
realise long-range interacting quantum lattice models with a tunable algebraic decay ex-
ponent, one can use trapped ions, which are coupled off-resonantly to motional degrees
of freedom [5,81–85,88]. Another possibility is to couple trapped neutral atoms to pho-
tonic modes of a cavity [5,86,87]. Alternatively, one can realise long-range interactions
decaying with a fixed algebraic decay exponent of six or three using Rydberg atom quan-
tum simulators [46–55] or ultracold dipolar quantum atomic or molecular gases in optical
lattices [56–73]. Note that, in many of the above-listed cases, it is possible to map the
long-range interacting atomic degrees of freedom onto quantum spin models [5,52,89].
Therefore, they can be exploited as analogue quantum simulators for long-range interacting
quantum magnets, and the relevance of the theoretical concepts transcends the boundary
between the fields.

From the perspective of condensed matter physics, there are multiple materials with
relevant long-range interactions [90–106]. The compound LiHoF4 in an external field
realises an Ising magnet in a transverse magnetic field [102–105]. A recent experiment
with the two-dimensional Heisenberg ferromagnet Fe3GeTe2 demonstrates that phase
transitions and continuous symmetry breaking can be implemented by circumventing the
Hohenberg–Mermin–Wagner theorem with long-range interactions [106]. This material is
in the recently discovered material class of 2D magnetic van der Waals systems [107,108].
Further, dipolar interactions play a crucial role in the spin ice state in the frustrated magnetic
pyrochlore materials Ho2Ti2O7 and Dy2Ti2O7 [90–101].

In this review, we are interested in physical systems described by quantum spin
models, where the magnetic degrees of freedom are located on the sites of a lattice. We
concentrate on the following three paradigmatic types of magnetic interactions between
lattice sites: first, Ising interactions, where the magnetic interaction is oriented only in
the direction of one quantisation axis; second, XY interactions with a U(1)-symmetric
magnetic interaction invariant under planar rotations; and third, Heisenberg interactions
with a SU(2)-symmetric magnetic interaction invariant under rotations in 3D spin space.
In the microscopic models of interest, a competition between magnetic ordering and trivial
product states, external fields, or quasi-long-range order leads to QPTs.

In this context, the primary research pursuit revolves around how the properties of
the QPT depend on the long-range interaction. The upper critical dimension of a QPT in
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magnetic models with non-competing algebraically decaying long-range interactions is
known to depend on the decay exponent of the interaction for a small enough exponent,
and decreases as the decay exponent decreases [20,21]. If the dimension of a system is equal
to or exceeds the upper critical dimension, the QPT displays mean-field critical behaviour.
At the same time, standard finite-size scaling, as well as standard hyperscaling relations
are no longer applicable. Therefore, these systems are primary workhorse models to study
finite-size scaling above the upper critical dimension. In this case, the numerical simulation
of these systems is crucial in order to gauge novel theoretical developments. Further, QPTs
in systems with competing long-range interactions do not tend to depend on the long-range
nature of the interaction [23–26,29,30,32]. In several cases, long-range interactions then lead
to the emergence of ground states and QPTs, which are not present in the corresponding
short-range interacting models [27,30,54,55,109–112].

In this review, we are mainly interested in the description and discussion of two
Monte Carlo-based numerical techniques, which were successfully used to study the low-
energy physics of long-range interacting quantum magnets, in particular with respect to
the quantitative investigation of QPTs [22,25,29–32,34–38,40]. The success of Monte Carlo
techniques in this field is due to the occurrence of high-dimensional sums and integrals
that commonly arise in the formulation of many-particle statistics. In contrast to many
deterministic integration techniques, for which the standard error scales exponentially with
the dimension of the underlying integral, the standard error of an integral calculated with
Monte Carlo integration does not scale with the dimension of the underlying integral. We
further chose to review this topic due to our personal involvement with the application and
development of these methods [25,29–32,34,35]. On the one hand, we explain in detail how
classical Monte Carlo integration can enhance the capabilities of linked-cluster expansions
(LCEs) with the pCUT+MC approach (a combination of the perturbative unitary transform
approach (pCUT) and MC embedding). On the other hand, we describe how stochastic
series expansion (SSE) quantum Monte Carlo (QMC) integration is used to directly sample
the thermodynamic properties of suitable long-range quantum magnets on finite systems.

This review is structured as follows. In Section 2, we review the basic concept of a
QPT in a condensed way, focusing on the details relevant for this review. We define the
quantum-critical exponents and the relations between them in Section 2.1. Here, we also
have the first encounter with the generalised hyperscaling relation, which is also valid
above the upper critical dimension where conventional hyperscaling breaks down. As
the SSE QMC method discussed in this review is a finite-system simulation, we discuss
the conventional finite-size scaling below the upper critical dimension in Section 2.2 and
the peculiarities of finite-size scaling above the upper critical dimension in Section 2.3.
In Section 3, we summarise the basic concepts of Markov chain Monte Carlo integration:
Monte Carlo sampling, Markovian random walks, stationary distributions, the detailed
balance condition, and the Metropolis–Hastings algorithm. We continue by introducing
the series-expansion Monte Carlo embedding method pCUT+MC in Section 4. We start
with the basic concepts of a graph expansion in Section 4.1 and introduce the perturbative
method of our choice, the perturbative continuous unitary transformation method, in
Section 4.2. We introduce the theoretical concepts for setting up a linked-cluster expansion
as a full graph decomposition in Section 4.3 and, subsequently, discuss how to practically
calculate perturbative contributions in Sections 4.4 and 4.5. We prepare the discussion
of the white graph decomposition in Section 4.6 with an interlude on the relevant graph
theory in Sections 4.6.1 and 4.6.2 and the important concept of white graphs in Section 4.6.3.
Further, in Section 4.7, we discuss the embedding problem for the white graph contributions.
Starting from the nearest-neighbour embedding problem in Section 4.7.1, we generalise it
to the long-range case in Section 4.7.2 and then introduce a classical Monte Carlo algorithm
to calculate the resulting high-dimensional sums in Section 4.7.3. This is followed by
some technical aspects on series extrapolations in Section 4.8 and a summary of the entire
workflow in Section 4.9. In the next section, the topic changes towards the review of the
SSE QMC method, which is an approach to simulate thermodynamic properties of suitable
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quantum many-body systems on finite systems at a finite temperature. First, we discuss
the general concepts of the method in Section 5. We review the algorithm to simulate
arbitrary transverse-field Ising models introduced by A. Sandvik [39] in Section 5.1. We
then review an algorithm used to simulate non-frustrated Heisenberg models in Section 5.2.
After the introduction to the algorithms, we summarise techniques on how to measure
common observables in the SSE QMC scheme in Section 5.3. Since the SSE QMC method
is a finite-temperature method, we discuss how to rigorously use this scheme to perform
simulations at effective zero temperature in Section 5.4. We conclude this section with a
brief summary of path integral Monte Carlo techniques used for systems with long-range
interactions (see Section 5.5). To maintain the balance between algorithmic aspects and their
physical relevance, we summarise several theoretical and numerical results for quantum
phase transitions in basics long-range interacting quantum spin models, for which the
discussed Monte Carlo-based techniques provided significant results. First, we discuss long-
range interacting transverse-field Ising models in Section 6. For ferromagnetic interactions,
this model displays three regimes of universality: a long-range mean-field regime for
slowly decaying long-range interactions, an intermediate long-range non-trivial regime,
and a regime of short-range universality for strong decaying long-range interactions. We
discuss the theoretical origins of this behaviour in Section 6.1.1 and numerical results
for quantum critical exponents in Section 6.1.2. Since this model is a prime example to
study scaling above the upper critical dimension in the long-range mean-field regime,
we emphasise these aspects in Section 6.1.3. Further, we discuss the antiferromagnetic
long-range transverse-field Ising model on bipartite lattices in Section 6.2 and on non-
bipartite lattices in Section 6.3. The next obvious step is to change the symmetry of the
magnetic interactions. Therefore, we turn to long-range interacting XY models in Section 7
and Heisenberg models in Section 8. We discuss the long-range interacting transverse-
field XY chain in Section 7 starting with the U(1)-symmetric isotropic case in Section 7.1,
followed by the anisotropic case for ferromagnetic (see Section 7.2) and antiferromagnetic
(see Section 7.3) interactions, which display similar behaviour to the long-range transverse-
field Ising model on the chain discussed in Section 6. We conclude the discussion of
the results with unfrustrated long-range Heisenberg models in Section 8. We focus on
the staggered antiferromagnetic long-range Heisenberg square lattice bilayer model in
Section 8.1 followed by long-range Heisenberg ladders in Section 8.2 and the long-range
Heisenberg chain in Section 8.3. We conclude in Section 9 with a brief summary and with
some comments on the next possible steps in the field.

2. Quantum Phase Transitions

This review is part of the Special Issue with the topic “Violations of Hyperscaling in
Phase Transitions and Critical Phenomena”. In this work, we summarise investigations of
low-dimensional quantum magnets with long-range interactions targeting, in particular,
quantum phase transitions (QPTs) above the upper critical dimension, where the naive
hyperscaling relation is no longer applicable. In this section, we recapitulate the relevant as-
pects of QPTs needed to discuss the results of the Monte Carlo-based numerical approaches.
First, we give a general introduction to QPTs. After that, we discuss in detail the definition
of critical exponents and the relations among them in Section 2.1, as well as the scaling
below (see Section 2.2) and above (see Section 2.3) the upper critical dimension.

Any non-analytic point of the ground-state energy of an infinite quantum system as
a function of a tuning parameter λ is identified with a QPT [113]. This tuning parameter
can, for instance, be a magnetic field or pressure, but not the temperature. Quantum
phase transitions are a concept of zero temperature as there are no thermal fluctuations
and all excited states are suppressed infinitely strong such that the system remains in its
ground state. There are two scenarios for how a non-analytic point in the ground-state
energy can emerge [113]: First is an actual (sharp) level crossing between the ground-state
energy and another energy level. Second, the non-analytic point can be considered as a
limiting case of an avoided level crossing. Historically, phase transitions are classified by
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the lowest order derivative of the free energy that is discontinuous [113,114]. Therefore,
a first-order phase transition is discontinuous in the order parameter (first derivative)
and a second-order phase transition is discontinuous in the response functions (second
derivative). Since, in second-order phase transitions, the order parameter is still continuous
across the phase transition, we use the term “continuous phase transition” as an equivalent
for “second-order phase transition”.

In this review, we are interested in second-order QPTs, which fall into the second
scenario. At a second-order QPT, the relevant elementary excitations condense into a
novel ground state, while the characteristic length and time scales diverge. Apart from
topological QPTs involving a long-range entangled topological phase, such continuous
transitions are described by the concept of spontaneous symmetry breaking. On one side
of the QPT, the ground state obeys a symmetry of the Hamiltonian, while on the other side,
this symmetry is broken in the ground state and a ground-state degeneracy arises.

Following the idea of the quantum-to-classical mapping [113,115], d-dimensional
quantum systems can be mapped in the vicinity of a second-order QPT to models of
statistical mechanics with a classical (thermal) second-order phase transition in d + 1
dimensions. In many cases, the models obtained from a quantum-to-classical mapping are
rather artificial [113]. However, such mappings often allow categorising QPTs in terms
of universality classes and associated critical exponents by the non-analytic behaviour
of the classical counterparts [10,11,113,116,117]. The mapping further illustrates that the
renormalisation group (RG) theory is also applicable to describe QPTs [10,11,113,116,117].

In the RG theory, each QPT belongs to a non-trivial fixed point of the RG transfor-
mation [10,11], whereas a trivial fixed point would, for instance, be a fully ordered state
with maximal correlation or a fully disordered state with no correlation at all. Critical
exponents are connected to the RG flow in the immediate vicinity of these non-trivial fixed
points [10,11,113]. The concept of universality classes arises from the fact that different
microscopic Hamiltonians can have a quantum critical point that is attracted by the same
non-trivial fixed point under successive application of the RG transformation [10,11]. Due
to this, the QPTs in these models have the same critical exponents.

Another remarkable result of the RG theory is the scaling of observables in the vicinity
of phase transitions. Historically, the theory of scaling at phase transitions was heuristically
introduced before the RG approach [118–124]. The latter provided the theoretical founda-
tion for the scaling hypothesis [6,7]. The main statement of the scaling theory is that the
non-analytic contributions to the free energy and correlation functions are mathematically
described by generalised homogeneous functions (GHFs) [124]. A function with n variables
f (x1, x2, . . . , xn) is called a GHF, if there exist a1, a2, . . . , an ∈ R with at least one being
non-zero and a f ∈ R such that, for b ∈ R+,

f (ba1 x1, ba2 x2, . . . , ban xn) = ba f f (x1, x2, . . . , xn) . (1)

The exponents a1, a2, . . . , an are the scaling powers of the variables, and a f is the scaling
power of the function f itself. An in-depth summary of the mathematical properties of
GHFs can be found in Appendix B. The most important properties of GHFs are that their
derivatives, Legendre transforms, and Fourier transforms are also GHFs. As we will outline
in Section 2.2, the theory of finite-size scaling is formulated in terms of GHFs and relates the
non-analytic behaviour at QPTs in the thermodynamic limit with the scaling of observables
for different finite system sizes. In this, the variables xi are related to physical parameters
like the temperature T, control parameter λ, symmetry-breaking field H, and also irrelevant,
more abstract parameters that parameterise the microscopic details of the model like the
lattice spacing. Later in this section, we will define irrelevant variables in the context of the
RG and GHFs.

Another aspect relevant for this work is that quantum fluctuations are the driving
factor with QPTs [113]. In general, fluctuations are more important in low dimensions [117].
The universality class of QPTs for a certain symmetry breaking depends on the dimension-
ality of the system.
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An important aspect regarding this review is the so-called upper critical dimension
duc. The upper critical dimension is defined as a dimensional boundary such that, for
systems with dimension d ≥ duc, the critical exponents are those obtained from mean-field
considerations. The upper critical dimension is of particular importance for QPTs in systems
with non-competing long-range interactions. For sufficiently small decay exponents of an
algebraically decaying long-range interaction 1/rd+σ, the upper critical dimension starts to
decrease as a function of the decay exponent σ [20,32,34]. In the limiting case of a completely
flat decay (σ = −d) of the long-range interaction resulting in an all-to-all coupling, the
model is intrinsically of the mean-field type and mean-field considerations become exact.
For a certain value of the decay exponent, the upper critical dimension becomes equal to
the fixed spatial dimension, and for decay exponents below this value, the dimension of
the system is above the upper critical dimension of the transition [20,32,34]. This makes
long-range interacting systems an ideal test bed for studying phase transitions above the
upper critical dimension in low-dimensional systems. In particular, long-range interactions
can make the upper critical dimension accessible in real-world experiments as the upper
critical dimension of short-range models is usually not below three.

Although phase transitions above the upper critical dimension display mean-field
criticality, they are still a matter worth studying, since naive scaling theory describing
the behaviour of finite systems close to a phase transition (see Section 2.2) is no longer
applicable [16,19,125]. Moreover, the naive versions of some relations between critical
exponents, as discussed in Section 2.1, do not hold any longer [15,16]. The reason for this
issue are the dangerous irrelevant variables (DIVs) in the RG framework [126–128]. During
the application of the RG transformation, the original Hamiltonian is successively mapped
to other Hamiltonians, which can have infinitely many couplings. All these couplings,
in principle, enter the GHFs. In practice, all but a finite number of these couplings are
set to zero since their scaling powers are negative, which means they flow to zero under
renormalisation. These couplings are, therefore, called irrelevant. This approach of setting
irrelevant couplings to zero can be used to derive the finite-size scaling behaviour as
described in Section 2.2. However, above the upper critical dimension, this approach breaks
down because it is only possible to set irrelevant variables to zero if the GHF does not have
a singularity in this limit [126]. Above the upper critical dimension, such singularities in
irrelevant parameters exist, which makes them DIVs [127]. We explain the effect of DIVs
on scaling in Section 2.3.

2.1. Critical Exponents in the Thermodynamic Limit

As outlined above, a second-order QPT comes with a singularity in the free energy
density. In fact, also, other observables experience singular behaviour at the critical point
in the form of power-law singularities. For instance, the order parameter m as a function of
the control parameter λ behaves as

m(λ → λ−
c ) ∼ |λ − λc|β (2)

in the ordered phase. Without loss of generality, the system is taken to be in the ordered
phase for λ < λc and the notation λ → λ−

c means that λ is approaching λc from below, i.e.,
it is approaching in the ordered phase. In the disordered phase λ > λc, the order parameter
by definition vanishes such that m(λ → λ+

c ) = 0. The observables with their respective
power-law singular behaviour, which is characterised by the critical exponents α, β, γ, δ, η, ν,
and z, are summarised in Table 1 together with how they are commonly defined in terms
of the free energy density f , the symmetry-breaking field H, which couples to the order
parameter, and the reduced control parameter r = (λ − λc)/λc.
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Table 1. Definitions of critical exponents by means of the singularities of thermodynamic quantities
for a magnetic phase transition. The free energy density is denoted by f . Note that the control
parameter susceptibility associated with the critical exponent α coincides with the heat capacity only
for thermal phase transitions, where r = (T − Tc)/Tc, while for QPTs, the meaning depends on the
control parameter triggering the phase transition [129].

Observable Definition Crit. Exp. Singularity
Characteristic length ξ via G(⃗r) ν ξ(r → 0, H = 0) ∼ |r|−ν

Energy gap ∆
Charact. time scale ξτ

via G(⃗r, ω)
ξτ ∼ ∆−1 zν

∆(r → 0) ∼ |r|zν

ξτ(r → 0) ∼ ξz ∼ |r|−zν

Order parameter m m =
∂ f
∂H

∣∣
H=0

β m(r → 0−, H = 0) ∼ |r|β
δ m(r = 0, H → 0) ∼ |H|1/δ

Order-parameter
susceptibility χ

χ = ∂m
∂H

∣∣
H=0 γ χ(r → 0, H = 0) ∼ |r|−γ

Control-parameter
susceptibility χr

χr =
∂2 f
∂r2 α χr(r → 0, H = 0) ∼ |r|−α

Correlation
function G(⃗r)

∂⟨m(⃗r)⟩
∂H⃗r=0

∣∣∣
H0=0

η
G(⃗r → ∞, r = 0, H = 0)

∼ 1
|⃗r|d−2+η

One usually defines reduced parameters like r that vanish at the critical point not
only to shorten the notation, but also to express the power-law singularities independent
of the microscopic details of the specific model one is looking at. While the value of λc
depends on these details, the power-law singularities are empirically known to not depend
on the microscopic details, but only on more general properties like the dimensionality,
the symmetry that is being broken, and, with particular emphasis due to the focus of this
review, on the range of the interaction. It is, therefore, common to classify continuous phase
transitions in terms of universality classes. These universality classes share the same set of
critical exponents. In terms of the RG, this behaviour is understood as distinct critical points
of microscopically different models flowing to the same renormalisation group fixed point,
which determines the criticality of the system [6,7,10]. Prominent examples for universality
classes of magnets are the 2D and 3D Ising (Z2 symmetry), 3D XY (O(2) symmetry), and
3D Heisenberg (O(3) symmetry) universality classes [113]. It is important to mention that
the dimension in the classifications is referring to classical and not quantum systems, and
they should not be confused with each other. In fact, the universality class of a short-range
interacting non-frustrated quantum Ising model of dimension d lies in the universality of
the classical d + 1-dimensional Ising model.

There are only a few dimensions for which a separate universality class is defined
for the different models. For lower dimensions, the fluctuations are too strong in or-
der for a spontaneous symmetry breaking to occur. In the case of the classical Ising
model, there is no phase transition for 1D, while for the classical XY and Heisenberg
models with continuous symmetries, there is not even a phase transitions for 2D due to
the Hohenberg–Mermin–Wagner (HWM) theorem [130,131]. This dimensional boundary
is referred to as lower critical dimension dlc. The lower critical dimension is the highest
dimension for which no transition occurs, i.e., dlc = 1 for the Ising model and dlc = 2 for
the XY and Heisenberg model. For higher dimensions d ≥ 4, the critical exponents of
the mentioned models do not depend on the dimensionality any longer, and they take on
the mean-field critical exponents in all dimensions. The underlying reason is that, with
increasing dimensions, the local fluctuations become smaller due to the higher connectivity
of the system [132]. This has been also exploited in diagrammatic and series expansions in
1/d [133–135]. This dimensional boundary, at which the criticality becomes the mean-field
one, is called upper critical dimension duc. Usually, the upper critical dimension is too
large to realise a system above its upper critical dimension in the real world. However,
long-rang interactions can increase the connectivity of a system in a similar sense as the
dimensionality. A sufficiently long-range interaction can, therefore, lower the upper critical
dimension to a value that is accessible in experiments.
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Finally, it is worth mentioning that the critical exponents are not independent of each
other, but obey certain relations [129], namely

2 − α = (d + z)ν , (3)

2 − α = 2β + γ , (4)

γ = β(δ − 1) , (5)

γ = (2 − η)ν . (6)

The first relation in Equation (3) is the so-called hyperscaling relation, whose classical
analogue (without z) was introduced by Widom [10,136]. The Essam–Fisher relation in
Equation (4) [137,138] is reminiscent of a similar inequality, which was proven rigorously
by Rushbrooke using thermodynamic stability arguments. Equation (5) is called the Widom
relation. The last relation in Equation (6) is the Fisher scaling relation, which can be derived
using the fluctuation–dissipation theorem [10,129,138]. Those relations were originally
obtained from scaling assumptions of observables close to the critical point, which were only
later derived rigorously when the RG formalism introduced to critical phenomena [10,129].
Due to these relations, it is sufficient to calculate three, albeit not arbitrary, exponents to
obtain the full set of critical exponents.

The hyperscaling relation Equation (3) is the only relation containing the dimension of
the system and is, therefore, often said to break down above the upper critical dimension,
where one expects the same mean-field critical exponents independent of the dimension
d [10]. It, therefore, deserves special focus in this review since the long-range models
discussed will be above the upper critical dimension in certain parameter regimes. Per-
sonally, we would not agree that the hyperscaling relation breaks down above the upper
critical dimension, but we would rather call Equation (3) a special case of a more general
hyperscaling relation:

2 − α =

(
d
ϟ
+ z
)

ν, (7)

with the pseudo-critical exponent ϟ (“koppa”) [34]:

ϟ =

{
1 for d ≤ duc

d
duc

for d > duc .
(8)

Below the upper critical dimension, the general hyperscaling relation, therefore, relaxes to
Equation (3). Above the upper critical dimension, the relation becomes

2 − α = (duc + z)ν, (9)

which is independent of the dimension of the system. For the derivation of this generalised
version of the hyperscaling relation for QPTs, see Section 2.3 or Ref. [34]. The derivation of
the classical counterpart can be found in Ref. [15] and is reviewed in Ref. [41].

2.2. Finite-Size Scaling below the Upper Critical Dimension

Even though the singular behaviour of observables at the critical point is only present
in the thermodynamic limit, it is possible to study the criticality of an infinite system
by investigating their finite counterparts. In finite systems, the power-law singularities
of the infinite system are rounded and shifted with respect to the critical point, e.g., the
susceptibility with its characteristic divergence at the critical point λc is deformed to a
broadened peak of finite height. The peak’s position rL = (λL − λc)/λc is shifted with
respect to the critical point r = 0. A possible definition of a pseudo-critical point of a finite
system is the peak position λL. As the characteristic length scale of fluctuations ξ diverges
at the critical point, the finite system approaching the critical point will at some point
begin to “feel” its finite extent and the observables start to deviate from the ones in the
thermodynamic limit. As ξ diverges with the exponent ν like ξ ∼ |r|−ν at the critical point,
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the extent of rounding in a finite system is related to the value of ν. Similarly, the peak
magnitude of finite-size observables at the pseudo-critical point will depend on how strong
the singularity in the thermodynamic limit is, which means it depends on the respective
critical exponents α, β, γ, and δ. The shifting, rounding, and varying peak magnitude are
shown for the susceptibility of the long-range transverse-field Ising model in Figure 1. This
dependence of observables in finite systems on the criticality of the infinite system is the
basis of finite-size scaling.

−0.04 −0.02 0.00 0.02 0.04

λ− λc

100

101

102

103

104

105

χ
L

infinite system L = 64

L = 90

L = 128

L = 180

L = 256

L = 360

L = 512

L = 724

L =∞

Figure 1. Susceptibility χL of the long-range transverse-field Ising chain for different linear system
sizes from L = 64 to L = 724. The smaller the system, the farther away from the critical point the
susceptibility starts to deviate from the thermodynamic limit and the farther the peak position shifts
away from the critical point marked by the black dotted line.

In a more mathematical sense, the relation between critical exponents and finite-size
observables has its origin in the renormalisation group (RG) flow close to the corresponding
RG fixed point that determines the criticality [139]. Close to this fixed point, one can
linearise the RG flow so that the free energy density and the characteristic length ξ become
generalised homogeneous functions (GHFs) in their parameters [124,128,129,140,141]. For
a thorough discussion of the mathematical properties of GHFs, we refer to Ref. [124] and
Appendix B. This means that the free energy density f and characteristic length scale ξ as
functions of the couplings r, H, T, u and the inverse system length L−1 obey the relations:

f (r, H, T, L−1, u) = b−(d+z) f (byr r, byH H, bzT, bL−1, byu u) (10)

ξ(r, H, T, L−1, u) = bξ(byr r, byH H, bzT, bL−1, byu u) (11)

with the respective scaling dimensions yr, yH , z > 0, yL = 1, and yu < 0 governing the
linearised RG flow with spatial rescaling factor b > 1 around the RG fixed point, at which
all couplings vanish by definition. All of those couplings are relevant except for u, which
denotes the leading irrelevant coupling [10,113]. Relevant couplings are related to real-
world parameters that can be used to tune our system away from the critical point like
the temperature T, a symmetry-breaking field H, or simply the control parameter r. The
irrelevant couplings u do not per se vanish at the critical point like the relevant ones do.
However, they flow to zero under the RG transformation and are commonly set to zero in
the scaling laws:

f (r, H, T, L−1) = b−(d+z) f (byr r, byH H, bzT, bL−1) (12)

ξ(r, H, T, L−1) = bξ(byr r, byH H, bzT, bL−1) (13)
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by assuming analyticity in these parameters. The generalised homogeneity of thermody-
namic observables can be derived from the one of the free energy density f . For example,
the generalised homogeneity of the magnetisation:

m(r, H, T, L−1) = b−(d+z)+yH m(byr r, byH H, bzT, bL−1) (14)

can be derived by taking the derivative of f with respect to the symmetry-breaking field H.
By investigating the singularity of ξ(r) = ξ(r, H = 0, T = 0, L−1 = 0) in r via

Equation (13), one can show that the scaling power yr of the control parameter r is related
to the critical exponent ν by yr = 1/ν [113]. For this, one fixes the value byr r of the first
argument to ±1 in the right-hand side of Equation (13) by setting b = |r|−1/yr such that

ξ(r) = |r|−1/yr ξ(±1) ∼ |r|−ν . (15)

Analogously, further relations between the scaling powers and other critical exponents
can be derived by looking at the singular behaviour of the respective observables in the
corresponding parameters. Overall, one further obtains

α = −d + z − 2yr

yr
, β =

d + z − yH
yr

, δ =
yH

d + z − yH
, γ = −d + z − 2yH

yr
. (16)

From these equations, one can already tell that the critical exponents are not independent of
each other. In fact, the scaling relations 2 − α = (d + z)ν, 2 − α = 2β + γ and γ = β(δ − 1)
(see Equations (3)–(5)) can be derived from Equation (16) and y−1

r = ν. By expressing the
RG scaling powers yx in terms of critical exponents, the homogeneity law for an observable
O with a bulk divergence O(r, 0, 0, 0) ∼ |r|ω is given by

O(r, H, T, L−1) = b−ωyrO(byr r, byH H, bzT, bL−1) (17)

= b−ω/νO(b1/νr, b(β+γ)/ν H, bzT, bL−1) . (18)

In order to investigate the dependence on the linear system size L, the last argument
in the homogeneity law is fixed to bL−1 = 1 by inserting b = L. This readily gives the
finite-size scaling form

OL(r, H, T) = L−ω/νΨ(L1/νr, L(β+γ)/νH, LzT) (19)

with Ψ being the universal scaling function of the observables O. The scaling function Ψ
itself does not depend on L any longer, but in order to compare different linear system sizes,
one has to rescale its arguments. To extract the critical exponents from finite systems, the
observable OL(r, H, T) is measured for different system sizes L and parameters (r, H, T)
close to the critical point (r, H, T) = (0, 0, 0). The L-dependence according to Equation (19)
is then fit with the critical exponents ω, ν, β + γ, and z, as well as the critical point λc,
which is hidden in the definition of r, as free parameters. It is advisable to fix two of the
three parameters r, H, T to their critical values in order to minimise the amount of free
parameters in the fit. For example, with H = T = 0 and only r ̸= 0, one can extract the two
critical exponents ω and ν alongside λc. For further details on a fitting procedure, we refer
to Ref. [32]. If one knows the critical point, one can also set (r, H, T) = (0, 0, 0) and look at
the L-dependent scaling OL ∼ L−ω/ν directly at the critical point to extract the exponent
ratio ω/ν. There are many more possible approaches to extract critical exponents from the
FSS law in Equation (19) [142–144]. For relatively small system sizes, it might be required
to take corrections to scaling into account [143,144].

2.3. Finite-Size Scaling above the Upper Critical Dimension

In the derivation of finite-size scaling below the upper critical dimension, it was
assumed that the free energy density is an analytic function in the leading irrelevant
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coupling u and, therefore, one can set it to zero. However, this is not the case above the
upper critical dimension any longer, and the free energy density f is singular at u = 0. Due
to this singular behaviour u is referred to as a dangerous irrelevant variable (DIV).

As a consequence, one has to take the scaling of u close to the RG fixed point into
account. This is achieved by absorbing the scaling of f in u for small u into the scaling of
the other variables [128]:

f (r, H, T, L−1, u) = up(d+z) f (upr r, upH H, upT T, upL L−1) , (20)

up to a global power p(d+z) of u. This leads to a modification of the scaling powers in the
homogeneity law for the free energy density [128]:

f (r, H, T, L−1) = b−(d+z)∗ f (by∗r r, by∗H H, bz∗T, by∗L L−1) (21)

= L−(d+z)∗/y∗LF (Ly∗r /y∗L r, Ly∗H/y∗L H, Lz∗/y∗L T) (22)

with the modified scaling powers [34,128]:

(d + z)∗ = (d + z)− p(d+z)yu ,
y∗r = yr + pryu , y∗H = yH + pHyu ,

z∗ = z + pzyu , y∗L = 1 + pLyu .
(23)

In the classical case [128], y∗L was commonly set to 1 by choice. This is justified because
the scaling powers of a GHF are only determined up to a common non-zero factor [124].
However, for the quantum case [34], this was kept general as it has no impact on the FSS.

As the predictions from the Gaussian field theory and mean field differed for the
critical exponents α, β, and δ, but not for the “correlation” critical exponents ν, z, η, and
γ [145], the correlation sector was thought not to be affected by DIVs at first [128,142,145].
Later, the Q-FSS, another approach to FSS above the upper critical dimension, pioneered
by Ralph Kenna and his colleagues, was developed for classical [15,19,125], as well as for
quantum systems [34], which explicitly allowed the correlation sector to also be affected by
the DIV. In analogy to the free energy density, the homogeneity law of the characteristic
length scale is then also modified to

ξ(r, H, T, L−1) = b−y∗ξ ξ(by∗r r, by∗H H, bz∗T, by∗L L−1) (24)

= LϟΞ(Ly∗r /y∗L r, Ly∗H/y∗L H, Lz∗/y∗L T) (25)

with y∗ξ = −1− pξ yu = −y∗r /yr in order to reproduce the correct bulk singularity ξ ∼ |r|−ν.
A new pseudo-critical exponent ϟ (“koppa”):

ϟ = −
y∗ξ
y∗L

=
y∗r

yry∗L
= ν

y∗r
y∗L

(26)

is introduced. This exponent describes the scaling of the characteristic length scale with the
linear system size. This non-linear scaling of ξ with L is one of the key differences to the
previous treatments above the upper critical dimension in Ref. [128].
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Analogous to the case below the upper critical dimension, the modified scaling powers
y∗x can be related to the critical exponents:

α = − (d + z)∗ − 2y∗r
y∗r

, (27)

β =
(d + z)∗ − y∗H

y∗r
, (28)

δ =
y∗H

(d + z)∗ − y∗H
, (29)

γ = − (d + z)∗ − 2y∗H
y∗r

. (30)

By using the mean-field critical exponents for the O(n) quantum rotor model, one obtains
restrictions for the ratios of modified scaling powers:

y∗r =
(d + z)∗

2
, y∗H =

3(d + z)∗

4
(31)

Furthermore, one can link the bulk scaling powers y∗r , y∗H , and (d + z)∗ to the scaling
power y∗L of the inverse linear system size [34]:

(d + z)∗ = y∗Ld +
y∗r
yr

z , (32)

by looking at the scaling of the susceptibility in a finite system [34,128]. This relation is
crucial for deriving an FSS form above the upper critical dimension as the modified scaling
power y∗L, or rather, its relation to the other scaling powers determines the scaling with
the linear system size L. For details on the derivation, we refer to Ref. [34]. We want to
stress again that the scaling powers of GHFs are only determined up to a common non-zero
factor [124]. Therefore, it is evident that one can only determine the ratios of the modified
scaling powers, but not their absolute value. The absolute values are subject to choice.
Different choices were discussed in Ref. [34], but these choices rather correspond to taking
on different perspectives and have no impact on the FSS nor the physics.

From Equation (32) together with Equations (26) and (27), a generalised hyperscaling
relation:

2 − α =

(
d
ϟ
+ z
)

ν, (33)

can be derived. This also determines the pseudo-critical exponent:

ϟ =
d

duc
for d > duc . (34)

Finally, we can express the modified scaling powers in the FSS law for an observable
O with power-law singularity O(r, 0, 0, 0) ∼ |r|ω:

O(r, H, T, L−1) = b−ωy∗r O(by∗r r, b(β+γ)y∗r H, bz∗T, by∗L L−1) (35)

= L−ωϟ/νΨ(Lϟ/νr, L(β+γ)ϟ/ν H, Lz∗/y∗L T) . (36)

For ϟ = 1 below the upper critical dimension, Equation (36) relaxes to the standard FSS
law Equation (19). The scaling in temperature has not yet been studied for finite quantum
systems above the upper critical dimension. However, in Ref. [34], it was conjectured that
z∗ = y∗r /yrz based on Equation (32), which is also in agreement with z being the dynamical
critical exponent that determines the space–time anisotropy ξτ ∼ ξz, as we will shortly
see. This means that the finite-size gap scales as ∆L ∼ L−z∗/y∗L ∼ L−ϟz with the system
size [34]. Of particular interest is the scaling of the characteristic length scale above the
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upper critical dimension, for which the modified scaling law Equation (36) also holds with
ω = −ν. Hence, the characteristic length scale in dependence of the control parameter r
scales like

ξL(r) = LϟΞ(Lϟ/νr) (37)

with the scaling function Ξ. Directly at the critical point r = 0, this leads to ξL ∼ Lϟ.
Comparing this with the scaling of the inverse finite-size gap ∆−1

L ∼ ξL,τ ∼ ξz
L verifies that

z still determines the space–time anisotropy. Prior to the Q-FSS [15,17], the characteristic
length scale was thought to be bound by the linear system size L [128]. However, this was
shown not to be the case by measurements of the characteristic length scale for the classical
five-dimensional Ising model [14] and for long-range transverse-field Ising models [34].

For the latter, the data collapse of the correlation length according to Equation (37) is
shown in Figure 2 as an example.

Figure 2. Rescaled correlation length according to Equation (37) for a model above the upper critical
dimension with ϟ = 20/9 ≈ 2.2 (to be specific, the long-range transverse-field Ising chain with
σ = 0.3). The control parameter r ∼ h − hc is proportional to the transverse field. The collapse of the
data around the critical point r = 0 verifies the scaling Equation (37) and, therefore, demonstrates
that ξL is indeed—in contrast to the prior belief—not bound by the linear system size, but ξL ∼ Lϟ.

3. Monte Carlo Integration

In this section, we provide a brief introduction to Monte Carlo integration (MCI). We
focus on the aspects of Markov chain MCI as the basis to formulate the white graph Monte
Carlo embedding scheme of the pCUT+MC method in Section 4 and the stochastic series
expansion (SSE) quantum Monte Carlo (QMC) algorithm in Section 5 in a self-contained
fashion. MCI is the foundation for countless numerical applications, which require the
integration over high-dimensional integration spaces. As this review has a focus on “Monte
Carlo-based techniques for quantum magnets with long-range interactions”, we forward
readers with a deeper interest in the fundamental aspects of MCI and Markov chains to
Refs. [146–148].

MCI summarises numerical techniques to find estimators for integrals of functions
f : C → R over an integration space C using random numbers. The underlying idea behind
MCI is to estimate the integral, or the sum in the case of discrete variables, of the function f
over the configuration space by an expectation value:

I =
∫
C

dω f (ω) =
∫
C

dω
P(ω)

P(ω)
f (ω) =

∫
C

dω P(ω) f̃ (ω) = lim
S→∞

1
S

i=S

∑
i=1

f̃ (ωi) (38)
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with ωi ∈ C sampled according to a probability density function P : C → R≥0 (PDF) and
the function f̃ (ω) = f (ω)/P(ω) reweighted by the PDF. A famous direct application of this
idea is the calculation of the number “pi”, which is discussed in great detail in Ref. [148].

In this review, MCI is used for the embedding of white graphs on a lattice to evaluate
high orders of a perturbative series expansion or to calculate thermodynamic observables
using the SSE framework. In both cases, non-normalised relative weights π(ω) within a
configuration space C arise, which are used for the sampling of the PDF P:

P(ω) =
π(ω)∫

C dω π(ω)
, (39)

being oftentimes not directly accessible. In the context of statistical physics, π(ω) is often
chosen to be the relative Boltzmann weight e−βE(ω) of each configuration ω. While this
relative Boltzmann weight is accessible as long as E(ω) is known, the full partition function
to normalise the weights is in general not.

In order to efficiently sample the configuration space C according to the relative
weights, the methods in this review use a Markovian random walk to generate {ω1, . . . , ωm}.
Let ωn be the random state of a random walk at a discrete step n. The state ωn+1 at the
next step is randomly determined according to the conditional probabilities T(ω → ω′)
(transition probabilities). These transition probabilities are normalised by∫

C
dω′ T(ω → ω′) = 1 . (40)

Markovian random walks obey the Markov property, which means the random walk is
memory-free and the transition probability for multiple steps factorises into a product over
all time steps:

T(ω(0) → ω(1) → · · · → ω(m−1) → ω(m)) =
m−1

∏
i=0

T(ω(i) → ω(i+1)) (41)

with ω(0) the start configuration. We require the Markovian random walk to fulfil the
following conditions: First, the random walk should have a certain PDF P(ω) defined by
the weights π(ω) in Equation (39) as a stationary distribution. By definition, P(ω) is a
stationary distribution of the Markov chain if it satisfies the global balance condition:∫

C
dω P(ω)T(ω → ω′) = P(ω′) . (42)

Second, we require the random walk to be irreducible, which means that the transition
graph must be connected and every configuration ω ∈ C can be reached from any configu-
ration ω′ ∈ C in a finite number of steps. This property is necessary for the uniqueness of
the stationary distribution [147]. Lastly, we require the random walk to be aperiodic (see
Ref. [147] for a rigorous definition). Together with the irreducibility condition, this ensures
convergence to the stationary distribution [147].

There are several possibilities to design a Markov chain with a desired stationary
distribution [146–151]. Commonly, the Markov chain is constructed to be reversible. This
means that it satisfies the detailed balance condition:

P(ω)T(ω → ω′) = P(ω′)T(ω′ → ω) , (43)

which is a stronger condition for the stationarity of P than the global balance condition in
Equation (42). One popular choice for the transition probabilities T(ω → ω′) that satis-
fies the detailed balance condition is given by the Metropolis–Hastings algorithm. Most
applications of MCI reviewed in this work are based on the Metropolis–Hastings algo-
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rithm [149,150]. In this approach, the transition probabilities T(ω → ω′) are decomposed
into propositions T̃(ω → ω′) and acceptance probabilities pacc(ω → ω′) as follows:

T(ω → ω′) = T̃(ω → ω′)pacc(ω → ω′) . (44)

The probabilities to propose a move T̃(ω → ω′) can be any random walk satisfying the
irreducibility and aperiodicity condition. By inserting the decomposition of the transition
probabilities Equation (44) into the detailed balance condition Equation (43), one obtains
for the acceptance probabilities:

pacc(ω → ω′)
pacc(ω′ → ω)

=
P(ω′)T̃(ω′ → ω)

P(ω)T̃(ω → ω′)
=

π(ω′)T̃(ω′ → ω)

π(ω)T̃(ω → ω′)
, (45)

where, in the last step, the idea that the unknown normalisation factors (see Equation (39))
of the PDF cancel was used. The condition in Equation (45) is fulfilled by the Metropolis–
Hastings acceptance probabilities [150]:

pacc(ω → ω′) = min
(

1,
π(ω′)T̃(ω′ → ω)

π(ω)T̃(ω → ω′)

)
. (46)

For the special case, for which the proposition probabilities are symmetric T̃(ω → ω′) =
T̃(ω′ → ω), Equation (46) reduces to the Metropolis acceptance probabilities:

pacc(ω → ω′) = min
(

1,
π(ω′)
π(ω)

)
. (47)

As an example, we regard a classical thermodynamic system with Boltzmann weights
e−βE(ω) given by the energies of configurations and the inverse temperature to give an
intuitive interpretation of the Metropolis acceptance probabilities in Equation (47). The
proposition to move from a configuration ω to a configuration ω′ with a smaller energy
E(ω′) < E(ω) is always accepted independent of the temperature. On the other hand, the
proposition to move to a configuration ω′ with a larger energy than ω is only accepted
with a probability depending on the ratio of the Boltzmann weights. If the temperature is
higher, it is more likely to move to states with a larger energy. This reflects the physics of
the system in the algorithm, focusing on the low-energy states at low temperatures and
going to the maximum entropy state at large temperatures.

4. Series-Expansion Monte Carlo Embedding

In this section, we provide a self-contained and comprehensive overview of linked-cluster
expansions for long-range interacting systems [25,29–31,34,35] using white graphs [152] in
combination with Monte Carlo integration for the graph embedding. First, we introduce
linked-cluster expansions (LCEs) and discuss perturbative continuous unitary transforma-
tions (pCUTs) [153,154] as a suitable high-order series expansion method. We then establish
an adequate formalism for setting up LCEs and discuss the calculation of suitable physical
quantities in practice. With the help of white graphs, we can employ LCEs for models with
long-range interactions and use the resulting contributions in a Monte Carlo algorithm to
deal with the embedding problem posed by long-range interactions. This approach we dub
pCUT + MC.

4.1. Motivation and Basic Concepts

The goal of all our efforts is to calculate physical observables in the thermodynamic
limit, i.e., for an infinite lattice L, using high-order series expansions. The starting point of
every perturbative problem is

H = H0 + λV , (48)
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where the Hamiltonian describing the full physical problem H can be split up into an
unperturbed part H0, which is readily diagonalisable, and a perturbation V associated with
a perturbation parameter λ, which is small compared to the energy scales of H0. We aim
to obtain a power series up to a maximal reachable order omax as an approximation of a
desired physical quantity:

f (λ) ≈ p0 + p1λ + p2λ2 + . . . pomax λomax , (49)

where the coefficients pi are to be determined by the series expansion. We want to use the
information contained in the power series to infer the properties of the approximated func-
tion f (λ) [155]. The cost of determining the coefficients is associated with an exponential
growth in complexity with increasing order [155]. Hence, calculations are performed with
the help of a computer programme. Obviously, the computer cannot deal with an infinitely
large lattice. Instead, we must look at finite cut-outs consisting of a finite set of lattice sites
that are connected by bonds (or links) symbolising the interactions of the Hamiltonian on
the lattice. We term these cut-outs clusters. If two clusters A and B do not share a common
site or conterminously do not have a link that connects any site of A and B with each
other (A ∩ B = ∅), then the cluster C = A ∪ B is called a disconnected cluster. Otherwise, if
no such partition into disconnected clusters A and B exists (A ∩ B ̸= ∅), the cluster C is
called connected. We can define quantum operators M (e.g., a physical observable) on these
clusters just as on the infinite lattice.

There are essentially two ways of performing high-order series expansions. The first
one is the naive approach of taking a single finite cluster C ⊂ L [153,154,156–158] and
designing it such that the contribution of M(C) coincides with the contributions on the
infinite lattice M(L) = M(C) up to the considered order in the perturbation parameter.
The cluster needs to be chosen large enough such that the perturbative calculations up
to the considered order are not affected by the boundaries of the cluster. Another way of
performing calculations is to construct the operator contribution on a cluster—coinciding
with the infinite lattice contributions up to a given order—by decomposing it into all
possible contributions on smaller clusters [155,159–170]. Now, the contributions on many,
but smaller clusters must be determined and added up to obtain the contribution on the
infinite lattice:

M(L) = M(C) = ∑
C′⊂C

M(C′) . (50)

In contrast to the previous approach, we willingly accept boundary effects for the many
subclusters. Such a cluster decomposition is known to be computationally more efficient
because it suffices to calculate the contributions on the Hilbert space of the smaller clusters
reducing the overhead of non-contributing processes, and it also suffices to perform the
calculations only on a few clusters as many give identical contributions due to symmetries.
This can significantly reduce the overhead.

However, there are subtleties about the validity of performing calculations on finite
clusters, e.g., when setting up a linked-cluster expansion (linked-cluster means only con-
nected clusters contribute), the operator M must satisfy a certain property, namely cluster
additivity. The quantity M is called cluster additive if and only if the contribution on dis-
connected clusters A ∪ B solely comes from the contributions on its constituent connected
clusters A and B. This means we can simply add the contributions of A and B from the
smaller connected clusters to obtain the one for the disconnected cluster, i.e.,

M(A ∪ B) = M(A) +M(B), (51)

as illustrated schematically in Figure 3.
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Figure 3. Schematic illustration of cluster additivity. The contribution of a disconnected cluster A ∪ B
(clusters within dashed circle) made up of individual connected clusters A and B (yellow areas) is the
sum of its individual parts.

We can also understand cluster additivity in the language of perturbation theory
where acting on bonds in every order forms a cluster of perturbatively active bonds. If such
a cluster is connected, we call these processes linked. So, cluster additivity simultaneously
means that only linked processes will contribute. Cluster additivity is at the heart of the
linked-cluster theorem, which states that only linked processes will contribute to the overall
contribution in the thermodynamic limit. To set up a linked-cluster expansion, we want to
exploit cluster additivity and the linked-cluster theorem so that we can “simply” add up
the contributions from individual connected clusters to obtain the desired power series in
the thermodynamic limit.

An example of a cluster additive quantity is the ground-state energy E0. Imagine we
want to calculate the ground-state energy of a non-degenerate ground-state subspace, then
cluster additivity is naturally fulfilled:

E0(A ∪ B) = E0(A) + E0(B), (52)

and we can calculate the ground-state energy on A ∪ B from its individual parts A and B.
However, cluster additivity is not satisfied in general. We can construct a counterexample
by considering the first excited state with energy E1. For example, consider the first
excitation above the ferromagnetic ground state of the transverse-field Ising model in the
low-field limit that is a single spin flip dressed with quantum fluctuations induced by the
transverse field [113]. We usually refer to such excitations as quasiparticles (qp). Here, we
cannot add the contributions on clusters A and B to obtain the excitation energy on cluster
A ∪ B:

E1(A ∪ B) ̸= E1(A) + E1(B) . (53)

How to set up a linked-cluster expansion for intensive properties is not obvious, and it
seemed out of reach after the introduction of linked-cluster expansions in the 1980s [159–161].
Only several years later, it was noticed by Gelfand [162] that additivity can be restored for
excited states when properly subtracting the ground-state energy. This approach was later
generalised to multiparticle excitations [154,156,164,165] and observables [154,163].

In the following, we first introduce a perturbation theory method that maps the
original problem in Equation (48) to an effective one. We will show that the derived
effective Hamiltonian and observables satisfy cluster additivity. In the subsequent section,
we make use of the property and show how we can set up a linked-cluster expansion for
energies of excited states and observables by properly subtracting contributions from lower
energy states.

4.2. Perturbation Method: Perturbative Continuous Unitary Transformations

The first step towards setting up a linked-cluster expansion is to find a perturbation
method that satisfies cluster additivity, which is generically not given and a non-trivial
task [171]. Here, we use perturbative continuous unitary transformations (pCUTs) [153,154]
that transform the original Hamiltonian perturbatively order by order into a quasiparticle-
conserving Hamiltonian, reducing the original many-body problem to an effective few-body
problem. We start discussing how to solve the flow equation to obtain the pCUT method
and show afterwards how the Hamiltonian decomposes into additive parts that can be
used for a linked-cluster expansion.



Entropy 2024, 26, 401 18 of 135

We strive to solve the usual problem of perturbation theory of Equation (48). The
unperturbed part H0 can be easily diagonalised exactly with a spectrum that has to be
equidistant and bounded from below. Additionally, the perturbation V must be a sum of
operators Tn:

V =
N

∑
n=−N

Tn , (54)

containing all processes changing the energy by n quanta and—if properly rescaled—
corresponding to the same number of quasiparticles n. The goal of the pCUT method is
to find an optimal basis in which the many-body problem of the original Hamiltonian
reduces to an effective few-body problem. For that, we introduce a unitary transformation
depending on a continuous flow parameter ℓ and define

H(ℓ) = U†(ℓ)HU(ℓ) . (55)

In the limiting case ℓ = 0, we require H(0) = H to recover the original Hamiltonian, and
for ℓ = ∞, we require limℓ→∞ H(ℓ) = Heff so that the unitary transformation maps the
original to the desired effective Hamiltonian. We can rewrite the unitary transformation as

U(ℓ) = Tℓ exp
(
−
∫ ℓ

0
η(ℓ′)dℓ′

)
, (56)

where η is the anti-hermitian generator generating the unitary transformation and Tℓ the
ordering operator for the flow parameter. Taking the derivatives of Equation (55) and
Equation (56) in ℓ, we eventually arrive at the flow equation:

dH(ℓ)

dℓ
= [η(ℓ),H(ℓ)] . (57)

Flow equations have been studied for quite some time in mathematics and physics with a
variety of applications [172–180]. It was Knetter and Uhrig [153] who proposed a pertur-
bative ansatz for the generator of continuous unitary transformations along the lines of
Mielke [180], introducing the quasiparticle generator (also known as the “MKU generator”)
for the pCUT method:

ηqp(ℓ)i,j := sgn(H0 i,i −H0 j,j)Hi,j(ℓ) , (58)

where the indices i, j refer to blocks of the Hamiltonian labelling the quasiparticle number.
Diagonal blocks Hi,i contain all processes conserving the number of quasiparticles i, while
off-diagonal blocks Hi,j contain all processes changing the quasiparticle number from i to j.
The reasoning behind the ansatz can be explained by looking at sgn(H0 i,i −H0 j,j), where
processes i → j in Hi,j are assigned the opposite sign of the inverse processes j → i, and
therefore, the idea is to “rotate away” off-diagonal blocks by the unitary transformation
during the flow of ℓ, while processes that do not change the quasiparticle number are not
transformed away due to sgn(0) = 0, but get renormalised during the flow. Consequently,
in the limit ℓ → ∞, we obtain an effective Hamiltonian Heff that is block diagonal in n. This
idea is depicted in Figure 4.

Next, we make a perturbative ansatz for the Hamiltonian during the flow:

H(ℓ) = H0 +
∞

∑
k=1

∑j nj=k

λn1
1 . . . λ

nNλ
Nλ ∑

dim(m)=k
F(ℓ; m)T(m) , (59)
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with the notation

m = (m1, m2, m3, . . . , mk) , (60)

mi ∈ {0,±1,±2, . . . ,±N} , (61)

dim(m) = k , (62)

T(m) = Tm1 Tm2 Tm3 . . . Tmk , (63)

with F(ℓ; m) being undetermined real functions. We introduce Nλ distinct expansion
parameters instead of just a single λ to keep the notation as general as possible because in
Section 4.6.3, about white graphs, we will need multiple expansion parameters to encode
additional information. Inserting Equations (58) and (59) into the flow equation (57), we can
solve the equation perturbatively order-by-order as we obtain a recursive set of differential
equations for F(ℓ; m).

Figure 4. Illustration of the method of perturbative continuous unitary transformations (pCUTs)
transforming the original Hamiltonian on the left to a block-diagonal quasiparticle-conserving
effective Hamiltonian on the right. The desired effective Hamiltonian is given in the limit ℓ → ∞
of the flow parameter ℓ of the continuous unitary transformation H(ℓ) = U†(ℓ)H(0)U(ℓ). While
the different quasiparticle sectors interact with each other by the off-diagonal blocks in the original
Hamiltonian, the off-diagonal blocks are zero in the effective Hamiltonian as they are “rotated away”
during the flow.

To recover the original Hamiltonian H, we have to demand the correct initial condi-
tions F(0; m) = 1 for |m| = 1 and F(0; m) = 0 for |m| > 1. We can solve the differential
equations (cf. Ref. [153]) exactly for ℓ → ∞, yielding

Heff = H0 +
∞

∑
k=1

∑j nj=k

λn1
1 . . . λ

nNλ
Nλ ∑

dim(m)=k,
M(m)=0

C(m)T(m), (64)

with F(∞; m) = C(m) ∈ Q being exact rational coefficients and the restriction
M(m) = ∑k

i=1 mi = 0 making the products T(m) quasiparticle-conserving [153]. Hence, the
commutator of the effective Hamiltonian with the unperturbed diagonal part of the original
Hamiltonian vanishes ([Heff,H0] = 0). Note that, so far, the effective Hamiltonian (64) is
model independent. It only depends on the overall structure of Equation (54). The generic
form of the Hamiltonian comes at the cost of an additional normal ordering usually by
applying the Hamiltonian to a cluster. Of course, it could also be performed explicitly
by using the hard-core bosonic commutation relations, but the former approach can be
handled much easier by a computer programme. Yet, we achieved our goal of obtaining a
block-diagonal Hamiltonian:

Heff =
⊕
n=0

Heff n , (65)

where Heff n is the effective irreducible Hamiltonian of n quasiparticle processes (see also
Section 4.3). Let us emphasise again that this block-diagonal structure allows us to solve
the n quasiparticle blocks individually, which significantly reduces the complexity of the
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original many-body problem to an effective one that is block-diagonal in the quasiparticle
number n.

If we want to calculate an effective observable, we can make an ansatz along the same
lines [154]. We insert the perturbative ansatz:

O(ℓ) =
∞

∑
k=1

∑j nj=k

λn1
1 . . . λ

nNλ
Nλ

k+1

∑
i=1

∑
dim(m)=k

G(ℓ; m; i)O(m; i) (66)

with undetermined functions G(ℓ; m; i). The operator product is defined as

O(m; i) = Tm1 . . . Tmi−1OTmi+1 . . . Tmk . (67)

Inserting exactly the same generator (58) and the ansatz for the observable in Equation (66)
instead of the Hamiltonian into the flow Equation (57), we arrive at

Oeff =
∞

∑
k=1

∑j nj=k

λn1
1 . . . λ

nNλ
Nλ

k+1

∑
i=1

∑
dim(m)=k

C̃(m; i)O(m; i) (68)

with C̃(m; i) = G(∞; m; i) ∈ Q by solving the resulting set of differential equations for
ℓ → ∞ [154]. Note that the last sum does not contain a restriction M(m) = 0, and
therefore—in contrast to the effective Hamiltonian—effective observables are not (necessar-
ily) quasiparticle-conserving.
We have just derived the effective form of the Hamiltonian and observables in the pCUT
method that have a very generic form depending only on the structure of the perturbation
of Equation (54). As already stated, the model dependence of our approach comes into
play when performing a linked-cluster expansion by applying the effective Hamiltonian
or observable to finite clusters. But how do we know if the effective quantities are clus-
ter additive? We follow the argumentation of Refs. [181,182] by looking at the original
Hamiltonian (48) that trivially satisfies cluster additivity as long as all bonds represent a
non-vanishing term in V between sites (“bond equals interaction”). Thus, the Hamiltonian
on a disconnected cluster A ∪ B:

H|A∪B = H|A +H|B (69)

is cluster additive because H|A and H|B are non-interacting. Here, we denote the restriction
of the Hamiltonian H to a cluster C as H|C. We can further insert this property into the
flow equation:

dH(ℓ)|A∪B
dℓ

= [η(ℓ)|A∪B,H(ℓ)|A∪B]

dH(ℓ)|A
dℓ

+
dH(ℓ)|B

dℓ
= [η(ℓ)|A + η(ℓ)|B,H(ℓ)|A +H(ℓ)|B]
= [η(ℓ)|A,H(ℓ)|A] + [η(ℓ)|B,H(ℓ)|B] .

(70)

Here, we used the property of H(0) that it commutes on disconnected clusters and the
fact that the Hamiltonian is continuously transformed during the flow starting from ℓ = 0.
Therefore, the derivative and the commutator can be split up, acting on each cluster individu-
ally and preserving cluster additivity during the flow. Consequently, the effective Hamiltonian:

Heff|A∪B = Heff|A +Heff|B (71)

in the limit ℓ → ∞ is cluster-additive as well. The same proof holds for effective observables.
Another more physical argument is that the effective pCUT Hamiltonian can be written
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as a sum of nested commutators of T-operators [152,167]. For instance, considering the
perturbation V = T−1 + T0 + T+1, the effective Hamiltonian looks like

Heff = H0 + λT0 + λ2[T+1, T−1] +
λ3

2
([[T+1, T0], T−1] + [T+1, [T0, T−1]]) + . . . . (72)

Splitting up Tn = ∑l τn,l into local operators acting on bonds l, the nested commutators
vanish for processes that are not linked. Hence, the linked-cluster theorem is fulfilled, and
the effective Hamiltonian is cluster-additive. To emphasise the linked-cluster property, the
generic effective Hamiltonian is often written as

Heff = H0 +
∞

∑
k=1

∑j nj=k

λn1
1 . . . λ

nNλ
Nλ ∑

dim(m)=k
M(m)=0

∑
C

|EC |≤k

C(m) ∑
l1,...,lk⋃k
i=1 li=C

τm1,l1 . . . τmk ,lk , (73)

where the sum over C runs over all possible connected clusters with maximal k bonds
(k ≥ |EC|) [152]. The notation EC will be clarified in Section 4.6.2, where graphs are formally
introduced. In this context, it is simply the set of bonds of a connected cluster C and |EC|
the number of bonds in this set. The condition

⋃k
i=1 li = C arising from the linked-cluster

theorem ensures that the cluster consisting of active links and sites during a process must
match with the bonds and sites of the connected cluster C. For observables, the generalised
condition

⋃k
i=1 li ∪ x = C holds, where the index x can either refer to a site (local observable)

or a link (non-local observable), and we have

Oeff =
∞

∑
k=1

∑j nj=k

λn1
1 . . . λ

nNλ
Nλ

k+1

∑
i=1

∑
dim(m)=k

∑
C

|EC |≤k

C̃(m; i)

× ∑
l1,...,lk⋃k

i=1 li∪x=C

τm1,l1 . . . τmi−1,li−1
Oxτmi ,li . . . τmk ,lk .

(74)

Although we showed that the effective Hamiltonian and observables are cluster-additive
and, therefore, fulfil the linked-cluster theorem, to set up a linked-cluster expansion,
there are important subtleties remaining when we restrict the effective Hamiltonian and
observables to the quasiparticle basis, which we need to address before we can discuss how
to perform the calculations in practice.

4.3. Unravelling Cluster Additivity

In this subsection, we need to clarify how we can use the cluster-additive property of
the effective pCUT Hamiltonian and observables to set up a linked-cluster expansion not
only for the ground-state energy, but also for the energies of excited states. Many aspects
of this section are based on the original work of Ref. [154], in which a general formalism
was developed for how to derive suitable quantities for the calculation of multiparticle
excitations and observables. We further develop this formalism by inferring the concept of
cluster additivity for the quasiparticle basis, introducing the notion of particle additivity.
The term “additivity” in this context was recently introduced by Ref. [171].

We start by recalling that the effective Hamiltonian is block-diagonal, and we can write
the Hamiltonian operator as a sum of irreducible operators of n quasiparticle processes:

Heff = ∑
n=0

Heff,n . (75)

We can express the n quasiparticle processes in second quantisation in terms of local (hard-
core) bosonic operators b†

i creating and bi annihilating a quasiparticle at site i. When
considering quantum magnets like we do in this review, a hard-core repulsion comes
into play allowing only a single quasiparticle at a given site [154]. For instance, in the
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ferromagnetic ground-state of the 2D Ising model, an elementary excitation is given by
a single spin flip, which can be interpreted as a quasiparticle excitation [113]. Obviously,
at most one excitation on the same site is allowed. Different particle flavours τ can also
be accounted for by incorporating an additional index τ of the operator b(†)i,τ . To keep
the notation simple, we will drop this additional index in the following. The irreducible
operators in the second quantisation and normal-ordered form then read

Heff 0 = ϵ01 ,

Heff 1 = ∑
i

∑
j

ti;jb†
j bi ,

Heff 2 = ∑
i1,i2

∑
j1,j2

ti1,i2;j1,j2 b†
j2 b†

j1 bi2 bi1 ,

...

Heff n = ∑
i1,...,in

∑
j1,...,jn

ti1 ...,in ;j1,...,jn b†
jn . . . b†

j1 bin . . . bi1 .

(76)

Written in normal order, the meaning of these processes is directly clear when acting on
states in the quasiparticle basis. The prefactors ti1 ...,in ;j1,...,jn are to be determined by applying
the effective pCUT Hamiltonian (64) to an appropriately designed cluster C. Let us consider
the quasiparticle basis on a connected cluster C:

{|0⟩C , |1⟩C , |2⟩C , . . . , |n⟩C} = {|0⟩C , |1; i⟩C , |2; i1, i2⟩C , . . . , |n; i1, i2, . . . , in⟩C} , (77)

where the number n specifies the number of particle excitations and the indices ij denote
the positions of the n (local) excitations. The effective pCUT Hamiltonian is quasiparticle
conserving, so let us restrict it to N particle states, like when evaluating its matrix elements
in this basis. If we evaluate by acting on a state with fewer particles than particles involved
in the process, then the irreducible operator annihilates more particles than there are and
the contribution is zero, that is Hn|N = 0 for N < n. When we determine the action of
Heff n|n for N = n, this allows us to determine all prefactors ti1 ...,in ;j1,...,jn defining the action
of Heff n on the entire unrestricted Hilbert space. The second quantisation presents a natural
generalisation of the Hamiltonian restricted to a finite number of particles to an arbitrary
number of particles [154]. We can construct Hn|N for N > n from Hn|n since the latter
completely defines the action Heff n on the entire Hilbert space.

Although everything seems fine so far to set up a linked-cluster expansions, let us
tell you that it is not. We finished the motivation in Section 4.1 with the statement that we
cannot simply add up contributions for energies of excited states (cf. Equation (53)). The
reason is that, although we showed that Heff is cluster additive, the irreducible operators
restricted to the N particle basis Heff n|N are in fact not. To grasp a better understanding of
the abstract concept of cluster additivity and why setting up a linked cluster expansion for
higher particle channels usually fails, let us consider the following basis on a disconnected
cluster A ∪ B:

{|0⟩A∪B , |1⟩A∪B , |2⟩A∪B , . . . } = {|0⟩A ⊗ |0⟩B , |0⟩A ⊗ |1⟩B , |1⟩A ⊗ |0⟩B ,

|0⟩A ⊗ |2⟩B , |1⟩A ⊗ |1⟩B , |2⟩A ⊗ |0⟩B , . . . } ,
(78)

where |n⟩C represents all possible n-particle states living on a cluster C. While there is only
one way to decompose the zero-particle states |0⟩A∪B on the disconnected cluster A ∪ B,
one-particle states |1⟩A∪B decompose into two sets of states with a particle on cluster A
(|1⟩A ⊗ |0⟩B) and a particle on B (|0⟩A ⊗ |1⟩B). For two-particle excitations |2⟩A∪B, there
are three possibilities to distribute the particles. In general, N-particle states have the form
|k⟩A ⊗ |N − k⟩B with k ∈ {0, 1, . . . , N}, and there are N + 1 possibilities to decompose
the states.



Entropy 2024, 26, 401 23 of 135

When restricting Equation (51) to these N-quasiparticle states, a cluster-additive
Hamiltonian must decompose as

Hcl. add.
eff |NA∪B =

N⊕
k=0

(
Heff|kA +Heff|N−k

B

)
, (79)

where we introduce the notation |nC restricting the Hamiltonian to all n-quasiparticle states
on a cluster C. The direct sum in Equation (79) is introduced to emphasise that, for a
cluster additive Hamiltonian, there must not be any particle processes between the two
disconnected clusters A and B. The Hilbert space on the disconnected cluster A ∪ B can be
seen as the natural extension of the Hilbert spaces on cluster A and B, and we can define the
operators on the clusters A and B in terms of the Hilbert space on A ∪ B as a tensor product:

Heff|kA := Heff|k ⊗ 1|N−k ,

Heff|kB := 1|N−k ⊗Heff|k ,
(80)

where operators on the left of ⊗ are defined on the Hilbert space of A and the operators to
the right on the Hilbert space of B. The issue with Equation (79) is that, when we restrict
the particle basis to N on the disconnected cluster A ∪ B, there are contributions from lower
particles channels coming from the N + 1 possibilities to distribute the N particles on the
two clusters. For example, if we look at the one-particle space:

Hcl. add.
eff |1A∪B =

(
Heff|1A +Heff|0B

)
⊕
(
Heff|0A +Heff|1B

)
, (81)

we see that, in addition to the one-particle contributions, we obtain additional zero-particle
contributions. The left part of the direct sum stems from acting on |1⟩A ⊗ |0⟩B and the
right side from acting on |0⟩A ⊗ |1⟩B. There are always two possibilities to distribute the
one-particle excitation on the two clusters where the other cluster is always unoccupied,
which gives an additional zero-particle contribution. This fact is schematically illustrated
in Figure 5a.

Figure 5. Schematic illustration of cluster additivity (a) and particle additivity in the one-particle
basis (b) on a disconnected cluster A ∪ B (grey area) consisting of individual connected clusters A
and B (yellow areas). (a) Cluster additivity in the one-particle basis translates to one particle being
on cluster A and zero on B and vice versa. To calculate the contribution on the disconnected cluster
A ∪ B, both contributions need to be considered including the cases of zero occupancy. (b) Particle
additivity is fulfilled when the one-particle contribution on a disconnected cluster A ∪ B is simply
the sum of one-particle contributions on the connected clusters A and B.

This is not the desired behaviour for a linked-cluster expansion. We would like the
general notion of Equation (51) to directly translate to the particle-restricted basis, which is
illustrated in Figure 5b. In other words, our goal is to find a notion of (cluster) additivity in
the restricted particle basis such that we can simply add up the N-particle contributions
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of individual clusters without caring about lower particle channels. We define particle
additivity as

Hadd.
eff |NA∪B := Heff|NA ⊕Heff|B N , (82)

where we demand the other contributions from Equation (79) to vanish. The crucial thing
to notice is that irreducible operators (76) in the particle basis:

Heff N |NA∪B ≡ Hadd
eff |NA∪B (83)

are, in fact, particle-additive [154,171]. In the following, we will show that this is indeed
the case. First, we remember that, for the ground-state energy, we can trivially add up the
contributions. Starting from the definition for cluster additivity (79), we have

Hcl. add
eff |0A∪B = Heff|0A +Heff|0B

≡ Heff 0|0A +Heff 0|0B ≡ Hadd
eff |0A∪B .

(84)

Second, from restricting the decomposition of Equation (75) to the N = 1 particle channel,
we can express the irreducible one-particle operator as

Heff 1|1A∪B = Hcl. add.
eff |1A∪B −Heff 0|1A∪B . (85)

We recall that, by calculating Heff 0|0, we can automatically derive Heff 0 on the entire Hilbert
space, which subsequently defines Heff 0|1. Therefore, by inserting the definition for cluster
additivity (79), we obtain

Hcl. add.
eff |1A∪B −Heff 0|1A∪B =

[(
Heff|1A +Heff|0B

)
⊕
(
Heff|0A +Heff|1B

)]
−
[(

Heff 0|1A +Heff 0|0B
)
⊕
(
Heff 0|0A +Heff 0|1B

)]
=
(
Heff|1A −Heff 0|1A

)
⊕
(
Heff|1B −Heff 0|1B

)
=Heff 1|1A ⊕Heff 1|1B
≡Hadd.

eff |1A∪B ,

(86)

where we used the definition of Equation (82) in the last line. Hence, we have proven
Equation (83) for N < 2. The above proof can be readily extended to N ≥ 2.

We achieved our goal of finding a notion of cluster additivity in the particle basis,
which we termed particle additivity. We can determine the desired particle-additive
quantities by using the subtraction scheme:

Hadd.
eff |N ≡ Heff N |N = Heff|N −

N−1

∑
n=0

Heff n|N , (87)

which comes from Equation (75) by restricting it to an N-particle basis. This is an inductive
scheme starting from N = 0 calculating the irreducible additive quantity Heff 0|0. This
result can be used to calculate the subsequent irreducible additive quantity Heff 1|1 for
N = 1. Then, for N = 2, we use the results from N = 0 and N = 1 to calculate Heff 2|2,
and so on. Again, it is important that Heff n|n completely defines the operator Heff n and,
therefore, any Heff n|m.

When considering effective observables, the particle number is no longer conserved
and more types of processes are allowed. We need to generalise Equation (75) for effective
observables by introducing an additional sum over d that is the change in the quasiparticle
number. An effective observable, thus, decomposes as

Oeff = ∑
n=0

∑
d≥−n

Oeff n,d , (88)
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where Oeff n,d are irreducible contributions [154]. When writing them in second quantisa-
tion, we have

Oeff n,d = ∑
i1,...,in

∑
j1,...,jn+d

t̃i1 ...,in ;j1,...,jn+d b†
jn+d

. . . b†
j1 bin . . . bi1 . (89)

We can directly see that the d quasiparticles are created because there are d additional
creation operators. When d is negative, d quasiparticles are annihilated. We can infer a
notion for cluster additivity and particle additivity along the same lines:

Ocl. add.
eff |N→N+d

A∪B =
N⊕

k=0

(
Oeff|k→k+d

A +Oeff|N−k→N−k+d
B

)
, (90)

Oadd.
eff |N→N+d

A∪B = Oeff|N→N+d
A ⊕Oeff|N→N+d

B . (91)

To determine the particle additive parts, we can use an analogue subtraction scheme as
described in Equation (87), which can be denoted as

Oeff N,d|N→N+d = Oeff|N→N+d −
N−1

∑
n=0

Oeff n,d|N→N+d . (92)

If we want to calculate Oeff N,d|N→N+d, then we have to inductively apply Equation (92).
There are several things to be noted at this point. First, not all perturbation theory

methods satisfy cluster additivity (79), and in this case, we cannot write operators as a
direct sum any longer. There will be quasiparticle processes between one and the other
cluster changing the number of particles on each cluster [155,162]. This is sketched in
Figure 6 by the presence of an additional term.

Figure 6. For operators that are not cluster additive, the contribution on the disconnected cluster
A ∪ B originates not only from the sum of the contributions where a single particle is on A or B, but
also from contributions where the particle can hop between the two connected clusters.

When falsely performing a linked-cluster expansion, it can be noticed immediately
that the approach breaks down. A symptom of non-cluster additivity is the presence of
contributions of lower orders than expected from the number of edges of the graph [155].
When calculating reduced contributions in a linked-cluster expansion, we subtract only
contributions of connected subgraphs, which leaves non-zero contributions of disconnected
clusters when the perturbation theory method is not cluster-additive. However, there are
notable exceptions when a linked-cluster expansion for energies of excited states is still cor-
rect even though the perturbation theory method is not cluster-additive [163–165,183–186].
This is only possible when the considered excitation does not couple with a lower particle
channel, i.e., lower lying states are described by a distinct set of quantum numbers lying in
another symmetry sector [155,165,187]. For instance, consider the elementary quasiparticle
excitation in a high-field expansion for the transverse-field Ising model (TFIM), then the
structure of the perturbation is T−2 + T0 + T2, and therefore, the first excited state does
not couple directly with the ground state (there is no T±1, which is due to symmetry). If
one wants to draw a comparison, we can think of this as being similar to the case when
calculating the excitations in the density matrix renormalisation group. It is no problem to
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target an excited state if it is in a different symmetry sector than the ground state, but if it
is in the same symmetry sector described by the same set of quantum numbers, then the
Hamiltonian needs to be modified to project out the ground state [188].

Recently, a minimal transformation to an effective Hamiltonian was discovered that
preserves cluster additivity. This method, called “projective cluster-additive transforma-
tion” [171], can be used analogously and is even more efficient for the calculation of
high-order perturbative series. In this review, however, we stick to the well-established
pCUT method.

4.4. Calculating Cluster Contributions

At this point, we may ask how to evaluate physical quantities on finite clusters in
practice. To evaluate these quantities, we must evaluate them in the quasiparticle basis.
In general, when setting up a cluster expansion, may it be non-linked or linked, it is
important to subtract the contributions from all possible subclusters to prevent over-
counting. Mathematically, for a quantity M (Heff or Oeff), this can be written as

M|···C = M|···C − ∑
C′⊂C

M|···C′ , (93)

where the sum runs over all real subclusters C′ in cluster C, and we call the resulting
quantity M|···C reduced. Starting from the smallest possible cluster (e.g., a single bond
between two sites), this formula can be inductively applied to determine the reduced
quantity on increasingly big clusters. An essential observation to make is that reduced
operators vanish on disconnected clusters by construction if the operator M is additive
since we subtract all contributions from individual subclusters. As the linked-cluster
theorem applies, we can set up a cluster expansion:

M(L)|···C = ∑
C⊂L

M(C)|···C (94)

of connected clusters, but we need to consider reduced quantities M to prevent over-
counting. For a light notation, we will drop the bar in the sections below as we will only
consider reduced contributions on graphs anyway.

Now, we are ready to look at the problem from a more practical point of view. From
the previous subsection, we know how cluster additivity translates into the particle basis
and how to construct particle-additive parts, namely the irreducible quasiparticle contri-
butions. We decompose the effective Hamiltonian into its irreducible contributions by
explicitly calculating:

Heff 0|0 = Heff|0 (95)

Heff 1|1 = Heff|1 −Heff 0|1 , (96)

Heff 2|2 = Heff|2 −Heff 1|2 −Heff 0|2 (97)
... (98)

Heff N |N = Heff|N −
N−1

∑
n=0

Heff n|N . (99)

Again, consider the effective Hamiltonian in the second quantisation made up of hard-core
bosonic operators b(†)i annihilating (creating) quasiparticles and the quasiparticle counting
operator ni = b†

i bi occurring in the unperturbed Hamiltonian H0. We also consider a con-
nected cluster C, and we denote n quasiparticle states on this cluster as |n; i1, . . . , in⟩C with
the quasiparticles on the sites i1 to in. Note that, for multiple quasiparticle flavours or multi-
ple sites within a lattice unit cell, this notation can be generalised to |n; i1, . . . , in, τ1, . . . , τn⟩C
by introducing additional indices τi. To lighten the notation, in the following, we stick to
the former case. Let us consider the three lowest particle channels:
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n = 0 We can directly calculate the ground-state energy E0(C) on a cluster C as it is
already additive:

E0(C) = ⟨0|Heff|0⟩C, (100)

as can be seen from Equation (95).
n = 1 To calculate the irreducible amplitudes t(1)i;j (C) associated with the hopping process

b†
j bi in Heff 1, we need to subtract the zero-particle channel, as can be seen from

Equation (96). However, we only need to subtract the ground-state energy if the
hopping process is local, b†

i bi , since the ground-state energy only contributes to
diagonal processes. Thus, we calculate

t(1)i;j (C) = ⟨1; j|Heff|1; i⟩C if i ̸= j ,

t(1)i;i (C) = ⟨1; i|Heff|1; i⟩C − E0(C) else .
(101)

n = 2 In the two-particle case, we have to distinguish between three processes: pair hop-

pings (t(2)i,j;k,l(C) b†
l b†

k bj bi with four distinct indices), correlated hoppings

(t(2)i,j;i,k(C) b†
k bj ni), and density–density interactions (t(2)i,j;i,j(C) njni). The free quasi-

particle hopping is already irreducible, and nothing has to be done, but for the
correlated hopping contribution, we have to subtract the free one-particle hopping.
In the case of the two-particle density–density interactions, we need to subtract the
local one-particle hoppings, as well as the ground-state energy, as this process is
diagonal (cf. Equation (97)). Therefore, we calculate

t(2)i,j;k,l(C) = ⟨2; k, l|Heff|2; i, j⟩C if i ̸= j ̸= k ̸= l ,

t(2)i,j;i,k(C) = ⟨2; i, k|Heff|2; i, j⟩C − t(1)j;k (C) if i ̸= j ̸= k ,

t(2)i,j;i,j(C) = ⟨2; i, j|Heff|2; i, j⟩C − t(1)i;i (C)− t(1)j;j (C)− E0(C) if i ̸= j .

(102)

An analogous procedure can be applied for effective observables. Here, we need to deter-
mine the irreducible contributions for a fixed d. The subtraction scheme is given by

Oeff 0,d|0→d = Oeff|0→d (103)

Oeff 1,d|1→1+d = Oeff|1→1+d −Oeff 0,d|1→1+d (104)

Oeff 2,d|2→2+d = Oeff|2→2+d −Oeff 1,d|2→2+d −Oeff 0,d|2→2+d (105)
... (106)

Oeff N,d|N→N+d = Oeff|N→N+d −
N−1

∑
n=0

Oeff n,d|N→N+d . (107)

For d = 0, we recover exactly the same subtraction procedure as before. It is straightforward
to generalise this procedure for d ̸= 0. Let us specifically consider the example we will
encounter in the next section, when calculating correlations for the spectral weight. The
effective observable is applied to the unperturbed ground state |0⟩. Hence, there are only
contributions out of the ground state (N = 0), and the effective observables decomposes into

Oeff = Oeff 0,0 +Oeff 0,1 +Oeff 0,2 + . . . . (108)

Since only N = 0 processes contribute, nothing needs to be subtracted and the effective
observable Oeff|0→d = Oeff 0,d|0→d is irreducible and already particle-additive.

Although, for these types of calculations, the lowest orders can be analytically de-
termined by hand, the calculations usually become cumbersome quickly and must be
evaluated using a computer programme to push to higher perturbative orders (in most
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cases, a maximal order ranging from 8 to 20 is achievable). Such a programme reads the
information of the cluster (site and bond information), the “bra” and “ket” states, the coeffi-
cient lists C(m) or C̃(m; i) from Equations (64) and (68) up to the desired order, the structure
of the Hamiltonian H, the local τ-operators from the perturbation V , and if necessary, the
observable. The input states, as well as the τ-operators should be efficiently implemented
in the eigenbasis of H0 bitwise encoding the information as known, for instance, from exact
diagonalisation. If possible, the calculation should be performed with rational coefficients
for the exact representation of the perturbative series up to a desired order. The routine of
the programme is then to iterate through the operator sequences from the coefficient list C
or C̃ and to consecutively apply the τ-operators by systematically iterating over all bonds
of the cluster and calculating the action of the operator, saving the intermediate states for
the action of the next operator in the sequence. As intermediate states are superpositions of
basis states, they are saved in associative containers:

|ψ⟩ = ∑
j

cj|j⟩ , (109)

where |j⟩ is the bit representation of a basis state. The key of the associative container is the
basis state |j⟩ and the associated value, the prefactor cj. The bitwise representation of the
basis states |j⟩, as well as the τ-operators allow for a fast access and modification during
the calculation.

So far, we have introduced the pCUT method for calculating the perturbative contri-
butions on clusters. We demonstrated that the resulting effective quasiparticle-conserving
Hamiltonian is cluster-additive and showed how to extract particle-additive irreducible
contributions. We introduced a subtraction scheme for the effective Hamiltonian and ob-
servables that can be easily applied to calculate additive quantities to set up a linked-cluster
expansion. Finally, we briefly discussed an efficient implementation of the pCUT method.

4.5. Energy Spectrum and Observables

Having established the basic theoretical framework for the pCUT method, we want to
give a short overview of the physical quantities that are most frequently calculated with
this approach. To this end, we assume that we consider a single suitably designed cluster
for the calculations instead of setting up an LCE as a full graph decomposition. We will see
how we can calculate the desired quantities without thinking about the abstract concepts
necessary for linked-cluster expansions, and with the insights from this section, it will be
easier to recognise what we are aiming at. Here, we first consider the energy spectrum
of the Hamiltonian. We derive both the control-parameter susceptibility as the second
derivative of the ground-state energy, as well as the elementary excitation gap from the
effective one-quasiparticle Hamiltonian. Second, we consider observables. In the pCUT
approach, often, spectral weights are calculated, which are of great importance for inelastic
neutron scattering experiments.

4.5.1. Ground-State Energy and Elementary Excitation Gap

Following the above-described recursive scheme, we start with the zero-quasiparticle
channel assuming a non-degenerate unperturbed ground state, which is the situation in all
applications discussed in this review. The ground-state energy can be directly calculated
from the cluster as in Equation (100). We consider a suitably designed cluster that is
large enough to accommodate all fluctuations of a given maximal order omax and has
periodic boundary conditions to correctly account for translational invariance. We calculate
E0 = ⟨0|Heff|0⟩ and obtain a high-order perturbative series:

E0 =
omax

∑
o=0

poλo (110)
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in the expansion parameter λ, which is valid in the thermodynamic limit up to the given
maximal order omax. We can extract the ground-state energy per site by dividing E0 by the
number of sites of the cluster ϵ0 = E0/N. By taking the second derivative, we obtain the
control-parameter susceptibility:

χ = −d2ϵ0

dλ2 . (111)

We are usually interested in the quantum-critical properties of the model and, therefore,
analyse the behaviour about the quantum-critical point λc. The control-parameter suscepti-
bility shows the diverging power-law behaviour:

χ ∝ |λ − λc|−α (112)

with the associated critical exponent α, as we know from Table 1.
Turning to the one-quasiparticle channel, we calculate the hopping amplitudes fol-

lowing Equation (101). Here, we use open boundary conditions, again with a cluster large
enough to accommodate all fluctuations contributing to the hopping process. Note that,
in our notation, we denote ti;j for hopping amplitudes on a graph or cluster level and the
character a for processes in the thermodynamic limit. As for the ground-state energy, we
can directly infer the contribution in the thermodynamic limit if the contributing fluctu-
ations do not feel finite-size effects, and thus, we use a(j − i) in the following. Further,
we can generalise our notation to multiple particle types or larger unit cells containing
multiple sites, as mentioned earlier, by introducing additional indices ξ, τ. We denote a
hopping from unit cell i to j by δ = j − i and within the unit cells from ξ to τ. We calculate
aξ,τ(δ) = ⟨1; j, τ|Heff|1; j − δ, ξ⟩ by fixing j, due to translational symmetry. The effective
one-quasiparticle Hamiltonian in the second quantisation then is

H1qp
eff := Heff|1 = Heff 0|1 +Heff 1|1 = ϵ0N + ∑

j,δ,ξ,τ
aξ,τ(δ) b†

j,τbj−δ,ξ . (113)

Applying the Fourier transform for a discrete lattice:

bj,τ =
1√
N

∑
k

bj,τ exp(ikj) b†
j,τ =

1√
N

∑
k

b†
j,τ exp(−ikj), (114)

we can diagonalise the resulting Hamiltonian in momentum space:

F
(
H1qp

eff

)
= ϵ0N + ∑

k
b†

kΩ(k)bk = ∑
k

Ωm,n(k)b†
k,mbk,n

= ∑
k

ων(k)β†
k,νβk,ν,

(115)

introducing the operators β
(†)
k,ν(k) that diagonalise the matrix Ωm,n. The eigenenergies

ων(k) are the associated bands of the one-quasiparticle dispersion. In case of a trivial unit
cell or a single particle flavour, the dispersion matrix becomes a scalar, and we can directly
express the single-banded dispersion as

ω(k) = a(0) + 2 ∑
δ

a(δ) cos(kδ) , (116)

where the sum over δ is restricted to symmetry representatives and we assumed real
hopping amplitudes a(δ). We determine the hopping amplitudes a(δ) as a perturbative
series by performing the calculations on the properly designed cluster. Note that, even
for a single cluster, we need to perform a subtraction scheme because, in order to obtain
the irreducible contribution a(0) explicitly, we need to subtract the ground-state energy
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from ⟨i|Heff|i⟩. When we determine the elementary excitation gap at the minimum of the
lowest band:

∆ = min
k,ν

ων(k) =
omax

∑
o=0

poλo , (117)

we can as well extract the gap directly as such a series. The gap closing shows a power-
law behaviour:

∆ ∝ |λ − λc|zν (118)

about the critical point with the critical exponent zν.

4.5.2. Spectral Properties

Neutron scattering is a powerful method resolving spatial and dynamical structures in
condensed matter physics since thermal neutrons have a de Broglie wavelength of similar
length scale as interatomic distances and their energy is of the same order of magnitude
as typical excitations [189]. By measuring the change in momentum and kinetic energy in
inelastic neutron scattering experiments determining the dynamic response, not only static
properties like magnetic order can be resolved, but also dynamic properties like spin–spin
correlations [190]. The dynamic response Sαβ(k, ω) can be determined as it is proportional
to the cross-section:

d2σ

dΩdω
∝ ∑

α,β
Sα,β(k, ω) (119)

of inelastic neutron scattering [189,190]. We follow the derivations in Refs. [155,191,192]
and start with the definition of the dynamic response:

Sα,β(k, ω) =
1

2πN ∑
i,j

∫ ∞

−∞
dt exp{i[ωt − k(j − i)]}⟨Sα

j (t)S
β
i (0)⟩T , (120)

which is the space and time Fourier transform of the spin correlation function ⟨Sα(t)Sβ(0)⟩T
with α, β ∈ {x, y, z,+,−} and ⟨·⟩T referring to the thermal expectation value. In the limit of
vanishing temperature T = 0, the expectation value simplifies to ⟨·⟩ = ⟨ψ0| · |ψ0⟩ with |ψ0⟩
being the ground state. Then, we call Sα,β(k, ω) the dynamic structure factor. We introduce a
complete set of energy eigenstates {|ψΛ⟩}, where Λ denotes a set of quantum numbers, for
instance n, k, where n is the number of quasiparticles and k the lattice momentum. Writing
the dynamic structure factor in terms of these energy eigenstates, this yields the dynamic
structure factor in the spectral form as a sum:

Sα,β(k, ω) = ∑
Λ
SΛ

α,β(k, ω) , (121)

where SΛ
α,β(k, ω) is called the exclusive structure factor or spectral weight associated with the

quantum numbers Λ. We insert 1 = ∑Λ|ψΛ⟩⟨ψΛ| into the correlation function and switch
to the Heisenberg picture, where Sα

j (t) = eiHtSα
j (0)e

−iHt. The spectral weight then reads

SΛ
α,β(k, ω) =

1
2πN ∑

i,j

∫ ∞

−∞
dt exp[i(ω − EΛ + E0)t] exp[ik(j − i)]

× ⟨ψ0|Sα
j (0)|ψΛ⟩⟨ψΛ|Sβ

i (0)|ψ0⟩ ,

(122)

which, after integrating over time t, yields

SΛ
α,β(k, ω) = δ(ω − EΛ + E0)

1
N ∑

i,j
⟨ψ0|Sα

j (0)|ψΛ⟩⟨ψΛ|Sβ
i (0)|ψ0⟩ exp[ik(j − i)] . (123)
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If we consider the case (Sα
i )

† = Sβ
i or some observable with (Oi)

† = Oi, which could be a
linear combination of spin operators, then the above expression further simplifies to

SΛ(k, ω) = δ(ω − EΛ + E0)
1
N

∣∣∣∣∣∑i
⟨ψΛ|Oi|ψ0⟩e−iki

∣∣∣∣∣
2

. (124)

By the above equations, we can identify the spectral weights SΛ(k) as

SΛ(k) =
1
N

∣∣∣∣∣∑i
⟨ψΛ|Oi|ψ0⟩e−iki

∣∣∣∣∣
2

. (125)

These quantities are usually visualised as a heat map where the dispersion ω(k) is plotted
against the momentum k and the value SΛ(k, ω), that is the intensity of the scattering
signal associated with |ψΛ⟩, is colour-coded.

In the pCUT approach, we want to reformulate the observable in terms of an effective
one Oeff. Here, we want to restrict ourselves to the one-quasiparticle spectral weight.
In Ref. [191], you can also find a formulation for the two-quasiparticle case. For the
1qp spectral weight, Λ are the quantum numbers defining one-quasiparticle states, and
we denote SΛ(k) ≡ S1qp

τ (k) in the following. Since the pCUT method is a perturbative
approach, we want to reformulate the problem in the language of H0 states:

|ψ0⟩ = U|0⟩ , (126)∣∣ψ1qp
〉
= U|1; k, τ⟩ , (127)

where we introduce the momentum states |1; k, τ⟩ with additional index τ denoting a
quantum number like a flavour of the excitation or denoting a site in a unit cell. The
momentum states are defined via the Fourier transform:

|1; k, τ⟩ = 1√
N

∑
j

exp(ikj)|1; j, τ⟩ . (128)

Inserting these identities, we obtain

S1qp
τ (k) =

1
N

∣∣∣∣∣∑i

〈
ψ1qp

∣∣Oi|ψ0⟩ exp(−iki)

∣∣∣∣∣
2

=
1
N

∣∣∣∣∣∑i
⟨1; k, τ|U†OiU|0⟩ exp(−iki)

∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣∑i,j ⟨1; j, τ|Oeff,i|0⟩ exp[ik(j − i)]

∣∣∣∣∣
2

,

(129)

where we defined Oeff,i = U†OiU. For a problem with translational invariance, we can fix
the site i of the observable and introduce δ = j − i, which yields

S1qp
τ (k) =

1
N2

∣∣∣∣∣∑i,δ⟨1; i + δ, τ|Oeff,i|0⟩ exp(ikδ)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
δ

ãτ(δ) exp(ikδ)

∣∣∣∣∣
2

, (130)

where we used ãτ(δ) = ⟨1; i + δ, τ|Oeff,i|0⟩. Note that the form of the irreducible contri-
bution of the effective observable is Oeff 0,1 = ∑δ ãτ(δ)b†

δ,τ , exactly as denoted above in
Equation (108). As long as the processes ã(δ) and ã(−δ) are equivalent by means of the
model symmetries, we can use ã(δ) = ã(−δ) and further simplify S1qp

τ (k) to

S1qp
τ (k) =

∣∣∣∣∣ãτ(0) + 2 ∑
δ

ãτ(δ) cos(kδ)

∣∣∣∣∣
2

≡ |sτ(k)|2 . (131)
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So, in the pCUT method, we determine ãτ(δ) as a perturbative series with which we
can determine S1qp

τ (k). Note that this observable is already an irreducible contribution
according to Equation (92), and no subtraction scheme needs to be performed. Because we
consider the contribution Oeff|0→1 of the observable, the initial particle number is n = 0,
and nothing needs to be subtracted. To extract the quantum-critical behaviour, we need to
evaluate the expression at the critical momentum kc as

S1qp
τ (kc) =

omax

∑
o=0

poλo, (132)

yielding a perturbative series for this quantity as well. It shows a diverging critical be-
haviour that goes as

S1qp
τ (kc) ∝ |λ − λc|−(2−z−η)ν (133)

with the associated critical exponent (2 − z − η)ν. After determining the three quantities
χ, ∆, and S1qp

τ (kc) described above, we can use the extrapolation techniques described in
Section 4.8 to extract estimates for the critical point λc and the associated critical exponents.
However, we continue with the description of a linked-cluster expansion as a full graph
decomposition for long-range interacting systems. The next step on the way is to formally
introduce graphs, discuss their generation, and the associated concept of white graphs.

4.6. White Graph Decomposition

In this section, we first give a brief introduction to graph theory, which forms the
basis for understanding how linked-cluster expansions as a graph decomposition work.
Then, we discuss how to generate all topologically distinct graphs up to a certain number
of edges corresponding to the maximal number of active edges at a given perturbative
order. We conclude this section by explaining the concept of white graphs where edge
colours are ignored as a topological attribute in the classification of graphs. White graphs
are essential for tackling long-range interactions, and therefore, every graph decomposition
in this review is, in fact, a white graph decomposition.

4.6.1. Graph Theory

So far, we already defined clusters as a cut-out of the infinite lattice with a finite set of
sites and a set of bonds connecting those sites. More generally, only considering the topol-
ogy of clusters without restricting them to the geometry of lattices, we can define a graph as
a tuple G = (VG , EG) consisting of a (finite) set of vertices VG and a (finite) set of edges EG .
An edge e ∈ EG consists of a pair of vertices {µ, ν}, and these vertices µ, ν ∈ VG are called
adjacent. The degree of a vertex is the number of edges connecting it to other vertices of the
graph. In the following, we only consider undirected, simple, and connected graphs, which
means there are neither directed edges, multiple edges between two vertices, nor loops (no
edge that is joining a vertex to itself), and there always exists a path of edges connecting
any two vertices of a graph [155,193,194]. As an example, we depict a graph G = (VG , EG)
with VG = {0, 1, 2, 3, 4, 5} and EG = {{0, 1}, {0, 2}, {0, 4}, {0, 5}, {1, 3}, {2, 3}} in Figure 7.

A subgraph G ′ of a graph G (we write G ′ ⊂ G) is defined as a subset of V ′
G ⊂ VG and

E ′
G ⊂ EG [193–195]. We call G ′ a proper subgraph if V ′

G and E ′
G are proper subsets of VG

and EG .
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Figure 7. Illustration of a graph isomorphism φIso and automorphism φAuto map for an example
graph. (a) The mapping φIso(3) = 4, φIso(4) = 3 and identity for the remaining vertices is a graph
isomorphism preserving the adjacency of vertices. If such an isomorphism exists between two
graphs, they are topologically equivalent. (b) Under a graph automorphism, the edge set EG remains
invariant, i.e., the graph is mapped onto itself. Here, it is exemplified for the mapping φAuto(1) = 2,
φAuto(2) = 1 and identity for the remaining vertices. A graph automorphism is, therefore, a special
case of a graph isomorphism, which leaves the edge set invariant.

To set up a full graph decomposition, it is essential to define how to distinguish differ-
ent graphs. If there exists an isomorphism between two graphs, we call them topologically
equivalent; otherwise, they are topologically distinct. A graph isomorphism Iso(G1,G2) is a
bijective map φIso between the vertex sets of two graphs, such that

φIso : VG1 → VG2

{µ, ν} ∈ EG1 ⇔ {φIso(µ), φIso(ν)} ∈ EG2 .
(134)

So, an isomorphism preserves adjacency and non-adjacency, i.e., µ and ν are adjacent if
and only if the vertices φ(µ) and φ(ν) are adjacent for any vertices µ, ν ∈ VG [193,194,196].
A special case are graph automorphisms Auto(G), which are maps of a graph on itself, so
we have

φAuto : VG → VG
{µ, ν} ∈ EG ⇔ {φAuto(µ), φAuto(ν)} ∈ EG .

(135)

In other words, a graph automorphism is a permutation of the vertex set preserving
adjacency [194,196]. The number of graph automorphisms |Auto(G)| of a given graph
gives the number of its symmetries, and we call it the symmetry number sG = |Auto(G)| of
a graph [155,195]. Examples of a graph isomorphism and automorphism are depicted in
Figure 7. Further, if G1 ⊂ G2, the mapping (134) is injective instead of bijective such that

φMono : VG1 → VG2

{µ, ν} ∈ EG1 ⇒ {φMono(µ), φMono(ν)} ∈ EG2 ,
(136)

and we call it a subgraph isomorphism or monomorphism Mono(G1,G2) [195,197,198].
An example of a monomorphism is depicted in Figure 8a. Monomorphisms will later

become of utmost importance as they give the number of embeddings of the subgraph onto
a graph, which is the infinite lattice.
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Figure 8. Depiction of a graph monomorphism φMono and a graph with colour attributes. (a) An
example showing a graph monomorphism. The smaller graph on the left is mapped onto the bigger
graph on the right, which is the same graph as in Figure 7. Explicitly, the mapping φMono is given
by φMono(2) = 4, φMono(3) = 0, φMono(4) = 2, and φMono(5) = 5. (b) A coloured graph with the
“green” colour attribute assigned to vertices 0 and 2 (AV = {{0, green}, {2, green}}). If mappings are
applied to coloured graphs, the colour set must be left invariant, i.e., vertices with a colour must be
mapped onto each other and vertices with no colour as well.

To account for hopping processes during the embedding of graphs, we need to assign
additional attributes to graphs like colouring their vertices [195]. Then, a coloured graph
Gc is a tuple (VG , EG ,AV ), where AV is a set of pairs {µ, a} with µ ∈ V and a the colour
attribute. In Figure 8b, an example is depicted with AV = {{0, green}, {2, green}}. We
can extend the above definitions for isomorphisms and automorphisms and say that they
must preserve the vertex colour, i.e., only vertices of the same colour can be mapped
onto each other. Of course, this reduces the cardinality |Auto(Gc)| and, therefore, the
symmetry number sGc associated with the coloured graph. We can later exploit the colour
information for matching hopping vertices of the graph with the actual hopping of the
quasiparticle on the lattice. Note that, also, colouring edges of graphs with attributes AE
is useful to distinguish different types of interactions of a Hamiltonian on the graph level
and very similar properties as for coloured vertices hold. As stated above, two graphs are
topologically distinct if there does not exist a graph isomorphism between the two graphs.
Thus, for coloured graphs, the colour attribute serves as another topological attribute.
The importance of this will become apparent later in Section 4.6.3. For a more elaborate
overview of graph theory in the context of linked-cluster expansions, we recommend
Ref. [195].

4.6.2. Graph Generation

For the graph generation of (undirected) simple, connected graphs, we need to define
an ordering between all graph isomorphs such that it is possible to pick a unique repre-
sentative of all graph isomorphs that is called canonical representative [199]. One challenge
lays in efficiently generating graphs as the number of connected graphs grows exponen-
tially with the number of edges and the idea behind every algorithm must be to restrict
the number of possible graph isomorph candidates when generating new edge sets by
permutation. A well known algorithm is McKay’s algorithm [199,200], which exploits the
degree information of the vertices, sets up a search tree for vertices with the same degree,
and uses the ordering to check if the canonical representative of the current graph already
exists. We recommend using open-source libraries for the graph generation and calculation
of additional symmetries. For instance, there is “nauty” [201] and “networkX” [202] or the
“Boost Graph Library” [203].

There are various conventions for how to write the graph information to a file. One
could simply save the site and edge set as lists or save its adjacency matrix, where the rows
and columns refer to the sites and a non-zero entry in the corresponding matrix element
marks the existence of an edge between the sites [155,193,194]. Here, we suggest to simply
use a bond list. Each entry in the list contains the edge information of the graph, denoted
as ne, µ, ν, where e ∈ EG with µ, ν ∈ VG adjacent to e and ne is just a number associated
with the edge e. The number ne can be interpreted as a specific expansion parameter
corresponding to this bond. In the simplest case, there is just one expansion parameter
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and therefore a single number ne for all edges. Assigning multiple expansion parameters
becomes especially important in the next Section 4.6.3. Usually, the symmetry number sG of
a graph is calculated on the fly when generating a set of graphs and should be saved as well.
In our workflow, we save the generated graphs into bond lists and create a list containing
all connected graphs (e.g., the file names) along with their symmetry number sG . These
types of lists suffice for the calculation of the ground-state energy. When calculating 1qp
irreducible processes for the dispersion or for the spectral weight observable, we can think
of these processes breaking the graph symmetry. Therefore, after the graph generation, we
consider all possible processes on a graph and assign colour attributes to the start and end
vertices. Due to the symmetry of the processes, we assign the same colour for hoppings
and distinct colours for processes of the spectral weight (When calculating the hopping
processes of the effective 1qp Hamiltonian from vertex µ to ν, it has the symmetry tµ;ν = tν;µ
with the inverse process giving the same contributions as long as the prefactors are real
due to the Hermiticity of the Hamiltonian. Thus, we can use the same colours for start and
end vertex. The 1qp process for the spectral weight t̃µ;ν is distinct because a quasiparticle
is created at vertex µ and then subsequently hops to vertex ν. Therefore, t̃µ;ν and t̃ν;µ are,
in general, not equivalent processes t̃µ;ν ̸= t̃ν;µ, and we have to use distinct colours for
the start and end vertices. But, as mentioned in Section 4.5.2, the processes can become
equivalent by means of general model symmetries, for instance due to underlying graph
symmetries). We calculate the symmetry number sGc associated with the coloured graph.
In the end, we create a list, where each entry contains the graph, its symmetry number sG ,
a representative process (start and end vertex), and the associated symmetry number of the
coloured graph sGc , counting the number of processes that give the same contributions as
the representative process due to symmetries.

After generating the graphs and the lists, we can employ perturbation theory calcula-
tions on the graph level, viewing graphs as abstract clusters with vertices as lattice sites
connected by bonds. A programme as described above reads in the graph and process
information and repeatedly performs the pCUT calculations on every graph. The resulting
graph contributions must be added up in such a way that the information of the lattice
geometry is restored by weighting the graph contributions with embedding factors. That
is, how many ways a graph can be fit onto a lattice apart from translational invariance
(cf. Ref. [155]). For the conventional embedding of contributions from models with just
nearest-neighbour interactions, the number of graphs can be reduced as the lattice geome-
try puts a restriction on the graphs. For example, graphs containing cycles of odd length
cannot be embedded on the square lattice. In contrast, for long-range interactions, no
such restriction exists, and therefore, the lattice can be seen as a single fully connected
graph where every site interacts with each other. Hence, we have to generate every simple
connected graph up to a given number of edges as all graphs contribute. Before we turn to
the embedding problem in more detail, we will first deal with the challenges long-range
interactions pose and address the problem by using white graphs.

4.6.3. White Graphs for Long-Range Interactions

In many cases in perturbation theory, there may be more types of expansion pa-
rameters, e.g., due to the geometry of the lattice, as can be seen in the n-leg Heisenberg
ladder [152]:

H = H0 + λ⊥V + λqV (137)

with an expansion parameter λ⊥ associated with the rungs and another one λq associated
with the legs. The interaction V is given by XY interactions, and the series expansion is
performed about the Ising limit H0. Setting up a graph decomposition for this model, the
canonical approach would be to associate each expansion parameter with a distinct edge
colour, blue for λ⊥ and purple for λq.

In Figure 9a (left), all graphs with two edges and two colours (one for λ⊥ and one for
λq) are depicted on the left. It is necessary to incorporate the edge colour information as
the graphs can only be embedded correctly on the infinite lattice when the edge colour
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matches the bond type of the lattice. Another common type of perturbation problem is
where the perturbation splits into different types of interactions, although associated with
the same perturbation parameter. For instance, the problem can look like

H = H0 + λV
= H0 + λ(Vx + Vx + Vz) ,

(138)

which is essentially the form of the Hamiltonian when performing a high-field series
expansion [204] for Kitaev’s honeycomb model [205], where each site has one x-, y-, and
z-type Ising interaction bond to one of its neighbours on the honeycomb lattice, respectively.
Here, we associate the three different interaction types with three types of edge colours,
blue, green, and purple for x-, y-, and z-bonds. See Figure 9b (left) for an illustration of all
three graphs with two edges and three colours (there are only three possibilities because
colours must alternate due to the constraints posed by Kitaev’s honeycomb model). In
both cases, the edge colour is an additional topological attribute of the graph, leading to
exponentially more graphs with the number of colours, which becomes relevant when
pushing to high orders in perturbation.

Figure 9. In contrast to the conventional approach using coloured graphs (left), where different
expansion parameters or different interaction types are associated with an edge colour, for white
graphs (centre) the edge colour is ignored in the topological classification of graphs. Instead additional
information is tracked, e.g., by associating each link with abstract expansion parameters and only
substituting these abstract contribution during the embedding procedure, reintroducing the correct
colour information (right), hence the name white graphs. (a) For the problem of Equation (137) on
linear graphs with two edges, there are three distinct graphs as the expansion parameters λ⊥ and λq
are associated with individual edge colours (left), but there is only one white graph, as we associated
one abstract expansion parameter for each edge (centre). When substituting the abstract expansion
parameters with the physical one, reintroducing the correct colour, we can recover the polynomial
contributions of the conventional approach (right) (cf. Ref. [152]). (b) For the problem of Equation (138)
also on linear graphs with two edges, there are also three topologically distinct graphs (left), but
for the white graph contribution, we have to introduce multiple abstract expansion parameters for
each edge, due to the three flavours f ∈ {x, y, z} (centre). The substitution works analogously to
recover the polynomial contribution form the conventional approach (right). Parameters that are not
explicitly set are set to zero (cf. Ref. [204]).

In the case of long-range interactions, such an approach becomes unfeasible. A
Hamiltonian with long-range interactions is of the form

H = H0 + λ ∑
δ

1
|δ|d+σ

V

= H0 + ∑
δ

λδV ,
(139)
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where δ is the distance between interacting sites, d the dimension of the lattice, and σ the
long-range decay exponent and λδ = λ|δ|−(d+σ). Applying the conventional approach
from above, we would associate each of the infinitely many perturbations Vδ with its own
edge colour. The only obvious way to resolve this problem would be to truncate the sum
over δ only considering very small distances. Instead, the use of white graphs [152] can
be a solution to problems of this kind [25,29]. The idea is to change our view of how to
tackle these Hamiltonians. We ignore the edge colours of the graph—significantly reducing
the number of graphs for a given order—and instead, encode the colour information in
the expansion parameters on the graph level in a more abstract way. This is performed
by associating each edge e of the graph G with a different “abstract” perturbation param-
eter λe such that we can track how often τ-operators acted on each edge e, yielding a
multivariable polynomial:

PG({λe}) = ∑
m

vm(G)MG,m = ∑
m

vm(G) ∏
e∈EG

λ
ne,m
e , (140)

with the sum over all monomial contributions. The individual monomial contributions
consist of a prefactor vm(G), and its monomial dependency MG,m. MG,m comprises a
product of expansion parameters λe associated with edge e and their respective integer
powers ne,m ≥ 1 tracking how often each bond was active during the calculation. Let us
emphasise that we simply wrote the white graph contribution for ϵ0, tµ;ν, or t̃µ;ν explicitly as
a polynomial PG({λe}). It is only later during the embedding of these abstract generalised
contributions when the proper link colour is reintroduced by substituting the expansion
parameters by the actual expansion parameters for each realisation on the actual lattice. This
is the origin of the name “white graphs” because, during the calculation on the graph, the
colour of the links is unspecified (but encoded in the multivariable polynomial), and only
during the embedding, the colour of the edges is reintroduced. In Figure 9, we illustrate the
white graph concept in the middle. On the right, we depict how to recover the polynomial
of the conventional graph contribution from the abstract white graph contribution for
the models in Equations (137) and (138) by correctly substituting the abstract expansion
parameters. The main difference between the model (138) compared to (137) is that, for the
different interaction types, multiple parameters are associated with each edge. To account
for three types of interaction flavours, we have to consider three expansion parameters λe, f
with f ∈ {x, y, z} per edge e.

For long-range interactions, we can straightforwardly apply the exact same white
graph scheme. We substitute the abstract expansion parameter with the correct algebraically
decaying interaction strength depending on the distance between the interacting sites on
the lattice [25,29]. For this, we have to use the substitution:

λe 7→
1

|δ|(d+σ)
(141)

with δ = iν − iµ and e = {µ, ν} ∈ EG . It is also possible to incorporate multiple interaction
types, but the substitution for the different interaction types must then be performed before
the embedding, as was done in Refs. [31,35,206].

So far, we explained how to resolve the problem of infinitely many perturbation
parameters by introducing white graphs. We managed to reduce the number of expansion
parameters from infinity to the number of edges, i.e., the order of the perturbation. Yet,
the polynomial in Equation (140) still grows exponentially with the number of expansion
parameters. Following the description in Ref. [152], we can further mitigate this issue by
an efficient representation of white graph contributions. The abstract concept is to track
the relevant information in a quantity M(n) as a generalised monomial with the property
M(n1 + n2) = M(n1)M(n2) and use ni as an abstract parameter that encodes the tracked
information. In Equation (140), the monomial quantity M(n) is just MG,m, tracking how
often each edge was active during the calculation by associating each edge with its own



Entropy 2024, 26, 401 38 of 135

abstract expansion parameter. We can generalise the expression of Equation (109) for states
comprising additional information:

|ψ⟩ = ∑
i,j

ci,j M(ni)|j⟩ = ∑
j
|j⟩
(

∑
i

ci,j M(ni)

)
. (142)

Instead of a simple superposition of states |j⟩ with associated prefactor cj as in Equa-
tion (109), we have an additional superposition over all monomials M(ni) comprising the
information of all the distinct processes encoded in M(ni) leading to the state |j⟩. We can
make use of this factorisation property by using nested containers. The key of the outer
container is the basis state |j⟩, and the value contains an inner container with the monomial
M(ni) as the key and the prefactor ci,j as the value. Thus, the action of a τ-operator on a
state |j⟩ can be calculated independent of the action on the monomial M(ni). For a flat con-
tainer, we would have to calculate the action on the same state |j⟩ multiple times. To further
improve the efficiency of the calculation, we can directly encode into the programme which
edge of a graph was active in a bitwise representation. Using the information of the number
of edges of a graph and tracking the applied perturbative order during the calculation, we
can neglect subcluster contributions on the fly and reduce the computational overhead
even further. Therefore, we can directly calculate the reduced contribution on the graph
without the need for explicitly subtracting subcluster contributions.

Wrapping things up, we explained how the use of white graphs can be applied
to models with long-range interactions resolving the issue of infinitely many graphs or
expansion parameters at any finite perturbative order. Instead of treating each perturbation
of the long-range interaction as another topological attribute in the classification of graphs,
we associate an abstract expansion parameter with each edge of a graph, and only during
the embedding on the lattice, we substitute these expansion parameters with the actual
bond information of long-range interacting sites. An efficient representation of white
graphs can further help to reduce the computational overhead.

4.7. Monte Carlo Embedding of White Graphs

We discussed ways to set up a linked-cluster expansion, either by designing a single
appropriately large cluster hosting all relevant fluctuations up to a given perturbative order
or by setting up a linked-cluster expansion as a full graph decomposition, where the latter
is the more efficient way to perform high-order series expansions. Of course, a quantity M
must be cluster-additive in the first place. To decompose M(L) on the lattice L into many
smaller subcluster contributions, we can add up the contributions:

M(L) = ∑
C⊂L

M(C) , (143)

where M(C) are reduced contributions on a cluster C to prevent overcounting. It is not
necessary to calculate the contribution of every possible cluster since many clusters have
the same contribution. It suffices to calculate the contribution of a representative cluster,
only containing the relevant topological information, that is a graph defined by its vertex
set VG and its edge set EG . We can see a graph G as representing an equivalence class
[G], whose elements are all clusters C realising all possible embeddings of a graph on the
lattice [195]. Figuratively, all elements of the equivalence class are related by translational
and rotational symmetry or are different geometric realisations on the lattice. We can now
split the sum over all clusters into one sum over all possible graphs on the lattice and
another one over all elements in the equivalence class:

M(L) = ∑
C⊂L

M(C) = ∑
G⊂L

∑
C∈[G]

M(C) , (144)
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where it suffices to calculate M(C) once for all C ∈ [G] [195]. We are left counting the
number of elements C in the equivalence class such that we can write

M(L) = ∑
G⊂L

W(G,L)M(G) , (145)

where the embedding factor W(G,L) is simply a number counting the number of em-
beddings [195]. The important point in our line of thought is that we can calculate the
quantity M(G) only once on the graph level and multiply the contribution with a weight
that is the embedding factor W and sum up the resulting contribution for all graphs to
obtain the desired quantity M(L) in the thermodynamic limit. We are essentially left
with determining the embedding factors after calculating the graph contributions M(G).
Depending on the topology of the graph, the number of possible embeddings is different
and, therefore, also the embedding factor. When calculating one quasiparticle processes for
the 1qp dispersion or the 1qp spectral weight, it is important that we account for the graph
vertices’ colour attributes for the definition of the equivalence class. If conventional graph
contributions are considered, we directly obtain the correct contribution M(G). If there are
multiple physical parameters or different interaction flavours, the graph edges have to be
colour matched with the bonds of the lattice. If white graphs are used, we do not have to
match any colours and this can be ignored; however, the white graph contributions have to
be evaluated appropriately substituting the abstract expansion parameters with the correct
physical parameter for each embedding. Regarding continuative reading on the embedding,
we want to point out the standard literature for linked-cluster expansions [152,155,187], as
well as Ref. [195]. Nonetheless, we show in the following how the embedding procedure
works for models with nearest-neighbour interactions specifically on the example of the
ground-state energy and one-quasiparticle processes yielding the 1qp dispersion of the
Hamiltonian. Likewise, we derive the 1qp spectral weight. With these findings, we can
turn to the embedding problem of long-range interacting models and eventually describe
the Monte Carlo algorithm as a solution to this problem.

4.7.1. Conventional Nearest-Neighbour Embedding

Ground-state energy: We start with the simplest case of calculating the ground-state
energy on the infinite lattice L. We know that Heff is cluster additive and that the ground-
state energy is an extensive quantity, so we can directly calculate

E0 = ∑
G⊂L

W(G,L)E0(G) . (146)

In other words, this means we have to multiply the ground-state energy contributions on the
graphs with the correct embedding factor and add up the resulting weighted contributions
for every graph. For the definition of the embedding factor, we follow the formalism
introduced by Ref. [195] and write

W(G,L) = |Mono(G,L)|
|Auto(G)| =

1
sG

|Mono(G,L)| . (147)

The embedding factor W is the number of subgraph isomorphisms (monomorphisms)
of the graph G on the lattice L divided by the number of graph automorphisms, i.e., the
symmetry number of the graph. It is necessary to divide by the symmetry number sG
because the number of monomorphisms is in general not equal to the number of subgraphs
because there may be multiple monomorphisms that map to the identical subgraph [195].
To properly account for this, we have to divide by the number of automorphisms.

In Figure 10, you see an example for the embedding problem. We can recognise the
fact that there are multiple monomorphisms by the presence of arrows illustrating the
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ambiguity of mapping onto a specific subgraph embedding. Further, we always have to
consider reduced graph contributions subtracting all subgraph contributions as

E0(G) = ⟨0|Heff|0⟩ − ∑
G ′⊂G

W(G ′,G) E0(G ′) . (148)

Here, W(G ′,G) is the embedding factor for subgraphs G ′ with respect to the considered
graph G. Note again that, with an efficient white-graph implementation, reduced contri-
butions are calculated on the fly without the need for explicit subtraction. We state the
subtraction scheme for completeness. Going back to the embedding problem for the infinite
lattice L, the embedding factor will be extensive as the ground-state energy is extensive as
well. Usually, intensive quantities such as the energy per site ϵ0 = E0/N are calculated,
where N is the number of sites, and an arbitrary edge of the graph is fixed on the lattice.
This then gives

ϵ0 = ∑
G⊂L

w(G,L)E0(G), (149)

where the normalised embedding factor is

w(G,L) = W(G,L)
N

=
q

sG
|Mono(Gc,Lc)|, (150)

denoted with a lower case w, where q is the coordination number of the lattice (the num-
ber of neighbours of any site) [155,195]. One can think about fixing sites as colouring
two adjacent vertices on the graph and two adjacent sites on the lattice and consider-
ing the monomorphism with respect to the additional colour attributes (for instance,
AV = {{µ, yellow}, {ν, blue}}) of the coloured graph Gc and lattice Lc. In Figure 10, we
depict the number of embeddings for a given graph on the square lattice and show how the
embedding factor is calculated for this example. Note that it would be equally valid to just
fix a single site. Then, one would not have to account for the coordination number q and
the number of monomorphism would be larger by a factor of q, making it computationally
more expensive. In the end, we obtain the ground-state energy (per site) as a high-order
perturbative series in an expansion parameter λ up to a computationally feasible maximal
order omax as in Equation (110).

1qp dispersion: We now turn to the one-quasiparticle channel and calculate the hopping
amplitudes. For a quasiparticle hopping δ on the lattice with additional hopping within the
unit cell from ξ to τ or a quasiparticle changing its flavour from ξ to τ, we need to calculate

aξ,τ(δ) = ⟨1; i + δ, τ|Heff|1; i, ξ⟩ = ∑
G⊂L

∑
(µ,ν)∈P

w(Gc,Lc) tµ;ν(G) , (151)

where we fix the initial vertex µ and end vertex ν of the quasiparticle process on the graph
to the initial site i and end site i + δ in real space. We can choose an arbitrary site i without
loss of generality due to the translational symmetry of the models considered. (If we
consider larger unit cells, we also need to fix the sites ξ, τ witin the unit cells i and i + δ.)
The fixing of sites can be formally achieved by assigning colours to the initial and end
sites on the graph and on the lattice. The second sum goes over all representative hopping
processes P , as described above in Section 4.6.2. The embedding factor here is similar to
Equation (150) and reads

w(Gc,Lc) =
sGc

sG
|Mono(Gc,Lc)| , (152)

where the colour attribute comes from fixing the sites to the hopping. We account for
the reduced symmetry of coloured graphs stemming from the representative hopping by
multiplying by the symmetry number of the coloured graph sGc .
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Figure 10. The graph with three edges given in Figure 8 is embedded on the infinite lattice. We
consider a coloured graph with additional colour attributes (yellow and green) for two specific
vertices. The reason behind colouring the vertices might by to simply fix the graph due to translational
and rotational symmetry of the lattice as it is done when calculating the ground-state energy or due to
the presence of a one-quasiparticle process from one coloured site to the other. For the ground-state
energy contribution, the embedding factor would be w(Gc,Lc) =

q
sG |Mono(Gc,Lc)| = 4

6 × 6 = 4.
There are six possible embeddings (monomorphisms) on the infinite lattice, when the coloured
vertices on the graph are correctly mapped to the coloured sites on the lattice. There are only three
geometrically distinct embeddings, but the number of monomorphisms is two-times bigger due to an
ambiguity of mapping the subgraph on the graph as illustrated by the arrows.

The embedding factor is then calculated with respect to the coloured graph Gc and
lattice Lc. Again, we need to be careful as we have to consider reduced and additive
contributions, i.e., we have to determine

tµ;ν(G) = ⟨1; ν|Heff|1; µ⟩ − δµ,νE0(G)− ∑
G ′⊂G

∑
(µ,ν)∈P

W(G ′
c,Gc) tµ;ν(G ′) , (153)

for each contribution on a graph G. After having determined the ground-state energy per
site ϵ0 and the hopping amplitudes aξ,τ(δ) on the lattice L, we can derive the effective
one-quasiparticle Hamiltonian (113). As we have seen in Section 4.5, we can readily derive
the one-quasiparticle gap as a series in the perturbation parameter λ as in Equation (117).

1qp spectral weight: Lastly, we can do the same for one-quasiparticle spectral weights.
We calculate the process amplitudes:

ãτ(δ) = ⟨1; δ, τ|Oeff,i|0⟩ = ∑
G⊂L

∑
(µ,ν)∈P

w(Gc,Lc) t̃µ;ν(G) . (154)

Note that a process creating a quasiparticle at µ that subsequently hops to ν with the
contribution t̃µ;ν(G) is in general distinct to the inverse process, i.e., t̃µ;ν(G) ̸= t̃ν;µ(G). On
the other hand, the 1qp hopping processes of the Hamiltonian fulfil tµ;ν(G) = tν;µ(G) as
long as the hopping amplitudes are real. While for hopping processes of the Hamiltonian,
we can use the same colour (for start and end vertex) as a topological attribute, here, we
must use two different colours, leading to a smaller symmetry number of the coloured
graphs. On the graph level, only subgraph contributions must be subtracted:

t̃µ;ν(G) = ⟨1; ν|Oeff,µ|0⟩ − ∑
G ′⊂G

∑
(µ,ν)∈P

W(G ′
c,Gc) tµ;ν(G ′) . (155)

With the contributions ãτ(δ), the spectral weight can be determined with Equation (131),
and evaluating this quantity for example at the critical momentum kc, we again obtain a
series (132) in the perturbation parameter λ.

For the conventional embedding problem, we can also consider several generalisations,
which we want to briefly mention. First, we could consider quasiparticle processes between
different particle types. In a 1qp process, a particle flavour could change from ξ to τ and
the graph contribution would be denoted by including the additional indices tµ,ξ;ν,τ and
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t̃µ;ν,τ . The rest of the formalism is identical. Second, we may want to consider different
interaction types like in Equation (138) or more expansion parameter like in Equation (137).
In such a case, when considering coloured graphs, we also have to consider their coloured
edges, which must be matched with the appropriate bonds on the lattice. Then, the
coloured graphs Gc are given by the tuple (VG , EG ,AE ,AV ), where AE are the edge colour
attributes and AV the vertex colour attributes. Now, every embedding factor w needs to be
determined using coloured graphs with respect to AE and AV . When using white graphs,
the additional edge colour can be ignored and the embedding is as before; however, we
need to appropriately substitute the abstract expansion parameters with the actual physical
expansion parameters.

By now, we have everything together to calculate the ground-state energy, the 1qp
dispersion, and the 1qp spectral weight in the thermodynamic limit from a linked-cluster
expansion set up as a full graph decomposition. Therefore, we need to calculate the embed-
ding factor, multiply them with the associated graph contribution, and add up the resulting
weighted contributions. The embedding factor can be determined using available graph
libraries like the Boost Graph Library [203] as only automorphisms and monomorphisms
(with colours) need to be determined. For long-range interactions, however, we cannot just
simply calculate the embedding factor because, for every graph, there are infinitely many
possible embeddings, even when accounting for translational invariance.

4.7.2. Embedding for Models with Long-Range Interactions

In this section, we restrict ourselves to a single physical perturbation parameter. If we
had more than one perturbation parameter, this would introduce an additional functional
dependency, which we want to avoid as we perform the Monte Carlo summation. A
convenient way around this is to sample the parameters and perform the Monte Carlo
summation for each parameter ratio like it was performed in [31,35,206] for anisotropic XY
interactions, distinct ladder interactions, and for XXZ interactions. In the following, we
restrict ourselves to a single quasiparticle flavour due to simplicity and a trivial unit cell, as
we have not generalised the algorithm to larger unit cells yet. The starting point to describe
the embedding problem for long-range interactions is the embedding formulas given in the
previous section in Equations (149), (151), and (154) for the ground-state energy per site,
1qp hopping processes, and the 1qp spectral weight, respectively, which we have to rewrite
and adapt for long-range interactions.

Ground-state energy: Starting with the embedding of the ground-state energy per
site (149), we can write

ϵ0 = ∑
G

w(G,L)E0(G)

=
omax

∑
o=2

∑
G

w(G,L)E(o)
0 (G)

=
omax

∑
o=2

o

∑
ns=2

∑
G

|VG |=ns

w(G,L)E(o)
0 (G) .

(156)

We have replaced G ⊂ L with G in the sum to emphasise that the graphs are not restricted
to the nearest-neighbour lattice geometry any longer due to the long-range interactions,
making the lattice a fully connected graph. From the first to second line, we decomposed
the ground-state energy contribution from graphs into contributions of individual orders
E0(G) = ∑omax

o=2 E(o)
0 . Note that the minimum order of the ground-state energy is o = 2.

From the second to third line, we introduced a second sum over vertices ns and restricted
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the sum over all graphs to a sum over graphs with a fixed number of vertices ns. Next, we
can reformulate the embedding factor in Equation (147) as

w(G,L) = ∑
c∈C

1
sG

, (157)

where we replaced the expression for the number of monomorphisms (divided by N)
with a sum over all possible configurations C. A configuration is nothing else than the
current embedding of graphs. As we will see later, we can calculate the contributions of
multiple graphs simultaneously as the Monte Carlo sum only depends on the number
of sites (we use “site” also as a synonym for “vertex position”). When using the word
configuration, we think about it as the current set of vertex positions on the lattice. The
sum over all configurations comprises individual sums for each vertex over all lattice
sites excluding configurations where vertices overlap, as shown in the next subsection
in Equation (180). One may falsely conclude that a sum over all configurations should
result in the un-normalised embedding factor W , but as we will see in the following, by
substituting the abstract expansion parameters with the physical long-range interactions,
only the relative distance between sites is relevant for the contribution in the summand,
irrespective of the absolute position of the sites on the lattice. We can also see the reason
behind splitting the graph set into sets with graphs of a fixed number of vertices because we
can now group all graph contributions with a given number of sites into a single integrand
because for long-range interactions there are no constraints on the embeddings (except for
overlaps) and the integrand only depends on the (relative) position of the vertices.. Further,
the white graph contributions E(o)

0 (G) still need to be replaced with the correct colour, i.e.,
the general expansion parameters need to be substituted with the algebraically decaying
long-range interaction depending on the current configuration. In reality, the contribution
E(o)

0 (G, c) depends on the current configuration c. Thus, replacing the expression with an
explicit sum is necessary as the contribution for each configuration is different and w(G,L)
cannot just be a number. The substitution must look like

E(o)
0 (G, c) := E(o)

0

(
G; {λe 7→ |δ|−(d+σ)}

)
= ∑

m
vm(G) ∏

e∈EG

1
|δ|−ne,m(d+σ)

, (158)

where the index m of the sum runs over all monomials of the contribution E(o)
0 (G, c) and the

product is over all edges e = {µ, ν} ∈ EG of the graph G with the adjacent vertices µ, ν ∈ VG .
The power law in the product arises from substituting the expansion parameters λe 7→ |δ|−α

on the edges e with the appropriate algebraically decaying long-range interaction of the
current embedding (cf. Equation (140)). The adjacent vertices µ, ν are embedded on the
lattice sites iµ and iν with the distance δ = iν − iµ, and the multiplicity ne,m ∈ N comes from
the power ne of the associated expansion parameter λe. This way, we can reduce the many
expansion parameters from the white graph contribution to a single physical perturbation
parameter λ, and by reordering the expression (156) of the ground-state energy, we have

ϵ0 =
omax

∑
o=2

o

∑
ns=2

∑
c∈C

∑
G

|VG |=ns

1
sG

E(o)
0 (G, c)λo . (159)

We can define

f (o)ns (c) := ∑
G

|VG |=ns

1
sG

E(o)
0 (G, c) , (160)

S[ f (o)ns ] := ∑
c∈C

f (o)ns (c) , (161)
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where f (o)ns (c) is the integrand function and S[·] denotes the associated sum over all possible
embeddings on the lattice that will be evaluated using a classical Monte Carlo algorithm.
Since Monte Carlo runs are usually performed for a batch of different seeds, we introduce
an additional sum over seeds averaging the Monte Carlo runs, which we denote as

S[·] = 1
Nseeds

Nseeds

∑
s=1

S[·] . (162)

Eventually, this yields the expression:

ϵ0 =
omax

∑
o=2

o

∑
ns=2

S[ f (o)ns ]λo . (163)

To express the ground-state energy ϵ0 as a perturbative series, we write

ϵ0 = p0 +
omax

∑
o=2

poλo with pi =
o

∑
ns=2

S[ f (o)ns ] , (164)

where we have to sum up the contributions of multiple Monte Carlo runs to obtain the
series prefactors pi for i > 0. The zeroth prefactor p0 is simply given by the ground-state
energy of H0. As a result of the Monte Carlo summation, these prefactors pi carry an
uncertainty that can be estimated from the standard deviation obtained by averaging over
the results for all seeds.

1qp dispersion: We now turn to extracting the one-quasiparticle dispersion. In
Equation (116), we have seen that the dispersion can be analytically determined in terms
of the hopping amplitudes of Equation (151) up to some perturbative order. For nearest-
neighbour interactions, it is an analytic function in k; however, for long-range interactions,
there are infinitely many hoppings possible at any order, so we can neither explicitly deter-
mine the hopping amplitudes a(δ), nor is it possible to have the dispersion as an analytical
function in k. This would introduce a functional dependence in the integrand that we
cannot sample. Instead, we will have to evaluate the dispersion for certain values k⋆ to
obtain an explicit series in the perturbation parameter λ. Evaluating Equation (116) at
k = k⋆ and inserting Equation (151), we can write

ω(k = k⋆) = a(0) + 2 ∑
δ

a(δ) cos(k⋆δ)

= ∑
δ

Ξ(k⋆, δ)a(δ) = ∑
δ

Ξ(k⋆, δ)∑
G

∑
(µ,ν)∈P

w(Gc,Lc)tµ;ν(G) ,
(165)

where we rewrote the sum over δ by introducing the function:

Ξ(k⋆, δ) =

{
1 δ = 0,
2 cos(k⋆δ) δ ̸= 0.

(166)

Again, we can split tµ;ν into the contributions of individual orders t(o)µ;ν and split the graph
set into subsets of a fixed number of sites ns = |VG |, yielding

ω(k⋆) =
omax

∑
o=1

o+1

∑
ns=2

∑
G

|VG |=ns

∑
(µ,ν)∈P

∑
δ

Ξ(k⋆, δ)w(Gc,Lc)t
(o)
µ;ν(G) . (167)

Note here that the second sum goes until o+ 1, while for the ground-state energy, it runs
only until o. The maximal number of sites at a given order is o+ 1 because graphs with
o edges can maximally have o+ 1 sites. For the ground-state energy fluctuations, every
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quasiparticle that is created has to be annihilated again, so at order o, a process can only
touch maximal o− 1 edges, which restricts the sum to o sites.

Now, we argue that we can drop the sum over δ by thinking differently about this
embedding problem for the dispersion. The information of the start and end vertex
of the hopping process is encoded into vertex colours, and when finding the subgraph
monomorphisms for the embedding on the infinite lattice L, the colours of the vertices
must match the coloured sites on the lattice, i.e., the hopping vertices are fixed to the
hopping sites on the lattice. Since the long-range interactions allow any hopping—i.e., of
any distance—at any order, it is not useful to think in this picture. Instead, we should think
about the embedding problem analogous to the one for the ground-state energy, where no
such hopping constraint exists and the embedding factor W is simply proportional to a
sum over all configurations. This is valid as we let the sum over all lattice sites and account
for constraints on δ by multiplying with the symmetry number of the coloured graph sGc .
The relevant hopping information of the vertices, which was previously fixed by coloured
vertices, is anyway encoded into the cosine terms. Hence, we can make the substitution:

∑
δ

Ξ(k⋆, δ)w(Gc,Lc) = ∑
c∈C

sGc

sG
cos(k⋆δ) , (168)

where we account for the reduced symmetry of the graph due to the hopping by multiplying
with the symmetry number of the coloured graph sGc . As before, we need to substitute
the general white graph contribution with the actual algebraically decaying long-range
interactions of the current embedding:

t(o)µ;ν(G, c) := t(o)µ;ν
(
G; {λe 7→ |δ|−α}

)
= ∑

m
vm(G) ∏

e∈EG

1
|δ|−ne,mα . (169)

Inserting Equation (168) into Equation (167), we end up with the expression:

ω(k⋆) =
omax

∑
o=1

o+1

∑
ns=2

∑
c∈C

∑
G

|VG |=ns

∑
(µ,ν)∈P

sGc

sG
t(o)µ;ν(G, c) cos(k⋆δ)λo . (170)

For a lighter notation, we again define the integrand function and the Monte Carlo sum:

f (o)ns ,k⋆(c) := ∑
G

|VG |=ns

∑
(µ,ν)∈P

sGc

sG
t(o)µ;ν(G, c) cos(k⋆δ) , (171)

S[ f (o)ns ,k⋆ ] := ∑
c∈C

f (o)ns ,k⋆(c) . (172)

Introducing an average over a batch of seeds for the MC sum S[·], we obtain

ω(k⋆) =
omax

∑
o=1

o+1

∑
ns=2

S[ f (o)ns ,k⋆ ]λ
o . (173)

The perturbative series of the dispersion evaluated at k = k⋆ can then be expressed as

ω(k⋆) = p0 +
omax

∑
o=1

poλo with pi =
o+1

∑
ns=2

S[ f (o)ns ,k⋆ ] . (174)

The sum prefactors pi for i > 0 can be determined by summing up the individual con-
tributions from the Monte Carlo runs and the prefactor p0 is given by the energy gap
of H0.
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1qp spectral weight: Lastly, the evaluation for the spectral weight observable is analo-
gous to the 1qp dispersion. The integrand and Monte Carlo sum are defined as

f (o)ns ,k⋆(c) := ∑
G

|VG |=ns

∑
(µ,ν)∈P

sGc

sG
t̃(o)µ;ν(G, c) cos(k⋆δ) , (175)

S[ f (o)ns ,k⋆ ] := ∑
c∈C

f (o)ns ,k⋆(c) , (176)

which we use to calculate

s(k⋆) = p0 +
omax

∑
o=1

poλo with pi =
o+1

∑
ns=2

S[ f (o)ns ,k⋆ ] . (177)

We determine s(k⋆) by again calculating the series prefactors pi for i > 0 and then determine
the 1qp spectral weight with S1qp(k⋆) = |s(k⋆)|2.

It should be noted that we have to perform

n =
omax(omax − 1)

2
× Nseeds (178)

Monte Carlo runs for a series of order omax with Nseeds. This means the number of runs
grows quadratically with the maximal order omax.

So far, we have derived the necessary formalism for how to express the embedding
problem of models with long-range interactions, but we have not talked about how to
evaluate the Monte Carlo sums S[·] for the integrand functions f . In the next section, we
investigate how to evaluate such sums by introducing a suitable Monte Carlo algorithm.

4.7.3. Monte Carlo Algorithm for the Long-Range Embedding Problem

We are left with evaluating the Monte Carlo sum S[·], which runs over all configura-
tions C of graphs. The embeddings on the lattice depend only on the number of vertices
of a graph G, and there is no constraint by the edge set as in the nearest-neighbour case
because every site of the lattice interacts with any other site, making it a fully connected
graph. The only restriction for models with long-range interactions is that the vertices of
the graph are not allowed to overlap as they do not self-interact and an overlap would
imply infinite interaction strength resulting from the term |δ|−(d+σ). In conclusion, we
can write the sum over all possible configurations as number-of-sites-many sums over all
possible lattice positions:

S[ f (o)ns ] = ∑
c∈C

f (o)ns (c) = ∑
i1

′ · · ·∑
ins

′ f (o)ns (i1, . . . , ins) , (179)

S[ f (o)ns ,k⋆ ] = ∑
c∈C

f (o)ns ,k⋆(c) = ∑
i1

′ · · ·∑
ins

′ f (o)ns ,k⋆(i1, . . . , ins) , (180)

where the primed sum ∑i
′ over vertex position i is the short notation for excluding overlaps

with any other vertex position. For example, for the ground-state contribution with three
sites on a one-dimensional chain, this sum would look like
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S[ f (o)ns ] =
∞

∑
k=−∞

∞

∑
j=−∞

j ̸=k

∞

∑
i=−∞

i ̸=j
i ̸=k

f (o)ns (i, j, k) . (181)

Due to the overlap constraint, these are nested high-dimensional sums over the integrand
functions f (o)ns , which are in general hard to solve. The dimensionality of the MC problem is
given by dsum = ns · d because higher dimensions d of the system introduce additional sums
for each component. If we wanted to evaluate the Monte Carlo sum in two dimensions for
contributions with eight sites, which already occurs in eighth-order perturbation theory, we
would have to determine the integral value of 16 nested sums over the integrand function
f (8)8 . This makes it clear that the evaluation of such sums becomes challenging very quickly.
In the following, we use the short notation fns , interchangeable for both the ground-state
energy integrand f (o)ns and the 1qp process integrands f (o)ns ,k⋆ .

The first approach to tackle the problem of evaluating these sums using conventional
numerical integration techniques was pioneered by S. Fey and K.P. Schmidt already in
2016 [25]. They managed to successfully determine the phase diagram and critical ex-
ponents from the closing of the gap of the long-range transverse-field Ising model on a
one-dimensional chain with ferro- and antiferromagnetic interactions. While they were
successful with their approach over a large range of decay exponents in one dimension, the
extraction of the critical properties for small decay exponents was challenging. The two-
dimensional problem was out of reach with this approach as the number of nested sums
doubles and the sums converge significantly more slowly. Here, Monte Carlo integration
came into play as it is known to be a powerful integration technique for high-dimensional
problems where conventional integration fails. The reason behind the slow convergence
of such high-dimensional sums is often that the configuration space where the integrand
mainly contributes to the integral is significantly smaller than the entire configuration space.
In 2019, Fey et al. [29] introduced a Markov chain Monte Carlo algorithm to efficiently
sample the relevant configuration space. They were able to determine the quantum-critical
properties of the long-range TFIM on two-dimensional lattices to even higher precision
than previously for the one-dimensional chain, extending the accessible range of decay
exponents without having to forfeit perturbative orders in higher dimensions.

In the following, we describe the Markov chain Monte Carlo algorithm introduced
by Ref. [29] to evaluate the high-dimensional nested sums. To sample the relevant config-
uration space efficiently, we use importance sampling with respect to some convenient
probability weight π(c) with respect to a configuration c and the associated partition func-
tion Z = ∑c π(c). We can insert an identity into Equation (179) or Equation (180) and
rewrite it as

S[ fns ] = ∑
c∈C

π(c)
Z

Z
π(c)︸ ︷︷ ︸

=1

fns(c) = Z
〈

fns(c)
π(c)

〉
π

, (182)

where π(c)/Z can be interpreted as the probability of being in configuration c. The
integrand now reads as the contribution fns (we dropped the order o and momentum k⋆ as
indices to lighten the notation) from configuration c multiplied by its probability, which
allows us to write the sum as the expectation value ⟨·⟩π of fns(c)/π(c) with respect to the
weight π. We later call this sum “target sum”. Since the partition function Z is not known
a priori, we also introduce a “reference sum”:

S
[

f ref
ns

]
= ∑

c∈C
f ref
ns (c) = Z

〈
f ref
ns (c)
π(c)

〉
π

, (183)

over a reference function f ref
ns . We require this sum to be analytically solvable to avoid

introducing an additional source of error. We denote its analytical expression as Sref
ns . The
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reference function f ref
ns should behave similarly to the integrand function of interest fns . This

means that the reference sum and target sum should have considerable contributions in the
same area of the configuration space and their asymptotic behaviour should be similar as
well. Although we could make, in principle, an arbitrary choice for the reference function,
the latter properties guarantee to lead to good convergence. In one dimension, we choose
the reference integrand as

f ref
ns (c) =

ns−1

∏
n=1

1
|in+1 − in|ρ

=
ns−1

∏
n=1

1
|δn|ρ

(184)

with δn = in+1 − in and the reference integrand exponent ρ, which is a free simulation
parameter. We can solve the reference sum as follows:

S
[

f ref
ns

]
= ∑

c∈C

ns−1

∏
n=1

1
|in+1 − in|ρ

= ∑
i1

′ · · ·∑
iN

′ 1
|i2 − i1|ρ

. . .
1

|ins − ins−1|ρ

= ns! ∑
i1<i2

· · · ∑
ins−1<ins

1
|i2 − i1|ρ

. . .
1

|ins − ins−1|ρ

= ns! ∑
i1<i2

· · · ∑
ins−1<ins

1
|δ1|ρ

. . .
1

|δns−1|ρ

= ns!
ns−1

∏
n=1

∞

∑
δ=1

1
δρ = ns!ζ(ρ)ns−1 ,

(185)

where ζ(ρ) is the Riemann ζ function and we accounted for ns! possibilities to randomly
embed the vertices by ordering the indices of the sums. One major difference between the
reference and the target sum is that, in the target sum, many different graph contributions
contribute. In fact, the reference sum above is exactly the contribution of order o = ns − 1
of a chain graph with ns vertices and the contribution from the associated target sum is
the same up to a linear factor. In higher dimensions, we cannot choose a contribution
proportional to the one of a chain graph any longer since it cannot be solved analytically.
Instead, we make simplifications to the reference sum and require that the reference sum is
still good enough to capture the same properties as the target sum. We choose to decouple
the dimensions in the reference integrand:

f ref
ns (c) =

d

∏
n=1

ns−1

∏
ν=1

1
(1 + |iν+1,n − iν,n|)ρ =

d

∏
n=1

ns−1

∏
ν=1

1
(1 + |δν,n|)ρ (186)

and explicitly allow overlaps in the reference sum, such that it can be solved analytically
as follows:

S
[

f ref
ns

]
=

∞

∑
i1,1=−∞

· · ·
∞

∑
ins ,d=−∞

1
(1 + |i2,1 − i1,1|)ρ . . .

1
(1 + |ins ,d − ins−1,d|)ρ

=
d(ns−1)

∏
n=1

∞

∑
δ=−∞

1
(1 + |δ|)ρ =

d(ns−1)

∏
n=1

(
2

∞

∑
δ=0

1
(1 + δ)ρ − 1

)
= (2ζ(ρ)− 1)d(ns−1) .

(187)

Although the exponent ρ can be chosen freely, we want to achieve similar asymptotic
behaviour as the target integrand; therefore, we choose ρ = 1 + σ in one dimension as the
reference sum exactly behaves like the target integrand of a chain graph. In two dimensions,
we made some simplifications to the reference sum, and we have to adopt the parameter as
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ρ = (d + σ)/2 for σ < 5, ρ = 3 for 5 ≤ σ < 7, and ρ = 3.5 for σ ≥ 7. This is by no means a
rigorous choice, but it empirically proved to produce good convergence [29,207]. Solving
Equation (183) for Z and inserting it into Equation (182), we obtain

S[ fns ] =

〈
fns (c)
π(c)

〉
π〈

f ref
ns (c)
π(c)

〉
π

Sref
ns . (188)

We use the analytic expression of Equation (185) in 1D or Equation (187) in 2D for the
reference sum Sref

ns . We got rid of the partition function Z and now can use this expression
in our Monte Carlo run to determine the sum S[·] using the analytic expression of the
reference sum Sref

ns while tracking the running averages in the numerator and denomina-
tor expressions.

We are left with just one missing ingredient, which is the choice of the probability
weight π(c). For our choice to be a probability weight, it must fulfil π(c) ≥ 0, and we want
the weight to be the largest if both the reference and the target integrand contribute the
most. An obvious choice may be the quadratic mean:

π(c) =
√(

f ref
ns (c)

)2
+ ( fns(c))

2 , (189)

which is always ≥ 0 and rotationally invariant in f ref
ns and fns . However, we also want both

quantities to contribute equally to the probability weight on average over all configurations.
As the contributions of the target and reference sum may differ significantly, we introduce
a factor for rescaling:

R =

∣∣∣∣∣S
[

f ref
ns

]
S[ fns ]

∣∣∣∣∣ , (190)

which can be estimated in an in-advance calibration run. We then use an adjusted probabil-
ity weight:

π(c) =
√(

f ref
ns (c)

)2
+ R2( fns(c))

2 (191)

for the actual Monte Carlo run. The weight needs to be evaluated at every Monte Carlo
step to track the running averages of the numerator and denominator in Equation (188).

Now, we have everything together to describe the actual Monte Carlo algorithm. We
employ a Markov chain Monte Carlo algorithm, where we need to sample the configuration
space C according to the probability weight π in Equation (191). Each configuration with a
non-zero weight must be in principle accessible by the Markov chain. On the one hand, we
propose a high acceptance rate of the Monte Carlo steps to sample the large configuration
space efficiently, not staying in the same configuration for too long. On the other hand,
we want to sample closely confined configurations with rather small distances between
vertices more often than configurations that are farther apart (configurations with large
distances between vertices) such that we capture the asymptotic behaviour of the model.
The interaction strength decays algebraically with the distance between vertices, leading to
smaller contributions for configurations in which sites are far apart. What we call a confined
configuration, therefore, depends on the decay exponent of the long-range interaction σ.
In the algorithm, we have the free exponent parameter ρ (for the reference sum) and γ
(for probability distributions), which can be changed to tweak this behaviour, but are
usually chosen similar or equal to d + σ. In two dimensions, we had to adapt the values
of ρ to obtain a similar asymptotic behaviour for the reference and target sum due the
approximations we made. An optimal choice of these parameters ensures fast convergence
of the Monte Carlo sum. The current embedding configuration should be represented
as an array container where the entries are the positions of the graph vertices. In one
dimension, entries are simple integers, while in higher dimensions, the position needs to be
represented as a mathematical vector. For small decay exponents σ, very large distances can
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occur between vertices from time to time, which need to be squared when calculating the
absolute distance. This can lead to an integer overflow, and therefore, the use of a 128-bit
integer may be considered. Further, we define functions in the programme for the target
integrand fns and for the reference integrand f ref

ns , where the current configuration is passed
as a parameter and the function returns the contribution from the integrand evaluated for
the current configuration.

Turning back to the sampling scheme, the idea of the Markov chain is to interpret the
vertex positions on the lattices as random walkers. We randomly select a graph vertex and
then draw a new position from a probability distribution such that the move fulfils the
detailed balance condition. In each Monte Carlo step, we perform the following two moves:

Shift move:This Monte Carlo move is implemented to introduce confined random fluc-
tuations to the current configuration independent of the strength of the al-
gebraically decaying long-range interactions. It is especially important for
larger decay exponents σ when the configurations are much more likely to be
confined. First, we randomly select a vertex nsel ∈ {1, . . . , ns} drawn from a
discrete uniform distribution with psel = 1/ns. Second, for the fluctuation, we
draw a shift value dprop ∈ {−ns, . . . , ns} from a discrete uniform distribution
pshift = 1/(2ns + 1). In one dimension, we have to draw a single time, and in
higher dimensions, we draw repeatedly for each component. Subsequently,
we add the shift to the position of the selected vertex and propose the position:

iprop = insel + dprop . (192)

We might have proposed a position that is already occupied by another vertex,
so we have to check for overlaps. In one dimension, we reset the proposed po-
sition to the original one if there is an overlap, while in higher dimensions, we
explicitly allow overlaps. As we remember from above, this distinction is also
present in the reference sums in one dimension in Equation (185) compared
to higher dimensions in Equation (187). If an overlap occurs in dimensions
higher than one, then the target summand is explicitly set to zero such that
these configurations cannot contribute (otherwise, the sum would become
infinity). Then, we calculate the Metropolis acceptance probability:

pshift
acc = min

(
1,

π(cprop)

π(ccurr)

)

= min

1,

√
( f ref

ns (cprop))2 + R2( fns(cprop))2√
( f ref

ns (ccurr))2 + R2( fns(ccurr))2

 ,
(193)

by determining the probability weights π of the current and the proposed
configuration. The result of the target and reference function calls should
be saved into variables to prevent redundant and expensive function calls at
each Monte Carlo step. Note that the transition weights T̃(ccurr → cprop) =
psel × pshift cancel out as we draw only from uniform distributions. Lastly,
the minimum function is implemented by drawing a random number y ∈
[0, 1 ), and we accept the proposed move if y < pshift

acc and update the current
configuration. An example of such a shift move is depicted in Figure 11a.

Rift move: In contrast to the previous move, which should introduce fluctuations to the
configuration independent of the current one and independent of the long-
range interaction strength, “rift moves” are introduced to better capture the
correct asymptotic behaviour induced by the algebraically decaying interac-
tions. The moves are able to propose very large distances between vertices,
but are also able to do the opposite, closing the “rift” between vertices when
the configuration is split into essentially two clusters. At first, we select a site
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nsel ∈ {1, . . . , ns − 1} from the vertex set with discrete uniform probability
psel = 1/(ns − 1), explicitly excluding the last site. In one dimension, we
can order the vertex set such that the first vertex is the one with the smallest
positional value and the last the one with the largest value, so we order by
in < im, where n, m are vertex indices and in, im the associated sites on the
lattice. The same ordering was also performed when we solved the reference
sum in Equation (185). In higher dimensions, a similar ordering comes at a
much higher computational cost, so we stick to the vertex numbering given
by the array indices, i.e., the order is n < m. Here, it is also important that the
vertex labelling of the reference sum coincides with the labelling of the chain
graph. To capture the physical asymptotics of the system, we draw random
values from a ζ-function distribution. In one dimension, we draw from

prift(rprop) =
(rprop)−γ

ζ(γ)
, (194)

yielding a power-law distribution with rprop > 0 with the free exponent
parameter γ. We choose γ = d + σ for obvious reasons. The distance to the
next vertex is given by rcurr = insel+1 − insel , and rprop is the proposed distance
drawn from the ζ distribution. Since we ordered by the position and only
selected sites in {1, . . . , ns − 1}, it is sufficient to draw positive values only. We
shift all indices in > insel according to

iprop
n = in + (rprop − rcurr) . (195)

In higher dimensions, we have no such ordering and, therefore, extend such a
distribution to negative values (we refer to it as a “double-sided” ζ-function
distribution) and draw random values from

prift(rprop) =
(1 + |rprop|)−γ

2ζ(γ)− 1
(196)

for each component. Note that the additional one is introduced to prevent
divergence when sites overlap. After drawing the new distance rprop, we shift
all vertices componentwise with n > nsel according to

iprop
n>nsel

= in>nsel + (rprop − rcurr) . (197)

The underlying idea is that, if there is a large distance between two vertices
insel and insel+1, we can close the “rift” of the entire configuration instead of
introducing a new one between insel+1 and insel+2. The transition weights for
this move are given by

T̃(ccurr → cprop) = psel × p(rnew) , (198)

T̃(cprop → ccurr) = psel × p(rcurr) . (199)

With these, we can calculate the Metropolis–Hastings acceptance probability
in one dimension:

prift
acc = min

(
1,

π(cprop)

π(ccurr)

p(ccurr)

p(cprop)

)

= min

1,

√
( f ref

ns (cprop))2 + R2( fns(cprop))2√
( f ref

ns (ccurr))2 + R2( fns(ccurr))2

(rprop)γ

(rcurr)γ

 (200)
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and, likewise, in higher dimensions:

prift
acc = min

1,

√
( f ref

ns (c
prop))2 + R2( fns (cprop))2√

( f ref
ns (ccurr))2 + R2( fns (ccurr))2

∏d
n=1(1 + |rprop

n |)γ

∏d
n=1(1 + |rcurr

n |)γ

 . (201)

As above, we randomly draw y ∈ [0, 1 ), accept if y < prift
acc, and update the

current configuration if the proposed configuration is accepted. In Figure 11b,
you can find a typical rift move illustrated.

To implement the Monte Carlo algorithm, we just have to introduce a loop, where for each
loop iteration we perform a Monte Carlo step consisting of those two moves.

Figure 11. Exemplary Monte Carlo moves for a linear graph on a two-dimensional square lat-
tice. (a) During a shift move, a vertex nsel ∈ {1, . . . , ns} is selected randomly from a uniform
distribution. Then, a shift vector dprop is drawn (uniformly for each component), which moves
the selected site to iprop = insel + dprop if accepted. (b) For rift moves, a vertex is selected from
nsel ∈ {1, . . . , ns − 1}. Instead of drawing from uniform distributions, rift moves account for the
correct asymptotic behaviour of the system by drawing a new distance to the next vertex from
a ζ-function distribution (from a normal ζ function in one dimension and from a double-sided ζ

function in higher dimension for each component). If accepted, the vertices n > nsel are shifted to the
new position iprop

n>nsel
= in>nsel + (rprop − rcurr).

To ensure that fluctuations to the current embedding introduce enough new configu-
rations (shift moves) while making sure that the Monte Carlo algorithm does not spend
too much time in physically unlikely configurations, the shift move probability was set
to pshift = 0.7 and the rift move probability to prift = 0.3 [29,207] (The “single-site rift
move” was later completely replaced with the “multi-site” rift move presented in this
review). This choice proved to produce good convergence behaviour over a large range of
decay exponents and different models. After performing a move—accepted or not—we
update the estimate for the target and reference sum in the numerator and denominator
in Equation (188), respectively, and keep track of the statistics like the variance of target
and reference sum. To determine the value S[ fns ] of the Monte Carlo run, the ratio of
both quantities has to be multiplied by the analytical value of the reference sum as in
Equation (188).

We can test the convergence of the MC algorithm by considering the 1qp gap
∆ = ω(k = 0) of the one-dimensional ferromagnetic long-range transverse-field Ising
model (LRTFIM). We benchmark the second-order series coefficient p2. According to
Equation (174), the coefficient from the MC approach is pMC

2 = S[ f (2)2,0 ] + S[ f (2)3,0 ] and the
exact value is given by pexact

2 = 2(ζ(2(1 + σ))− ζ(1 + σ)2) (see Ref. [25]).
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In Figure 12, we show the MC error:

εMC =

∣∣∣∣∣ pexact
2 − pMC

2
pexact

2

∣∣∣∣∣ (202)

as a function of the number of steps Nsteps for a hundred MC runs with a distinct seed for
each. As can be seen from the figure, the MC error goes to zero with N−1/2

steps , as generally
expected for MC simulations.

1010 1011

Nsteps
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10−7
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ε M
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∝ N−1/2

Figure 12. Monte Carlo error εMC = |pexact
2 − pMC

2 |/|pexact
2 | (coloured data points) on a log–log

scale as a function of the number of steps Nsteps. The plot shows data from a hundred 12-hour-long
MC runs with a distinct seed each. The MC error εMC goes to zero following a N−1/2

steps convergence
behaviour (indicated by the black line), as generally expected from an MC algorithm.

Further improvements to the algorithm can be made by recentring the configuration to
the origin since the graphs on the lattice may drift away due to the random walk. Also, for
integer powers occurring in the target integrand from powers of the expansion parameters,
it may be better to use plain multiplication than using generic integer power functions.
Most importantly, lookup tables should be used for the non-integer powers stemming
from the algebraically decaying interaction strengths for distances |i1 − i2| < δmax within
a cutoff δmax that occur most commonly during the MC run. The integrand function also
depends on k as cosine terms are present. It is useful to compile the code for a desired k
value, so lookup tables can be defined at compile time due to the periodicity of the cosine.
For instance, in the simplest case k = 0, the cosine is always 1 and for k = π the cosine has
only values of 1 and −1.

Let us emphasise that, for the pCUT+MC approach, we need to perform individual
runs for every perturbative order, for every possible number of sites at a given order,
for different values of momentum k if necessary (e.g., for a dispersion), and for differ-
ent seeds so that an average value can be calculated. Typical runs are performed with
Nseeds = 5–20 seeds for 6–24 hours. For instance, for the long-range transverse-field Ising
model, we were able to extract perturbative series up to order 10 for the 1qp spectral weight,
order 11 for the 1qp gap, and order 13 for the ground-state energy. Much higher orders
in perturbation are likely not feasible with the current implementation as the number of
Monte Carlo runs scales quadratically with the order. In the future, to further improve the
efficiency of the approach, one may come up with additional Monte Carlo moves for the
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Markov chain that can change the number of sites. As a result, the algorithm would only
scale linearly with the perturbative order, but potentially at the cost of slower convergence.
Maybe a compromise would be a favourable option, where the lower orders that converge
faster are computed using an algorithm with the additional move and higher orders with
the algorithm presented above.

Another important issue worth mentioning is the fact that, so far, the above algorithm
can only be applied to lattices with a trivial single-site unit cell. To generalise the algorithm
to arbitrary lattice geometries in the future, we would need to introduce another Monte
Carlo move. We would keep the moves introduced above for moving the vertices along
the underlying Bravais lattice. A new move then changes the position within the unit cell.
However, new subtleties emerge from introducing a larger unit cell, as we would have to
fix two vertices within the unit cells for hopping processes, while the remaining vertices can
be moved freely. A larger unit cell also means that we have to calculate the entire matrix
of the dispersion, as can be seen in Equation (115). Entries of the matrix are in general
complex-valued, which needs to be accounted for as well. Lastly, the behaviour of the
Monte Carlo algorithm for the system is altered due to the additional Monte Carlo move,
which may impact the convergence. So, the choice of the reference sum should probably be
adapted as well to achieve the desired convergence. See also the discussion in Ref. [207].

4.8. Series Extrapolation

We are interested in extracting the quantum-critical properties from the perturba-
tive series obtained from the Monte Carlo embedding. DlogPadé extrapolations are an
established and powerful method that allows us to extrapolate high-order series even
beyond the radius of convergence and determine the quantum-critical point and associated
critical exponents. A more elaborate description of DlogPadés and its application to critical
phenomena can be found in Refs. [208,209].

We have given a high-order perturbative series of a physical quantity κ(λ) in the per-
turbation parameter λ. See Section 4.5 for typical quantities of interest. A Padé extrapolant
is defined as

P[L, M]κ =
PL(λ)

QM(λ)
=

p0 + p1λ + · · ·+ pLλL

1 + q1λ + · · ·+ qMλM , (203)

where pi, qi ∈ R and the degrees L, M of the numerator polynomial PL(λ) and denominator
polynomial QM(λ) are restricted to omax = L + M, where omax is the maximal perturbative
order. The coefficients pi and qi are fixed by a set of linear equations by cross-multiplying
Equation (203) with QM(λ) and requiring omax = L + M, i.e., that all higher order terms
must vanish on the left side of the equation [208]. We introduce

P[L, M]D =
d

dλ
ln(κ) (204)

as the Padé extrapolant of the logarithmic derivative of κ that must satisfy omax − 1 = L+ M,
as we lose one perturbative order due to differentiation. The DlogPadé extrapolant of κ can
now be defined as

dP[L, M]κ = exp
(∫ λ

0
P[L, M]D dλ′

)
. (205)

Given that the quantity of interest κ shows a second-order phase transition with a dominant
power law κ ∼ |λ − λc|−θ about the critical point λc, we can extract the critical point λc and
the associated critical exponent θ with DlogPadé extrapolants (Although we can extract the
critical properties of a second-order quantum phase transition, we are blind to first-order
phase transitions as the series expansion of a single physical quantity cannot capture level
crossings of the analysed quantity at the critical point λc). We can determine estimates for
the critical point λc by analysing the poles of the extrapolant P[L, M]D . We have to identify
the physical pole whose position determines λc and exclude spurious extrapolants that
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have non-physical poles in the complex plane close to the real line with λ < λc. If λc is
known, we can define biased DlogPadés by

P[L, M]θ⋆ = (λc − λ)
d

dλ
ln(κ) . (206)

Here, defective extrapolants have to be removed as well by excluding all extrapolants that
have poles in the vicinity of λ < λc. We can extract estimates for the critical exponent θ by
calculating the residua. For an unbiased estimate, we calculate

θ = Res P[L, M]D |λ=λc =
PL(λ)

d
dλ QM(λ)

∣∣∣∣∣
λ=λc

, (207)

and for the biased estimate, we calculate

θ⋆ = Res P[L, M]θ⋆ |λ=λc =
PL(λ)

QM(λ)

∣∣∣∣
λ=λc

. (208)

Biased DlogPadé extrapolants were also used in the past trying to extract the exponent of
multiplicative logarithmic corrections at the upper critical dimension [25,29,31,35]. At the
upper critical dimensions, there are corrections to the dominant power-law behaviour of
the form

κ ∼ |λ − λc|−θ(ln(λ − λc))
pθ . (209)

We can bias the critical point λc and the critical exponent θ to the known mean-field value
and define the extrapolant:

P[L, M]p⋆θ = − ln(1 − λ/λc)[(λc − λ)D(λ)− θ] , (210)

so we can determine the estimate p⋆θ by calculating the residuum of the Padé extrapolant.
We take the series of mean coefficients pi for the quantities given by

Equations (164), (174), and (177) and calculate a set of extrapolants to obtain reliable esti-
mates for the critical properties of interest. We calculate estimates that satisfy
L + M = o ≤ omax. We exclude all defective extrapolants as briefly described above and
arrange the remaining DlogPadés into families with L − M = const. Usually, we only
allow |L − M| ≤ 3 or |L − M| ≤ 2 since more diagonal families are expected to converge
faster to the real physical value as a function of the perturbative order o = L + M [208].
We further take the mean over the highest order extrapolants of each family that has at
least two or three extrapolants to obtain an estimate for the critical point and exponents.
The uncertainty obtained from averaging over the extrapolants is by no means a rigorous
error, but is, rather, a “subjective” measure for the uncertainty obtained from systematically
analysing extrapolants [209]. From experience, the estimated critical values are relatively
stable to a small uncertainty in the series, and the uncertainty obtained from averaging
over the highest order extrapolants is comparatively large. Therefore, the series of mean co-
efficients can simply be used for extrapolating the observables as performed in all previous
publications [29–31,34,35,206]. A more rigorous approach can also be applied by repeatedly
applying the extrapolation scheme to the series of individual seeds and averaging the
critical values afterwards.

4.9. Workflow of Series Expansion Monte Carlo Embedding

In the previous subsections, we comprehensively described the pCUT+MC method
for models with long-range interactions. The approach in its entirety is quite involved.
Hence, to conclude this section, we want to give a short overview of the individual steps
necessary and the workflow associated.

The workflow is sketched in Figure 13.
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Figure 13. The workflow of the presented pCUT+MC method consists of several steps. There are
three major steps. First, there is the graph generation, which only has to be performed once. Second
is the calculation of the graph contributions with the pCUT method, and third is the Monte Carlo
algorithm to embed the contributions on the lattice to determine the perturbative series of the quantity
of interest in the thermodynamic limit.
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The approach starts with the generation of graphs with a software programme like
“nauty” [201] and saving the graphs to bond files. The symmetry number sG of the graph can
be obtained on the fly as it is usually a by-product of searching for further graph isomorphs.
For the 1qp dispersion or spectral weight, we want to calculate quasiparticle processes on
these graphs; however, we do not want to calculate every process on a graph since many
are related by symmetries and give the exact same contribution. Therefore, we calculate
additional symmetry numbers sGc of coloured graphs. In a programme, we iterate over all
possible vertex pairs and colours of the associated vertices (two colours for the 1qp spectral
weight and one colour for 1qp processes of the Hamiltonian), choose a representative
process, and save the associated vertices and the symmetry number of the coloured graph
to a list. While, for the calculation of the ground-state energy, a list containing the graph
names suffices, for particle processes, we want to have a list that contains the graph name,
symmetry number, start and end vertex of the process, and a symmetry number associated
with the process counting the number of equivalent processes. On the upside, it suffices to
generate these lists and graphs once.

The second step is to iterate over the list entries, read the graph as a cluster, read the
associated input states, and apply the pCUT method. Of course, such a programme must
also read the pCUT coefficients C(m) or C̃(m; i) for observables and the model information,
i.e., the τ-operators. The programme iterates over the different operator sequences, through
the operators from each sequence, systematically iterates over all edges of a graph, and
applies the τ-operators. We additionally associate each edge of a graph with its own
expansion parameter, such that we obtain the white graph contributions.

Having calculated the white graph contributions over every representative process for
every graph, we need to convert the white graph contributions to an integrand function—also
embeddable function—which is a callable function in our Monte Carlo algorithm. We have
a programme that substitutes the expansion parameter with the algebraic decay expression
(λe 7→ |δ|−d+σ). This must be an expression in the programming language of choice, such
that the Monte Carlo programme can call this function. Further, we multiply the white
graph contribution with the symmetry factor sGc /sG for 1qp processes and with 1/sG for
the ground-state energy to properly account for the symmetries during the embedding.
Also, all white graph contributions of a given order and number of vertices are grouped
into one such function. The functions are saved in a file and included in the Monte Carlo
algorithm code. If the white graph contributions are associated with models with different
interaction flavours, we must sample for certain parameter values during this step.

The physical parameters are also fixed like the momentum k and the decay exponent
d + σ, and of course, the code must be adapted for different lattice geometries. There are
also simulation parameters like the number of seeds, the ratio between shift and rift moves,
and the simulation exponents ρ of the reference sum and γ for the rift move ζ-function
distribution. The Monte Carlo algorithm is then executed for each embeddable function
with a fixed order, number of sites, and seed, yielding the target values of Equation (188).

We average the target values for multiple runs with different seeds, add them up
according to Equations (164), (174), and (177), and obtain a perturbative series in λ. After-
wards, we employ DlogPadé extrapolation to extract critical quantities of interest like the
critical point λc and the associated critical exponent α for the ground-state energy, zν for
the 1qp gap, or (2 − z − η)ν for the 1qp spectral weight. We can also use the extrapolations
to construct the dispersion close to the critical point.

5. Stochastic Series Expansion Quantum Monte Carlo

In this section, we discuss the method of stochastic series expansion (SSE) QMC. This
class of QMC algorithms is closely related to path integral (PI) QMC and samples config-
urations according to the Boltzmann distribution of a quantum mechanical Hamiltonian.
This sampling is achieved by extending the configuration space in the imaginary-time
direction by operator sequences. The objective is to evaluate thermal expectation values for
operators at a finite temperature on a finite system.
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The canonical partition function of a system with a quantum mechanical Hamiltonian
H can be expressed as

Z = Tr{exp(−βH)} = ∑
|α⟩

⟨α| exp(−βH)|α⟩ (211)

with β being the inverse temperature and the sum over an arbitrary orthonormal basis
{|α⟩}. The task is to bring Equation (211) into the form of

Z = ∑
ω∈C

π(ω) (212)

with all weights π(ω) required to be non-negative.
Of course, for a Hamiltonian that is traced over in its eigenbasis (or a classical system),

Equation (211) is already in the form of Equation (212), and the system can be directly
sampled by a Metropolis–Hastings algorithm (see Equation (46)). For a general quantum
mechanical problem, we do not have access to the eigenstates of a system and require a
reformulation of Equation (211).

The SSE QMC idea resolves this issue in the following way: Given a Hamiltonian H, a
computational orthonormal basis {|α⟩} is chosen in which the trace is evaluated. Further,
there should exist a decomposition of the Hamiltonian:

H = −∑
i
Hi (213)

into operators Hi. Hi and {|α⟩} are chosen such that the following two conditions are met:

• No-branching rule:

Hi|β⟩ ∝ |γ⟩ ∈ {|α⟩} ∀Hi ∀|β⟩ ∈ {|α⟩}, (214)

ensuring that no superpositions of basis states are created by acting with Hi.
• Non-negative real matrix elements in the computational basis:

⟨β|Hi|γ⟩ ≥ 0 ∀Hi ∀|β⟩, |γ⟩ ∈ {|α⟩} . (215)

The second condition is not strictly necessary, but makes sure that no sign problem arises,
which would lead to exponentially hard computational complexity. In general, it is not
necessarily possible to find a computational basis in which this condition can be fulfilled
for all Hamiltonians. However, if the negative matrix elements contribute in such a way
that they always occur in pairs and the minus signs cancel, the condition can be relaxed
without inducing a sign problem. We will encounter this case for the antiferromagnetic
Heisenberg models in Section 5.2.

For operatorsHi that are diagonal in the computational basis, the conditions (214) and (215)
never pose a problem as diagonal operators intrinsically obey the no-branching rule and
can always be made non-negative by adding a suitable constant to the Hamiltonian. The
main difficulty is to find a computational basis in which the off-diagonal matrix elements
are non-negative, which is not necessarily possible, as mentioned above. In particular, for
fermionic or frustrated systems, negative signs typically occur.

In order to reformulate Equation (211) in the form of Equation (212), a high-temperature
expansion for the partition function is performed:



Entropy 2024, 26, 401 59 of 135

Z = Tr{exp(−βH)} = ∑
|α⟩

⟨α| exp(−βH)|α⟩ (216)

= ∑
|α⟩

∞

∑
n=0

βn

n!
⟨α|(−H)n|α⟩ (217)

= ∑
|α⟩

∞

∑
n=0

βn

n!
⟨α|(∑

i
Hi)

n|α⟩ . (218)

In general, the evaluation of ⟨α|(∑i Hi)
n|α⟩ is not feasible. The way the SSE tackles this

expression is by expanding the product of sums as(
∑

i
Hi

)n

= ∑
Sn

n

∏
k=1

Hi(k) (219)

as a sum over all occurring operator sequences Sn resulting from the exponentiation. The
additional dimension created by the operator sequence is usually referred to as imaginary
time in analogy to path-integral formulations. Inserting Equation (219) into Equation (218),
one obtains

Z = ∑
|α⟩

∞

∑
n=0

∑
Sn

βn

n!
⟨α|

n

∏
k=1

Hi(k)|α⟩ . (220)

Note that each of the summands in Equation (220) is non-negative by design due to
the condition (215) and can be interpreted as the relative weight of a configuration. By
comparing Equation (220) with Equation (212), we see that it is of a suitable form for a
Markov chain Monte Carlo sampling. We identify the direct product of the set of all basis
states {|α⟩} with the set of all sequences as the configuration space:

C = {|α⟩} ×
∞⋃

n=0
{Sn} . (221)

The weight of a configuration is given by

π(|α⟩, Sn; β) =
βn

n!
⟨α|

n

∏
k=1

Hi(k)|α⟩ . (222)

In the next step, we discuss the structure of each configuration consisting of a computational
basis state |α⟩ and an operator sequence Sn. Regarding Equation (220), we stress that the
action of the product of operators in the sequence onto the basis state is crucial. Due to
the no-branching rule (see Equation (214)), the action of ∏n

k=1 Hi(k) onto the basis state can
be interpreted as a discrete propagation of the state α in imaginary time according to the
operators in the sequence. We define the state at propagation index p ∈ {0, . . . , n} to be

|α(p)⟩ =
p

∏
k=1

Hi(k)|α⟩ . (223)

Due to the periodic boundary condition of the trace and the orthogonality of the ba-
sis states {|α⟩}, only sequences for which |α(n)⟩ = |α(0)⟩ have a non-zero weight (see
Equation (222)).

At this point, we can demonstrate why it does not matter if some matrix elements
are negative in some instances, e.g., for some antiferromagnetic spin models on bipartite
lattices. If a matrix element of an operator is negative, but it is ensured by the Hamiltonian
and the periodicity of the trace that there is always an even number of negative matrix
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elements in a sequence with non-vanishing weight, then the definition of weights as in
Equation (222) is nevertheless possible.

In the discussion so far, we considered sequences of all possible lengths. In order to
formulate algorithms sampling the configuration space efficiently, a scheme with a fixed
sequence length L can be introduced, in which all sequences with n < L are padded with
identity operators 1 to length L and all sequences n > L are discarded. The physical
justification to discard all sequences above a certain fixed length L is that they are expo-
nentially suppressed for sufficiently large L. In short, this is the case because the mean
operator number ⟨n⟩ is proportional to the mean energy ⟨H⟩ and the variance is related to
the specific heat in the following way:

⟨H⟩ = −⟨n⟩
β

C = ⟨n2⟩ − ⟨n⟩2 − ⟨n⟩ . (224)

A derivation and discussion of these statements can be found in Refs. [39,210–213]. From
Equation (224), we can infer that the infinite sum over all sequence lengths can be truncated
at a finite L ∝ βN. From rearranging Equation (224) and using the extensivity of the
mean energy, the mean sequence length scales as ⟨n⟩ ∝ βN proportional to the inverse
temperature and system size N. As the mean sequence length has a finite value, the idea
is to choose an L > ⟨n⟩ great enough to be able to sample all but a negligible amount of
operator sequences. Further, we will argue that the introduction of a large enough cutoff
results in an exponentially small and negligible error. In the limit of β → ∞, the specific
heat has to vanish. Therefore, the variance of the mean sequence length is proportional to
⟨n⟩. From this, it is concluded that the weights of sequences vanish exponentially for large
enough sequence lengths n [212].

We, therefore, introduce a large enough cutoff for the sequence length L and consider
operator sequences with a fixed length L. The expression for the partition function can
then be written as

Z ≈ ∑
SL

∑
|α⟩

βn(L− n)!
L!

⟨α|
L
∏
k=1

Hi(k)|α⟩ . (225)

The new configuration space includes all sequences of length L where the shorter sequences
are padded by inserting unity operators. The random insertion of unity operators into
a sequence of n < L non-trivial operators results in (Ln) = L!

n!(L−n)! sequences of length
L. The modified prefactor in Equation (225) accounts for this overcounting. Although
Equation (225) is, strictly speaking, an approximation to the partition function, we want
to note that, in practice, this does not cause a systematic error as L can be chosen large
enough in a dynamical fashion such that, during the finite simulation time, no sequence of
length n > L would occur. Therefore, we will not consider the fixed-length scheme as an
approximation below.

To summarise: Following the argumentation discussed in this section, it is possible to
bring any partition function into the form of Equation (225), whereby all the summands
are non-negative if a suitable decomposition and computational basis can be found. The
next step is to implement a Markov chain MC sampling on the configuration space. As the
configuration space largely depends on the model, the sampling is performed in a model-
dependent way. In Section 5.1, we will introduce an algorithm to sample the (LR)TFIM.
In Section 5.2, we will further describe an algorithm to sample unfrustrated (long-range)
Heisenberg models. In Section 5.3, the measurement of a variety of operators is discussed.
Further, we will discuss how to sample systems at effectively zero temperature in Section 5.4
as this review considers the zero-temperature physics of quantum phase transitions. In
Section 5.5, we give a short overview of other MC algorithms for long-range models based
on path integrals.
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5.1. Algorithm for Arbitrary Transverse-Field Ising Models

In this section, we describe the SSE algorithm to sample arbitrary transverse-field Ising
models (TFIMs) of the form

H = ∑
i ̸=j

Ji,jσ
z
i σz

j − ∑
i

hi σx
i (226)

as introduced by A. Sandvik in Ref. [39]. The Pauli matrices σκ
i with κ ∈ {x, z} describe

N spins 1/2 located on the lattice sites i, j. The transverse-field strength at a lattice site
i is hi > 0, and the Ising couplings between sites i and j have the strength Ji,j ∈ R. For
Ji,j > 0, the interaction is antiferromagnetic and it is energetically favourable for the spins
to anti-align, while for Ji,j < 0, the interaction is ferromagnetic and it is energetically
favourable for the spins to align.

Choosing the σz-eigenbasis {|α⟩} = {
∣∣σz

1 , . . . , σz
N
〉
} for the SSE formulation avoids the

sign problem for arbitrary Ising interactions. The Hamiltonian is decomposed using the
following operators:

H0,0 = 1 (227)

Hi,0 = hiσ
x
i i > 0 (228)

Hi,i = hi1 (229)

Hi,j = |Ji,j| − Ji,jσ
z
i σz

j i, j > 0, i ̸= j . (230)

We call H0,0 a trivial operator, Hi,0 a field operator, Hi,i a constant operator, and Hi,j an
Ising operator. The operator Hi,i is associated with the site i, even though it is proportional
to 1. With these operators, we can rewrite Equation (226) up to an irrelevant constant as

H = −
N

∑
i=1

N

∑
j=0

Hi,j . (231)

Note that Equation (231) is a sum over field, constant, and Ising operators. The constant
operators are not part of the original Hamiltonian, but will be relevant for algorithmic
purposes. The trivial operators (Equation (227)) are not relevant to express the Hamiltonian,
but are necessary for the fixed-length sampling scheme. The proposed decomposition fulfils
the no-branching property, and there are no negative matrix elements of the operators in the
computational basis due to the positive constant |Ji,j| that is added to the Ising operators.
The possible matrix elements for Ising operators Hi,j = |Ji,j| − Ji,jσ

z
i σz

j acting on a pair of
spins i, j are given by

〈
↑↑i,j

∣∣Hi,j
∣∣↑↑i,j

〉
=
〈
↓↓i,j

∣∣Hi,j
∣∣↓↓i,j

〉
=

{
2|Ji,j| for Ji,j < 0
0 for Ji,j > 0

(232)

〈
↑↓i,j

∣∣Hi,j
∣∣↑↓i,j

〉
=
〈
↓↑i,j

∣∣Hi,j
∣∣↓↑i,j

〉
=

{
0 for Ji,j < 0
2|Ji,j| for Ji,j > 0 .

(233)

This implies that only sequences where (anti)ferromagnetic Ising bonds are placed on
(anti)aligned spins have a non-vanishing weight.

The partition function (Equation (225)) in the fixed-length scheme reads

Z = ∑
SL

∑
|α⟩

βn(L− n)!
L!

L
∏
k=1

⟨α(k)|Hi(k),j(k)|α(k − 1)⟩ . (234)

The propagated states |α(p)⟩ only change in the imaginary-time propagation if a field
operator, the only off-diagonal operator in the chosen basis, acts on it. A configuration only
has a non-zero weight if all the Ising operators in the sequence are placed on spins that have
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the correct alignment. Constant operators are included in the Hamiltonian for algorithmic
purposes, which will become important in the off-diagonal update described below.

Before going into the description of the Markov chain to sample the configuration
space, it is illustrative to visualise a configuration with non-vanishing weight defined by
a state |α⟩ and an operator sequence SL. In Figure 14, an exemplary configuration with
non-vanishing weight is illustrated for the one-dimensional TFIM and visualisations of the
different operators Equations (228)–(230) in such a configuration are shown.
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Figure 14. (a) An SSE configuration of a transverse-field Ising chain with N = 10 sites and a
sequence length L = 27. The spatial spin direction goes from left to right, and the imaginary-time
dimension goes from bottom to top. The number of trivial operators in the operator sequence SL is 8.
Filled (empty) circles represent spins aligned in the σz

i = +1 (−1) direction. The propagated states
|α(p)⟩ correspond to the p-th row from below with the lowest row being state |α⟩. (b) A depiction
of the possible vertices for field operators. (c) A depiction of the possible vertices for constant
operators. (d) A depiction of the allowed vertices for ferromagnetic Ising operators. Note that a
ferromagnetic Ising vertex can only connect sites that are connected by a ferromagnetic bond in the
Hamiltonian. (e) A depiction of the allowed vertices for antiferromagnetic Ising operators. Note that
an antiferromagnetic Ising vertex can only connect sites that are connected by an antiferromagnetic
bond in the Hamiltonian.

Before going into the details of the algorithm, we introduce the main concept of the
update scheme and the crucial obstacles that are encountered in setting up an efficient
algorithm [39]. Each step of the Markov chain sampling of configurations is performed
by performing a so-called diagonal update followed by an off-diagonal quantum cluster
update [39]. In the diagonal update, one iterates over the sequence and exchanges trivial
operators with constant or Ising operators and vice versa while propagating the states
along the sequence. In the off-diagonal update, constant operators are exchanged with
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field operators while preserving the weight of the configuration. The main obstacle that is
circumvented with this update procedure is the following: It is a non-trivial and non-local
task to insert off-diagonal operators into the sequence without creating a configuration with
vanishing weight. The first problem is that one cannot simply insert a single field operator
into the sequence as it breaks the periodicity of the propagated states |α(L)⟩ ̸= |α(0)⟩, lead-
ing to a vanishing weight due to the orthonormality of the computational basis. Therefore,
field operators can only occur in an even number for each site to preserve the periodicity in
imaginary time. The second issue involves Ising operators placed on a pair of sites i and j.
If one places a field operator at one of the sites before and behind the Ising operator in the
sequence, this preserves the periodicity in imaginary time, but the matrix element of the
Ising operator becomes zero as the spins will be misaligned with respect to the sign of the
Ising coupling (see Equation (232)). These issues can be tackled by a non-local off-diagonal
update [39], which we will thoroughly discuss after the diagonal update.

In the diagonal update, the number of non-trivial operators n is altered by exchanging
trivial operators with constant and Ising operators in the operator sequence and vice versa.
This does not change the states |α(p)⟩, including the state |α⟩ = |α(0)⟩. Starting from
propagation step p = 0 and state |α(0)⟩, one iterates over the sequence step-by-step and
conducts the exchange of trivial operators with non-trivial diagonal operators. If a field
operator is encountered at the current propagation step, the state is propagated by flipping
the respective spin, and the iteration proceeds. If a diagonal operator is encountered, a local
update following the Metropolis–Hastings algorithm as described in Section 3 is performed
and the total transition probability is made of a proposition probability T̃ and an acceptance
probability pacc.

If a trivial operator is encountered at propagation step k, a non-trivial diagonal operator
gets proposed with the probability

T̃(H0,0 → Hi,j) =
Mi,j

C
(235)

taking into account the weight Mi,j of the proposed operator with the normalising con-
stant C:

Mi,j =

{
2
∣∣Jij
∣∣ for i ̸= j ,

hi for i = j ,
(236)

C = ∑
i

hi + 2 ∑
i ̸=j

∣∣Jij
∣∣ . (237)

The weight is essentially given by the matrix elements of the respective operators Hi,j with
the special case that the Ising operators are a priori handled as if they were allowed. At a
later stage, it is checked if the spins are correctly aligned at the considered propagation step
k and state |α(k)⟩, and the operator gets rejected if this is not the case. This has the benefit
that one does not need to check every single bond for correct alignment for the insertion of
a single operator, which scales like O(N2) for long-range models. This sampling can be
performed in a constant time complexity in the number of elements in the distribution by
using the so-called walker method of aliases [214]. Instructions on how to set up a walker
sampler from a distribution of discrete weights and how to draw from this distribution can
be found in Appendix C or in Ref. [214]. Drawing from the discrete distribution of weights,
an operator Hi,j gets proposed to be inserted. On the other side, if a non-trivial diagonal
operator is encountered, it is always proposed to be replaced by a trivial operator:

T̃(Hi,j → H0,0) = 1 . (238)

The acceptance probabilities are then chosen according to the Metropolis–Hastings algorithm
in Equation (46). For a constant field operator Hi,i, this gives the acceptance probability:
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pacc(H0,0 → Hi,i) = min
(

1,
βMi,i

L− n
C

Mi,i

)
(239)

= min

(
1,

β(∑i hi + 2 ∑i ̸=j
∣∣Jij
∣∣)

L− n

)
. (240)

Similarly, for an Ising operator Hi,j, one has

pacc(H0,0 → Hi,j) = min

(
1,

β⟨α(k)|Hi,j|α(k − 1)⟩
L − n

C
Mi,j

)
(241)

=
⟨α(k)|Hi,j|α(k − 1)⟩

Mi,j
min

(
1,

β(∑i hi + 2 ∑i ̸=j
∣∣Jij
∣∣)

L− n

)
(242)

up to a factor ⟨α(k)|Hi,j|α(k − 1)⟩/Mi,j, which is either 1 or 0 depending on if the spins at the
current propagation step k are correctly aligned or misaligned. An Ising bond with misaligned
spins would lead to a vanishing weight of the configuration and is, therefore, not allowed.

Up to this factor, the acceptance probability is the same independent of the type of
non-trivial diagonal operator that is proposed to be inserted as the operator weight Mi,j
arising in the weight for the newly proposed configuration cancels with the same factor in
the proposition probability. This is because we already chose to propose an operator by
considering its respective weight Mi,j. As the acceptance probabilities do not differ, one
can, therefore, also first check if one accepts to insert any non-trivial diagonal operator and,
only if this is accepted, draw the precise operator to be inserted. Of course, if the chosen
operator is an Ising operator, it still has to be checked if the spins are correctly aligned to
prevent a non-vanishing weight.

The cancellation of the operator weights Mi,j also makes it easier to perform the reverse
process and replace a non-trivial diagonal operator with a trivial one in the sense that the
acceptance probability for inserting H0,0:

pacc(Hi,j → H0,0) = min

(
1,

L− (n − 1)
β(∑i hi + 2 ∑i ̸=j

∣∣Jij
∣∣)
)

(243)

does not depend on the current non-trivial diagonal operator Hi,j.
If a proposition gets rejected, the iteration along the sequence continues and the

procedure starts again for the next operator. After each diagonal update sweep (iteration
over the whole sequence) during the equilibration, trivial operators are appended to the end
of the sequence such that L > 4n/3 [39]. This allows dynamically adjusting the sequence
length L for the fixed-length scheme to ensure a sufficiently long sequence.

For an efficient implementation of the off-diagonal quantum cluster update, it is crucial
to introduce the concept of operator legs. An operator at position p in the sequence has
legs with the numbers 4p, . . . , 4p + 3. For an Ising operator, these legs are associated with
two legs per site, one upper and one lower leg (see Figure 15a).

4p+ 0

4p+ 2

4p+ 1

4p+ 3

4p+ 0

4p+ 1 Ghost legs:
4p+ 2
4p+ 3

a) b)

Figure 15. Assignment of leg numbers to operator legs for an operator at propagation step p.
(a) Illustration of a two-site operator with four real vertex legs. (b) Illustration of a single-site operator
with only two real vertex legs and two ghost legs.

For a constant or field operator, only two of the four legs are real vertex legs since these
operators act only on a single site (see Figure 15b). The remaining two legs are called ghost
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legs and are considered solely due to algorithmic reasons as it is numerically beneficial to
let every operator have the same number of legs. This allows calculating the propagation
index p of an operator from the leg numbers using integer division with p = ⌊leg/4⌋.
Trivial operators can be described with four ghost legs or can be ignored entirely in the
sequence for the off-diagonal update.

For the chosen representation of the Ising model within the SSE, one can subdivide
the configuration into disjoint clusters that extend in space, as well as in imaginary time
with Ising operators acting as bridges in real space and with constant and field operators
acting as delimiters in imaginary time. These clusters of spins can be flipped by replacing
the delimiting constant operators with field operators and vice versa without changing
the weight π(|α⟩, SL; β). If the cluster winds around the boundary in imaginary time,
the respective spins in state |α⟩ have to be updated as well. In order to flip half of the
configuration on average and obtain a good mixing, all clusters are constructed and the
probability to flip a specific cluster is chosen to be 1/2 for each cluster separately.

For the construction of the clusters, the propagated spin states along imaginary time
are not needed. The entire problem can be dealt with in the language of vertices with
legs. The relevant information for the cluster formation is which legs are connected. This
information about the connection between legs of different operators is stored in a doubly
linked list. The list is set up in the following way: At the index of a vertex leg i, we store the
index j of the leg it is connected to, i.e., list[i] = j and vice versa list[list[i]] = list[j] = i. This
segmentation is illustrated for an exemplary configuration in Figure 16 together with the
doubly linked leg list for the depicted configuration. The doubly linked list can already be
set up during the diagonal update when the sequence is traversed either way. An efficient
algorithm to set up the data structure is described in Refs. [213,215].

In comparison to general off-diagonal loop updates [215–217], the formation of clusters
in the presented off-diagonal cluster update for the TFIM is fully deterministic. The whole
configuration is divided into disjoint clusters, all of which will be built and flipped with
probability 1/2. It is beneficial to already decide whether a cluster is flipped or not before
constructing the cluster so the constant and field operators and spin states can already be
processed during the construction. A leg that is processed during the construction of a
cluster is marked as visited in order to not process the same leg twice. This is also the reason
why all the clusters have to be constructed even if they will not be flipped, as otherwise, the
same cluster would get constructed starting from another leg later on. Further, we introduce
a stack for the legs that were visited during the construction, but whose connections are yet
to be processed .

The formation of each cluster starts by choosing a leg that has not yet been visited in
the current off-diagonal update. At the beginning of the cluster formation, it is randomly
determined if the cluster is flipped or not. If the leg corresponds to an Ising vertex, the
cluster branches out to all four legs of the vertex. This means that all four legs of the
operator are put on the stack. If the leg corresponds to a constant or field operator, the type
of operator is exchanged if the cluster is flipped and only this primal leg is put on the stack.
Next, the following logic is repeated until the stack is empty. We pop a leg l from the stack.
If the leg has been visited already, we continue with a new leg from the stack. Else, we
determine the new leg l′ = list[l] using the doubly linked list. We mark both legs l and l′ as
visited. If one passes by the periodic boundary in imaginary time while going from leg l to l′

and the cluster will be flipped, the corresponding site belonging to the legs in the state |α⟩ has
to be flipped. If l′ belongs to an Ising operator, we add all legs of the Ising operator that have
not been visited yet to the stack. If l′ belongs to a constant or field operator, we exchange the
operator if the cluster is said to be flipped. This procedure is repeated until the stack is empty.
After that, one proceeds with the next cluster starting from a leg that has not yet been visited
in the current cluster update. If no such leg is left, the cluster update is finished.
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02 21
03 12
04 43
05 08
06 −1
07 −1
08 05
09 45
10 28
11 44
12 03
13 36
14 −1
15 −1
16 42
17 20
18 −1
19 −1
20 17
21 02
22 24
23 00
24 22
25 32
26 −1
27 −1
28 10
29 41
30 −1
31 −1
32 25
33 40
34 −1
35 −1
36 13
37 01
38 −1
39 −1
40 33
41 29
42 16
43 04
44 11
45 09
46 −1
47 −1

Figure 16. Illustration for the segmentation and construction of the doubly linked list for an exemplary
configuration of the ferromagnetic transverse-field Ising model. (a) Segmentation of a configuration
into disjoint clusters including the numbers of the operator legs. Ghost legs are not depicted. The
coloured lines with ellipses at each end depict the operator legs that are linked. Each colour represents
one cluster in the off-diagonal update. (b) Depiction of a doubly linked list for the configuration
shown in (a). The left column represents the entry numbers in the list and the right column the
corresponding legs to which the entry is connected. The colour represents the clusters in (a) to which
the connection belongs. Ghost legs are linked to the value −1 and are shaded in grey.

In addition to this cluster update, spins that have no operators acting on them in the
sequence can be flipped with a probability of 1/2 (thermal spin flip).

In summary, the off-diagonal update exchanges field Hi,0 and constant operators
Hi,i with each other and changes the state |α⟩. Combining the diagonal update with the
off-diagonal cluster update samples the entire configuration space.

5.2. Algorithm for Unfrustrated Heisenberg Models

In this section, we describe the algorithm to sample arbitrary unfrustrated spin-1/2
Heisenberg models with the SSE framework [213]. By unfrustrated Heisenberg models, we
mean Hamiltonians:

H = ∑
b∈AF

JbS⃗i(b)S⃗j(b) + ∑
b∈F

JbS⃗i(b)S⃗j(b) (244)
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written as a sum over three-component interactions between two sites i(b) and j(b) con-
nected by bond b, where each bond is either ferromagnetic (F) with Jb < 0 or antiferromag-
netic (AF) with Jb > 0, with the property that there is no loop of lattice sites connected
by bonds that contains an odd number of antiferromagnetic bonds, as this would lead
to frustration. The spin operators are a compact notation for a three-component vector
of spin operators S⃗i = (Sx

i , Sy
i , Sz

i )
T . The coupling strengths Jb can have a priori arbitrary

amplitudes. It is crucial to look at unfrustrated Heisenberg models in order to define
non-negative weights for configurations as the off-diagonal components of the antiferro-
magnetic operators have a negative matrix element. In an unfrustrated model, these matrix
elements always occur an even number of times in the operator sequence of any valid
configuration, which makes it possible to construct a non-negative SSE weight [213].

For the SSE algorithm, the σz-eigenbasis {|α⟩} = {
∣∣σz

1 , . . . , σz
N
〉
} is chosen, but the σx-

or σy-eigenbasis would work the same way. The Hamiltonian is decomposed into

H = − ∑
b∈AF

(
HAF

1,b +HAF
2,b − |Jb|

4

)
− ∑

b∈F

(
HF

1,b +HF
2,b −

|Jb|
4

)
(245)

using the following operators:

HF
1,b =

|Jb|
4

− JbSz
i(b)S

z
j(b) (246)

HF
2,b = − Jb

2
(S+

i(b)S
−
j(b) + S−

i(b)S
+
j(b)) (247)

HAF
1,b =

|Jb|
4

− JbSz
i(b)S

z
j(b) (248)

HAF
2,b = − Jb

2
(S+

i(b)S
−
j(b) + S−

i(b)S
+
j(b)) . (249)

The diagonal operators HF
1,b and HAF

1,b in Equations (246) and (248) are defined in the
same fashion as for the TFIM up to the factor of 1/4 due to the usage of spin operators
Sκ = σκ/2 instead of Pauli matrices σκ with κ ∈ {x, y, z}. The contribution to the weight
of a sequence of these operators is either |Jb|/2 if the bond fulfils the (anti)ferromagnetic
condition and zero otherwise. Although the expressions for the ferromagnetic and antifer-
romagnetic bonds look the same, we distinguish between these two bonds to highlight that
these objects behave differently within the off-diagonal update.

As Jb > 0 for antiferromagnetic bonds, the off-diagonal operators HAF
2,b do not fulfil

the non-negativity of matrix elements (see Equation (215)) in the computational basis.
Therefore, they must always appear in an even number of times in the operator sequence
to avoid the sign problem. For the ferromagnetic bonds, this restriction is not necessary.

Analogous to the TFIM, the operator sequence additionally contains trivial operators
H0,0 = 1, which are not part of the Hamiltonian, but are used to pad the sequence to a
fixed length L. In contrast to the TFIM, there is no need for further artificial operators like
the constant field operators in the TFIM used to limit the cluster in the cluster update. In
the case of the Heisenberg model, the non-local off-diagonal update is constructed in the
form of loops instead of a cluster with several branches that need to be limited in imaginary
time. An exemplary SSE configuration for a Heisenberg chain using the decomposition
from above can be seen in Figure 17.

Similar to the sampling of the TFIM in Section 5.1, each step of the Markov chain
sampling of configurations is achieved by performing a diagonal update followed by a
non-local off-diagonal update. The diagonal update exchanges trivial operators with diago-
nal operators, while the off-diagonal update exchanges diagonal bond operators with the
respective off-diagonal bond operators.
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Figure 17. (a) An SSE configuration of a Heisenberg chain with ten sites and a sequence length of
27. The number of trivial operators is 5. Filled (empty) circles represent spins in the σz

i = +1(−1)
direction. The propagated states |α(p)⟩ correspond to the p-th row in the configuration. (b) A
depiction of the allowed vertices for ferromagnetic diagonal operators. (c) A depiction of the
allowed vertices for ferromagnetic off-diagonal operators. (d) A depiction of the allowed vertices for
antiferromagnetic diagonal operators. (e) A depiction of the allowed vertices for antiferromagnetic off-
diagonal operators. Note that (anti)ferromagnetic vertices can only connect sites that are connected
by (anti)ferromagnetic bonds in the Hamiltonian.

Due to the structure of the diagonal operators (see Equations (246) and (248)), similar
to the TFIM, the diagonal update is performed similarly to the diagonal update of the
TFIM described in Section 5.1. Nonetheless, to make the description of the algorithm for
unfrustrated Heisenberg models self-contained, we recapitulate the diagonal update and
adapt it to the Heisenberg case.

The diagonal update exchanges trivial operators with diagonal operators in the se-
quence and vice versa. It will, therefore, not change the states |α(p)⟩, including the state
|α⟩ = |α(0)⟩. Starting from |α⟩ at k = 0, the sequence is again iterated over by k. If the oper-
ator at the current position k in the sequence is an off-diagonal operator operator, the state
|α(k − 1)⟩ is propagated by applying the off-diagonal operator and the iteration proceeds. If
one encounters diagonal or trivial operators in the sequence, the Metropolis–Hastings algo-
rithm (see Section 3) is performed and the transition probability to an altered configuration
is again split into a proposition probability T̃ and an acceptance probability pacc.

Analogous to the algorithm for the TFIM, if a trivial operator is encountered, a non-
trivial diagonal operator gets proposed with the probability:

T̃(H0,0 → HAF/F
1,b ) =

Mb
C

, (250)
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taking into account the weight Mb of the proposed operator and the normalising constant C:

Mb =
|Jb|
2

C =
1
2 ∑

b
|Jb| . (251)

The diagonal update for the Heisenberg model only differs from the one of the TFIM by
the detailed probabilities Mb and the normalising constant C. The factor of 1/4 in the bond
weights in comparison to the Ising model comes from using spin operators in contrast
to Pauli matrices in the Hamiltonian. This sampling according to the weight Mb can be
performed in a constant-time complexity in the number of elements in the distribution
by using the walker method of aliases [214]. An introduction on how to set up a walker
sampler from a distribution of discrete weights and how to draw from this distribution can
be found in Appendix C or in Ref. [214]. Drawing from the discrete distribution of weights,
an operator HAF/F

1,b gets proposed to be inserted. On the other side, if a non-trivial diagonal
operator is encountered, it is always proposed to be replaced by a trivial operator:

T̃(HAF/F
1,b → H0,0) = 1, (252)

exactly as for the TFIM. The acceptance probabilities are then chosen according to the
Metropolis–Hastings algorithm Equation (46). The respective Metropolis–Hastings proba-
bilities with which the proposed replacements at position k in the operator sequence are
accepted are given by the ratios of the configuration weights before and after the potential
replacement and the ratio of the proposition probabilities:

pacc(H0,0 → HAF/F
1,b ) = min

(
1,

β⟨α(k)|HAF/F
1,b |α(k − 1)⟩
L − n

C
Mb

)
(253)

=
⟨α(k)|HAF/F

1,b |α(k − 1)⟩
Mb

min
(

1,
β(∑b |Jb|)
2(L− n)

)
, (254)

pacc(HAF/F
1,b → H0,0) = min

(
1,

2(L− (n − 1))
β(∑b |Jb|)

)
. (255)

As in the case of the TFIM, the specific matrix element ⟨α(k)|HAF/F
1,b |α(k − 1)⟩ for the

propagated states |α(k − 1)⟩ and |α(k)⟩ = |α(k − 1)⟩ has to be considered, which is either
Mb, and cancels with this factor in the acceptance probability, or is 0, and the acceptance
probability vanishes. Intuitively, this factor simply checks if the spins are correctly aligned
or misaligned with respect to the sign of the coupling Jb and only allows the operator to be
inserted if the spins i(b) and j(b) of the propagated state |α(k − 1)⟩ are correctly aligned. If
the proposition is accepted, the replacement of the operator at index k is performed, and
one continues with the next propagation index k + 1 in imaginary time. If the proposition
is denied, the current operator remains, and one continues with the next propagation index
k + 1 in imaginary time.

As for the TFIM, a fixed-length scheme is used and the sequence length L limiting the
amount of non-trivial operators n has to be dynamically adjusted. During the thermalisation
of the sampling procedure, trivial operators are appended to the end of the sequence after
each diagonal update (iteration over the whole sequence) such that L > 4n/3 [39].

In order to efficiently implement an off-diagonal loop update, it is crucial to introduce
the concept of operator legs. An operator at position p in the sequence has four legs with
the numbers 4p, . . . , 4p + 3, two legs (an upper and a lower leg) for each of the spin sites.
Trivial operators can be described with four ghost legs or can be ignored entirely in the
sequence for the off-diagonal update.

For the unfrustrated Heisenberg models, the off-diagonal update is performed using
a loop update. During the update, loops are constructed in the space–time configuration
(see Figure 17 for an example) and the spin states on the loop are flipped along the way,
which changes the operator vertex types. Thereby, diagonal operators become off-diagonal



Entropy 2024, 26, 401 70 of 135

operators and vice versa. It is noteworthy that the weight of a configuration is not modified
by this since the weights of diagonal and off-diagonal operators are the same in the isotropic
Heisenberg model. Therefore, flipping loops with a fixed probability satisfies detailed
balance as long as the probability to construct the reverse loop is the same.

For the Heisenberg model, the creation of the loops is deterministic. Whenever a loop
enters an operator during the loop construction, there is only one exit leg that creates a
valid operator for the bond type (AF or F). Flipping the spins along the loop exchanges
an diagonal operator HAF/F

1,b with its off-diagonal counterpart HAF/F
2,b and vice versa. The

entrance leg and exit leg never belong to the same site. For ferromagnetic operators, the
propagation direction of the loop in imaginary time remains the same (see Figure 18).
For antiferromagnetic operators, the propagation direction of the loop in imaginary time
changes (see Figure 18). When the loop crosses the periodic boundary in imaginary time
at a site i, the computational basis state |α⟩ has to be updated by flipping the spin at site
i. As each leg only belongs to one loop, the configuration can be split into disjoint loops.
Therefore, it is possible to construct all loops during the off-diagonal update and flip each
loop independently with a probability of 1/2.

Combining the diagonal and off-diagonal update allows sampling arbitrary unfrus-
trated Heisenberg models. This includes antiferromagnetic Heisenberg ladders and bilayer
systems with an unfrustrated long-range interaction.
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Figure 18. Illustration showing the construction of the doubly linked vertex list and the off-diagonal
deterministic loop update for unfrustrated Heisenberg models. As an example, a Heisenberg
chain with periodic boundary conditions and nearest-neighbour antiferromagnetic and next-nearest-
neighbour ferromagnetic interactions is considered. (a) Illustration of a configuration including the
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numbers of the operator legs belonging to the respective operators. The coloured lines with ellipses at
each end depict the operator legs that are linked. Each colour represents one loop in the off-diagonal
update. (b) Depiction of a doubly linked list for the configuration shown in (a). The left column
represents the entry numbers in the list and the right column the corresponding legs to which the
entry is connected. The colour represents the loops in (a) to which the connection belongs.

5.3. Observables

In this section, we introduce some observables that can be easily measured within
the SSE formalism introduced. Throughout this section, we do not use the fixed-length
scheme, but keep the general form with operator sequences of fluctuating length to keep
the notation short and simple. The sampling of observables can be performed analogously
in the fixed-length scheme. When implementing the formulas for the observables in the
fixed-length scheme, one just has to keep in mind that the sequences used in the formulas
are the same ones, but without the padded trivial operators. This means, for instance, that
a sum over all propagation steps p becomes a sum over all non-trivial propagation steps in
the fixed-length scheme.

Up to this point in Section 5, we have focused on the partition function of a quantum-
mechanical Hamiltonian:

Z = ∑
ω∈C

π(ω),

expressed as a sum over non-negative weights π(ω) of a configuration ω ∈ C. However,
we are actually not interested in calculating the partition function itself, but rather, the
expectation values of observables.

Analogous to the partition function, quantum mechanical expectation values can be
expanded into a high-temperature series:

⟨A⟩ = 1
Z ∑

{|α⟩}
∑
n=0

∑
Sn

(−β)n

n!
⟨α|A

n

∏
k=1

Hl(k)|α⟩ . (256)

It is important to realise that configurations with a non-vanishing weight π(α, Sn; β) consti-
tuting the partition function do not necessarily contribute to the expectation value ⟨A⟩ with
the same weight or a non-vanishing weight at all [213]. In general, only for operators A
that are diagonal in the computational basis {|α⟩}, the expectation value can be written as

⟨A⟩ = 1
Z ∑

{|α⟩}
∑
n=0

∑
Sn

A(α)π(α, Sn; β) (257)

with A(α) = ⟨α|A|α⟩. For instance, the magnetisation in the z-direction or any n-th moment
thereof is such a diagonal operator when using the σz-eigenbasis {|α⟩} = {

∣∣σz
1 , . . . , σz

N
〉
}

as a computational basis. The statistics of the MC estimates for such observables can be
improved by realising that [218]

π(α, Sn; β) = π(α(p), Sn(p); β) (258)

with Sn(p) being the sequence obtained from cyclically permuting Sn for p times [218].
This means that the expectation value Equation (257) can be expressed as

⟨A⟩ = 1
Z ∑

{|α⟩}
∑
n=0

∑
Sn

1
n

n−1

∑
p=0

A(α(p))π(α, Sn; β), (259)

where A(α) is additionally averaged over imaginary time with A(α(p)) = ⟨α(p)|A|α(p)⟩.
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For off-diagonal operators, one needs to find customised formulas for the expectation
value. However, some of these expectation values are accessible in a quite general way. For
instance, one can show that the mean energy has a rather simple formula [210,211,218]:

⟨H⟩ = −⟨n⟩
β

. (260)

Moreover, for the operators Hi (see Equation (213)), one finds [210,211,218]

⟨Hi⟩ = −⟨ni⟩
β

, (261)

where ni is the amount of operators Hi occurring in the operator sequence. Similarly, one
can derive a formula for the heat capacity [210,211,218]:

C = ⟨n(n − 1)⟩ − ⟨n⟩2 =
〈

n2
〉
− ⟨n⟩2 − ⟨n⟩ . (262)

However, for small temperatures, the heat capacity is calculated as the small difference of
large numbers.

Linear Response and Correlation Functions

An important class of observables is linear response functions like susceptibilities. The
linear response of an observable A to a perturbation H → H− λB tuned by perturbation
parameter λ is given by a Kubo integral [212,219]:

χA,B =
∂⟨A⟩

∂λ

∣∣∣∣
λ=0

(263)

=
∫ β

0
⟨A(τ)B(0)⟩dτ − β⟨A⟩⟨B⟩ . (264)

Once again, if A or B are off-diagonal operators, one has to consider case by case and
find customised formulas that can be used to sample the specific observables within the
SSE formulation. We will focus on the case where A and B are diagonal in the chosen
computational basis. Important examples are the magnetic susceptibility or its local ver-
sion of spin–spin correlation functions averaged over imaginary time, i.e., the correlation
function at zero frequency when regarding Equation (264) as a Laplace transformation
from imaginary time to frequency space. To make this type of observable accessible to a
sampling in the SSE formulation, the imaginary-time correlation function ⟨A(τ)B(0)⟩ is
expanded in temperature analogous to the partition function:

⟨A(τ)B(0)⟩ = 1
Z

Tr
(

e−βHeτHAe−τHB
)

(265)

=
1
Z ∑

{|α⟩}

〈
α

∣∣∣∣∣ ∞

∑
k=0

(
(β − τ)k

k!
(−H)k

)
A

∞

∑
l=0

(
τl

l!
(−H)l

)
B

∣∣∣∣∣α
〉

(266)

=
1
Z ∑

{|α⟩}

∞

∑
l,k=0

(β − τ)k

k!
τl

l!

〈
α
∣∣∣(−H)k A(−H)l B

∣∣∣α〉 (267)

=
1
Z ∑

{|α⟩}

∞

∑
l,k=0

(β − τ)k

k!
τl

l!
Al B0

〈
α
∣∣∣(−H)l+k

∣∣∣α〉 , (268)

where, in the last step, the operators A and B were replaced by their respective eigenvalues
Al = ⟨α(l)|A|α(l)⟩ and B0 = ⟨α(0)|B|α(0)⟩ of the state |α(p)⟩ at the propagation steps
p = l, 0.
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By replacing the sum over k by a sum over n := l + k and inserting the decomposition
of the Hamiltonian, this takes the form

⟨A(τ)B(0)⟩ = 1
Z ∑

{|α⟩}

∞

∑
n=0

n

∑
l=0

∑
Sn

(β − τ)n−l

(n − l)!
τl

l!
Al B0

〈
α

∣∣∣∣∣n−1

∏
i=0

Hai ,bi

∣∣∣∣∣α
〉

(269)

=
1
Z ∑

{|α⟩}

∞

∑
n=0

n

∑
l=0

∑
Sn

(β − τ)n−l

(n − l)!
τl

l!
Al B0

n!
βn π(α, Sn; β) (270)

=
1
Z ∑

{|α⟩}

∞

∑
n=0

n

∑
l=0

∑
Sn

n!
(n − l)!l!

(
1 − τ

β

)n−l(τ

β

)l
Al B0π(α, Sn; β) (271)

=
1
Z ∑

{|α⟩}

∞

∑
n=0

n

∑
l=0

∑
Sn

(
n
l

)(
1 − τ

β

)n−l(τ

β

)l
π(α, Sn; β)

1
n

n−1

∑
p=0

Ap+l Bp , (272)

where, in the last step, the average over imaginary time was taken in order to improve
the statistics. From Equation (272), the connection between the discrete propagation
steps of the SSE and the continuous imaginary time τ becomes apparent [211,212]. An
imaginary-time separation τ corresponds to a binomial distribution of separations l of SSE
propagation steps:

B(l|τ, n) =
(

n
l

)(
1 − τ

β

)n−l(τ

β

)l
, (273)

which is peaked around l = nτ/β [211]. If one is interested in the spectral properties of
the system, one can use this formula for sampling imaginary-time correlation functions
⟨A(τ)B(0)⟩. However, there are more efficient ways to calculate imaginary-time correlation
functions by embedding the SSE configuration into continuous imaginary time. We refer to
Refs. [212,220] for details, as this is out of the scope of this review.

To get to the linear response function χA,B in Equation (264), the imaginary time
integral of in Equation (272) has to be calculated. This integral can be analytically calculated:

∫ β

0
dτ

(
1 − τ

β

)n−l(τ

β

)l
= β

∫ 1

0
du (1 − u)n−lul (274)

= β
(n − l)!

n!
l!
∫ 1

0
du (1 − u)n (275)

= β
(n − l)!

n!
l!

1
n + 1

(276)

by performing l partial integrations. Inserting Equation (272) into the formula (264) and
performing the imaginary time integral Equation (276) yield

χA,B =
1
Z ∑

{|α⟩}

∞

∑
n=0

∑
Sn

π(α, Sn; β)
β

n(n + 1)

n

∑
l=0

n−1

∑
p=0

Ap+l Bp − β⟨A⟩⟨B⟩ . (277)

One can further separate the l = n term while using the periodicity Ap+n = Ap in
imaginary time and rewrite the sums over l and p as a product of two sums. This eventually
yields [210]

χA,B =

〈
β

n(n + 1)

[
n−1

∑
p=0

ApBp +

{
n−1

∑
p=0

Ap

}{
n−1

∑
p=0

Bp

}]〉
π(α,Sn ;β)

− β⟨A⟩⟨B⟩ . (278)

From an algorithmic perspective, the two sums in Equation (278) need to be calculated
by traversing the operator sequence. The effort for measuring χA,B, therefore, scales like
the algorithm with complexity O(βN) when the observables Ap, Bp, and ApBp are not
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calculated from scratch at every propagation step p, but gradually updated and averaged
while propagating the state through the sequence.

For the special case of the susceptibility, one needs to set A = m = ∑i σz
i and

B = M = N · m. The last term Nβ⟨m⟩2 in Equation (278) can be dropped for simulations of
finite systems due to ⟨m⟩ = 0. Explicitly, this gives

χ = N

〈
β

n(n + 1)

[
n−1

∑
p=0

mpmp +

{
n−1

∑
p=0

mp

}{
n−1

∑
p=0

mp

}]〉
π(α,Sn ;β)

(279)

for the susceptibility. Once again, we want to stress that this formula is not formulated in
the fixed-length scheme and the average over the propagation index p, therefore, refers to
the propagation steps of non-trivial operators. Averaging over all propagation steps in the
fixed-length scheme is incorrect.

For the spin–spin correlation functions Gi,j(ω = 0), the operators are set to A = σz
i

and B = σz
j , leading to

Gi,j(ω = 0) =
∫ β

0

〈
σz

i (τ)σ
z
j (0)

〉
dτ (280)

=

〈
β

n(n + 1)

[
n−1

∑
p=0

σz
i,pσz

j,p +

{
n−1

∑
p=0

σz
i,p

}{
n−1

∑
p=0

σz
j,p

}]〉
π(α,Sn ;β)

, (281)

where it was already used that
〈
σz

i
〉
= 0 for any finite system. Similar to the zero-frequency

spin–spin correlation function, one can also calculate an equal-time spin–spin correla-
tion function:

Gi,j(τ = 0) =
〈

σz
i σz

j

〉
=

〈
1
n

n−1

∑
p=0

σz
i,pσz

j,p

〉
π(α,Sn ;β)

. (282)

Sampling the correlations among all sites i and j at all propagation steps p leads to a
complexity of O(βN3), which is worse than the computational complexity O(βN) of
the SSE QMC updates. Even though one could eliminate the average over imaginary
time in the case of Equation (282) to reduce the complexity to O(N2) at the expense of
statistical accuracy, this is not possible for Equation (281) as the sum over imaginary
time is intrinsic in the definition of the zero-frequency correlation function. However, by
realising that the correlations σz

i σz
j between two sites i and j are not altered at the order

O(βN)-times in imaginary time, but only O(β), one can measure the correlation functions
Equations (281) and (282) in O(βN2) time. This is achieved by traversing imaginary time
while memorising the propagation step last[i] of the last preceding spin flip operator for
every site separately. When a spin flip occurs at a site j at propagation step p, one needs to
update the correlation function:

G[i, j] → G[i, j] + σz
i,pσz

j,p(p − max(last[i], last[j])) (283)

for every site i before the local magnetisation is propagated with σz
j,p+1 = −σz

j,p. One
further needs to update last[j] = p. In order to avoid that the measurement dominates the
simulation for large systems, we only measure the correlations between a fixed site i = 1
and j ∈ {1, . . . , N}. This finally reduces the complexity of the measurement to O(βN).

Correlation functions are observables that contain much information about a system’s
state and, in particular, its order. Moreover, its decay at the critical point with the distance
between two spins is connected to the critical exponent η (anomalous dimension). Away
from the critical point, the correlation function usually decays exponentially with long-
range models being one exception to this. The length scale of this exponential decay is
given by the correlation length ξ, which itself is an interesting quantity at a continuous
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phase transition as its divergence is the reason for systems becoming scale-free at the critical
point. As the correlation function does not decay exponentially for long-range system,
which we focus on in this review, we will use the more general term “characteristic length
scale” to refer to the length scale at which the correlations switch to their long-distance
behaviour. In particular, with respect to the Q-FSS for systems above the upper critical
dimension, the characteristic length scale is a crucial quantity as its scaling was predicted
to be different from the standard FSS with ξL ∼ Lϟ instead of ξL ∼ L (see Section 2.3 or
Ref. [34] for details on scaling above the upper critical dimension in quantum systems).
This quantity, therefore, played a crucial role in confirming the Q-FSS hypothesis. However,
the characteristic length scale is a subtle quantity, which is hard to extract or even define
on a finite lattice. For a finite system, the definition of a characteristic length scale is not
unique, and there are several definitions for ξL, which will converge to ξ∞ for L → ∞ [221].
For long-range systems, finding a suitable definition for the characteristic length scale is
even more difficult, as the correlation function decays algebraically even away from the
critical point [222].

Common definitions that are tailored for correlation lengths, which specify the expo-
nential decay of a correlation function at long distances, such as the second moment:

ξ∞ =

√
1

2D

∫
|⃗r|2G(⃗r)dr∫

G(⃗r)dr
(284)

therefore, might yield ξ∞ = ∞ in an infinite system not only at the critical point, but also
away from the critical point [223].

One possible definition for long-range quantum systems is [224]

ξ
(LRω)
L =

1
qmin

[
G̃L(0, ω = 0)− G̃L(qmin, ω = 0)

G̃L(qmin, ω = 0)

]1/σ

(285)

with G(q, ω) being the Fourier transform of Gi,j(ω) from real space to momentum space
and qmin = 2π/L the smallest wavevector fitting on the finite lattice. By inserting the
Gaussian propagator G̃(q, ω = 0) ∼ (bσqσ + m2)−1 for long-range interactions [20,21] into
Equation (285), one obtains

ξ
(LRω)
L =

1
qmin

[
bσqσ

min + m2
L

m2
L

− 1

]1/σ

= b1/σ
σ m−2/σ

L ,

(286)

so that the momentum dependency cancels. Another definition for the same quantity, but
using the equal-time Gaussian propagator GL(0, τ = 0) ∼ (2

√
g̃
√

bσqσ + m2)−1 [212], is

ξ
(LRτ)
L =

1
qmin

[
G̃2

L(0, τ = 0)− G̃2
L(qmin, τ = 0)

G̃2
L(qmin, τ = 0)

]1/σ

= b1/σ
σ m−2/σ

L .

(287)

By inserting the scaling of the gap m∞ ∼ |r|zν = |r|σν/2 for the n-component quantum rotor
model in the long-range mean-field regime [20,21], which is relevant for most applications
discussed below, one obtains the scaling of ξ(LR) in the thermodynamic limit to be

ξ
(LR)
∞ ∼ |r|−ν , (288)

which is the singularity one expects from the characteristic length scale.
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5.4. Sampling at Effectively Zero Temperature

The SSE QMC approach can be used to stochastically calculate the thermal average
of operators for systems of a finite size at a finite temperature. We discussed in Section 2
that QPTs are a concept defined in the thermodynamic limit at zero temperature. Further,
we presented in Sections 2.2 and 2.3 how the critical point, as well as critical exponents
can be extracted from certain observables calculated on finite systems at zero temperature.
The goal of many works that use SSE QMC sampling is to calculate the expectation value
of these observables on finite systems at an effective zero temperature [32,34]. We define
the notion of effective zero temperature as a temperature at which, in practice, only the
ground state contributes to the thermal average, as all excited states are exponentially
suppressed [32,34]. This definition can be applied only to gapped systems as gapless
systems at infinitely small, but finite temperature lead to a thermal average over the
infinitesimally low-lying excitations. As the SSE QMC approach is sampling finite systems,
there cannot be a non-analytic point in the ground-state energy associated with a second-
order QPT [113]. Closely related with this statement, the ground state of a finite system
cannot spontaneously break the symmetry of the Hamiltonian, as it is the case at a second-
order QPT [113]. An intuition to this statement can be built from a perturbative point of
view. On a finite system, there is always a finite-order perturbative process coupling the
hypothetical ground states of a symmetry-broken phase. Due to this finite-order coupling,
there will always be a level repulsion between the states and no true degeneracy occurs.
This means that, on a finite system, there is always a finite-size energy gap between the
ground state and the excitations. As discussed in Section 2.2 on a finite system, there is
a pseudo-critical point close to the parameter values of the QPT in the thermodynamic
limit. For a system with gapped phases on both sides of the QPT, we expect the relevant
finite-size gap to be the smallest in the vicinity of the pseudo-critical point. The finite-size
gap at the pseudo-critical point is expected scales as L−zϟ with the linear system size L to
the power of the dynamical correlation length exponent z [34,113,129,212] and ϟ = 1 for a
QPT below the upper critical dimension (see Section 2.3). This statement can be directly
derived from the finite-size scaling form of the energy gap:

∆L(r) = L−zϟΨ∆(Lϟ/νr) . (289)

Note that the scaling dependence for systems above the upper critical dimension has
not been confirmed yet by numerical studies. To perform simulations at effective zero
temperature, there are two main approaches in the contemporary literature. Firstly, one
just scales the simulation temperature with L for different linear system sizes. This is a
valid approach for many systems as z = 1 is a common value for the critical exponent,
indicating a space–time symmetry in the correlations. For long-range interacting systems
such as the LRTFIM or unfrustrated long-range Heisenberg models, one has z ≤ 1, which
makes the scaling sufficient, but overly ambitious [21]. An improved version of this
naive approach is to scale the simulation temperature with Lzϟ for different linear system
sizes. This follows the expected scaling of the finite-size gap. The correct prefactor of
the scaling is not known and accounted for in the scaling, and corrections to scaling for
small system sizes can lead to errors. A more sophisticated approach to determine a
suitable effective zero temperature for a finite system is discussed in Refs. [32,34,225]. This
technique was introduced in Ref. [225] as the beta-doubling method. The idea is to study
the convergence of observables ⟨OL(r, β)⟩ for a fixed system size and parameter value
r at successively doubled inverse temperatures β = 2n of the simulation. The fraction
of ⟨OL(r, β)⟩/⟨OL(r, βmax)⟩ is considered with βmax being the largest considered β value.
This quantity is used to probe the convergence of the observable ⟨OL(r, β)⟩ towards zero
temperature. The temperature convergence can be gauged using a plot, as demonstrated in
Figure 19. Note that the value of ⟨OL(r, βmax)⟩/⟨OL(r, βmax)⟩ is always at one. Therefore,
as a rule of thumb, one can validate simulation temperatures for which at least the two
points prior to the last point also have a value close to one.
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Although the beta-doubling scheme has more overhead than a naive scaling with Lzϟ,
it provides multiple advantages. First of all, one does not need to know the dynamical
critical exponents z beforehand. Secondly, in most cases, it is easy to implement: if one
uses either way a simulated annealing scheme by successively cooling the simulation
temperature during the thermalisation of the algorithm, the beta-doubling scheme can
be easily incorporated in this procedure. Thirdly, the beta doubling provides a direct
demonstration that a simulation is sampling zero-temperature properties. It captures
intrinsically the relevant scaling Lzϟ, as well as potentially large prefactors and corrections
to this scaling. Fourthly, it does not need to be applied to all parameter values r, as it
suffices to perform the beta-doubling procedure only for the parameter values where the
relevant finite-size gap is expected to be the smallest and use this temperature for the whole
parameter range.

100 101 102 103

β

0.0

0.2

0.4

0.6

0.8

1.0

1.2

〈m
2 L
〉/
〈m

2 L
(β

m
a
x
)〉 Linear system size:

L = 128

L = 180

L = 256

L = 360

L = 512

L = 724

L = 1024

Figure 19. Illustration of the beta-doubling method for the one-dimensional LRTFIM in the short-
range regime with decay exponent σ = 2.5 at a transverse field of h = 1.25. The simulation starts
at β = 1 (leftmost points) for every system size. The inverse temperature is then doubled in every
beta-doubling step until the maximum βmax = 2048 is reached. All of the shown magnetisation
curves seem to be converging to zero temperature. Larger systems with L > 1024 were discarded as
they do not appear to be fully converged yet.

In general, the beta-doubling scheme can help to reduce computational cost by per-
forming simulations at a tailored effective zero temperature. If computational time is not a
critical factor, in many practical applications, one can use the temperature that is sufficient
for the largest system and sample all smaller systems at the same temperature.

5.5. Overview: Path Integral Quantum Monte Carlo Algorithms for Long-Range Models

The QMC methods discussed so far are both based on the SSE formulation [39,213].
In parallel with the development of the SSE-based QMC methods for long-range sys-
tems, path integral (PI) QMC methods operating in continuous imaginary time have been
introduced for extended Bose–Hubbard models with long-range density–density interac-
tions [215,226–228] (see (290)). The main application of these methods in the context of
long-range interactions is the determination and classification of ground states [64,229,230].
Since we focus on reviewing QPTs in long-range interacting systems, which are usually
simulated using the SSE, we only skim over the basic concepts relevant for the PI QMC
methods. One motivation for the development of these methods was the study of the Mott
insulator to superfluid transition in the presence of disorder [231–233]. Further, long-range
density–density interactions were added to the algorithms [226]. A great application case
for these algorithms is the study of extended Bose–Hubbard models [64,229,230], which
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are an effective description of ultracold atomic or molecular gases trapped in optical lattice
potentials [56,58,61,62,64,68,229,234–238]. For a comprehensive explanation on how to
derive effective Bose–Hubbard models for these systems, see Refs. [56,236–238].

A basic Hamiltonian studied with the world-line QMC methods in this context [226–228]
reads

H = −µ ∑
i

ni + ∑
ij

Vi,jninj − t ∑
⟨i,j⟩

(
a†

i aj + a†
j ai

)
(290)

with (hard-core) bosonic degrees of freedom on the lattice site i described by creation a†
i ,

annihilation ai , and particle number ni operators. The coupling µ describes a chemical
potential and Vi,j ≤ 0 the density–density interaction between particles at sites i and j, and
the hopping amplitude t > 0.

PI QMC methods formulated in imaginary time are based on the PI formulation of the
partition function:

Z = Tr
{

e−βH
}
= lim

K→∞
Tr
{(

e−∆τH
)K
}

with ∆τ = β/K (291)

using the Suzuki–Trotter decomposition [115]. The PI formulation is used to extend
the configuration space to all imaginary-time trajectories |α(τ)⟩ of computational basis
states [39,226], which are periodically closed in β (|α(0)⟩ = |α(β)⟩) and which are con-
nected by an imaginary-time evolution (⟨α(τ2)|e−H(τ2−τ1)|α(τ1)⟩). These methods can be
implemented in discrete [239] or continuous [226,240] imaginary time.

In the SSE approach, the configuration space is extended using the operator sequences
arising from a high-temperature expansion of the exponential in the partition function.
These configurations can be regarded as a series of discretely propagated states |α(p)⟩ with
an artificial propagation index p labelling its position in the sequence. This introduction of
an additional dimension to obtain a configuration space that can be sampled using MC in
the PI and SSE QMC approach hints that both approaches are closely related. Studies of the
close relationships between the SSE and PI representations can be found in Refs. [211,241].
Concepts developed in one of the two pictures can be equivalently formulated in the other
one. For example, the concept of loops [215,216,242] and directed loops [215,217,242] can
be applied in both formulations. The sampling of the Heisenberg model as described in
Section 5.2 can be transferred to the PI QMC picture, as it is a direct application of the
directed loop idea [217,225].

Since we will focus in this review on quantum-critical properties of magnetic systems,
we only briefly summarise the major applications of PI QMC methods for extended (hard-
core) Bose–Hubbard models with dipolar density–density interactions [64,229,230]. The PI
QMC is used in this field to determine ground-state phase diagrams studying the emergence
of solid, supersolid, and superfluid phases [64,229,230]. It has been demonstrated in
Ref. [64] that long-range interactions stabilise more solid phases than the chequerboard
solid with a filling of 1/2 present in systems with nearest-neighbour interactions. It
has also been shown that long-range interactions lead to the emergence of supersolid
ground states [64]. The great benefit of the QMC simulations in comparison to other
methods (e.g., mean-field calculations [111]) is the quantitative nature of these methods.
Therefore, the numerical study of these models is highly relevant, since experimental
progress in cooling and trapping atoms and molecules with dipolar electric or magnetic
moments [67,69,72,73,243] enables experiments to realise extended Hubbard models with
long-range interactions [68]. We expect the implementation of SSE QMC techniques for
this kind of model to be straightforward using the directed loop approach [217,225].

6. Long-Range Transverse-Field Ising Models

In this section, we review the ground-state quantum phase diagrams of the long-range
transverse-field Ising model (LRTFIM) with algebraically decaying long-range interactions.
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We emphasise how the Monte Carlo-based techniques introduced in this work are a reliable
way to obtain critical exponents of quantum phase transitions (QPTs) in this model. The
Hamiltonian of the LRTFIM is given by

H =
J
2 ∑

i ̸=j

1
|⃗ri − r⃗j|d+σ

σz
i σz

j − h ∑
i

σx
i (292)

with Pauli matrices σκ
i and κ ∈ {x, z} describing spins 1/2 located on the lattice sites

r⃗i. The Ising coupling is tuned by the parameter J. For J > 0, the Ising interaction is
antiferromagnetic and, for J < 0, ferromagnetic. The amplitude of the transverse field
is denoted by h. The positive parameter (d + σ) governs the algebraic decay of the Ising
interaction. Here, d denotes the spatial dimension of the system and σ is a tunable real-
valued parameter. The limiting cases of the algebraically decaying long-range interaction
are the nearest-neighbour interaction for σ = ∞ and an all-to-all coupling for (d + σ) = 0.
As a side note, there is literature where α ≡ d + σ is used as a parameter to tune the decay
of the long-range interaction. For this review, we stay with d + σ in order to treat systems
with different spatial dimensions d on the same footing.

The Hamiltonian (292) can be treated using the pCUT+MC method as described in
Section 4. A generic, perturbative starting point for the LRTFIM is the high-field limit. The
transverse field term is regarded as the unperturbed Hamiltonian and the Ising interaction
as the perturbation. Using the Matsubara–Matsuda transformation [25,29,89]:

σx
i = 1 − 2b†

i bi σz
i = b†

i + bi , (293)

the Hamiltonian (292) can be brought into a hard-core bosonic quasi-particle picture:

H = ϵ0N + ∑
i

b†
i bi + ∑

i ̸=j
λi,j

(
b†

i bj + b†
i b†

j + bi b†
j + bi bj

)
. (294)

Here, ϵ0 is a constant, N is the number of sites, and b(†)i is a hard-core bosonic quasiparticle
annihilation (creation) operator. The perturbation parameters are given by

λi,j =
J

4h
1

|⃗ri − r⃗j|(d+σ)
. (295)

In the pCUT language, the perturbation associated with the perturbation parameter λ can
be written as V = T−2 + T0 + T2, where the hopping processes b†

i bj are contained in T0 and
the pair creation (annihilation) processes are in T2 (T−2).

Further, the Hamiltonian (292) is of the form to straightforwardly apply the SSE QMC
algorithm reviewed in Section 5.1 (see Equation (226)). We recall that this QMC algorithm
is sign-problem-free for arbitrary, potentially frustrated, Ising interactions.

The studied effects of algebraically decaying long-range Ising interactions on the
ground-state phase diagram can be categorised into three scenarios:

First, for ferromagnetic interactions, there is a QPT with Z2 symmetry breaking be-
tween a ferromagnetic low-field phase and a symmetric x-polarised high-field phase. The
intriguing effect of long-range interaction is the emergence of three regimes with distinct
types of universality of the QPT. For large values of the parameter σ > 2 − ηSR, the uni-
versality class is the same as in the nearest-neighbour model. For intermediate σ values of
2d/3 < σ < 2 − ηSR, the critical exponents change as a function of σ and the criticality can
be described by a non-trivial long-range theory. For σ < 2d/3, the long-range interaction
lowers the upper critical dimension below the physical dimension of the model and the
transition becomes a long-range mean-field transition. We review the recent studies inves-
tigating this model in Section 6.1 with a particular focus on the ϕ4-theory in Section 6.1.1
and on numerical studies investigating the critical properties in Section 6.1.2. The aspects
regarding FSS above the upper critical dimension are summarised in Section 6.1.3.
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The second relevant category is antiferromagnetic Ising interactions where the nearest-
neighbour couplings form a bipartite lattice. In this case, there is a QPT with Z2 symmetry
breaking between an antiferromagnetic low-field phase and a symmetric x-polarised high-
field phase. The current state of literature indicates no change in the universality class
of the phase transition in dependence of the long-range interaction. We summarise and
review the recent progress in studying this case in Section 6.2.

The last aspect is scenarios where the nearest-neighbour couplings do not form a
bipartite lattice. In this case, the long-range interactions may substantially alter the quantum
phase diagram of the nearest-neighbour model. We summarise and review the recent
progress regarding this case in Section 6.3.

6.1. Ferromagnetic Long-Range Transverse-Field Ising Models

The ferromagnetic TFIM with nearest-neighbour interactions in d ≥ 1 dimensions is a
paradigmatic model to display a QPT in a (d + 1)D-Ising universality class. This transition
describes the non-analytic change in the ground-state between a Z2 symmetry-broken
low-field phase and a symmetric x-polarised high-field phase. By adding algebraically
decaying long-range interactions to this model, one can study how such interactions can
alter non-universal, as well as universal properties of a QPT and which new features
can emerge.

In the case of ferromagnetic interactions, the algebraically decaying long-range interac-
tion stabilises the symmetry-broken phase and the QPT shifts to larger h values [25,29,32,34].
An intuitive way to understand this behaviour is that, due to the long-range interaction,
more connections are introduced that align the spins in the z-direction, and the energy cost
for a single spin flip increases. In the limit σ → 0, the critical value of the transverse field
diverges as the cost for a single spin flip becomes extensive.

In this review, we focus exclusively on the regime of so-called weak long-range
interactions with an algebraic decay exponent σ > 0 [21]. The research field of strong
long-range interactions considers σ ≤ 0 [5,42–45]. For weak long-range interactions, the
Hamiltonian (292) is well defined in the thermodynamic limit, and common properties
such as the ground-state additivity and thermodynamic quantities are well defined [5].
For strong long-range interactions, the energy of the ferromagnetically aligned state is
superextensive, and in order to study the model in the thermodynamic limit, an appropriate
rescaling of the Ising coupling with the system size is required [5].

The significance of the ferromagnetic LRTFIM comes from its paradigmatic nature of dis-
playing changes in the universal behaviour due to the long-range interaction [20,21,25,29,32].
It has been known since the advent of the theory of classical phase transitions that alge-
braically decaying long-range interactions are a potential knob to alter the fixed-point
structure of the renormalisation flow and, therefore, change the universal properties (e.g.,
critical exponents) [1,2,140]. Coming from the limit σ = ∞ of nearest-neighbour inter-
actions, the QPT of a d-dimensional model remains in the (d + 1)D-Ising universality
class until σ = 2 − ηSR (ηSR is the anomalous dimension critical exponent of the nearest-
neighbour universality class). This means that the critical exponents are constant as a
function of σ and the fixed point associated with the QPT remains the one of the nearest-
neighbour model. For σ = 2 − ηSR, the RG fixed point associated with the QPT changes to
the one of a non-trivial long-range interacting theory, and the critical exponents become
σ-dependent [21]. The upper critical dimension of this theory with long-range interaction
is lowered with respect to the short-range model as duc = 3σ/2. If the (fixed) spatial
system dimension d is larger than or equal to the σ-dependent upper critical dimension,
the universality class describing the QPT enters a long-range mean-field regime. The three
different regimes, as well as their boundaries in dependence of the dimensionality of the
system are visualised in Figure 20.

In the following, we recapitulate the basic field-theoretical arguments leading to
the distinction between three universality regimes (see Section 6.1.1). We will further
emphasise the most relevant aspects for the two long-range regimes. In the non-trivial,
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intermediate regime, the precise values of the critical exponents depend on σ and need to
be determined numerically. Therefore, we review the recent numerical studies computing
the critical exponents in Section 6.1.2. To conclude the discussion, we outline how to utilise
ferromagnetic long-range Ising models to study QPTs above the upper critical dimension
(see Section 6.1.3).

0 2d
3

2− ηSR σ

long-range
mean-field

long-range
non-trivial (d+ 1)D-Ising

Figure 20. Sketch of the three distinct universality regimes of the QPT in the ferromagnetic LRTFIM.
For one- and two-dimensional systems, all three regimes exist, and the boundaries can be obtained
using the expressions in the figure. For d ≥ 3, there is only the long-range mean-field and the
nearest-neighbour mean-field regime with a boundary at σ = 2.

6.1.1. ϕ4-Theory for Quantum Rotor Models with Long-Range Interactions

Starting with the short-range interacting action (see Equation (A3)) of the n-component
quantum rotor model, Dutta et al. [20] introduced an action for long-range interacting rotor
models, by adding the algebraic decay between interacting fields as an additional term
to the action in real space. Note the the action for the Ising model is equivalent to the
one-component (scalar) rotor model [113]. By performing a Fourier transformation of the
resulting action, the authors obtained the action:

Sϕ̃ =
∫ ddq

(2π)d

∫ dω

2π
[g̃ω2 + r + aqσ + bq2]ϕ̃(q, iω)ϕ̃(−q,−iω) (296)

+ u
∫ dω1

2π
. . .

dω4

2π

∫ ddq1

(2π)d . . .
ddq4

(2π)d δd(q1 + · · ·+ q4)δ(ω1 + · · ·+ ω4)×

× [ϕ̃(q1, iω1)ϕ̃(q2, iω2)][ϕ̃(q3, iω3)ϕ̃(q4, iω4)]

with a, b > 0, σ from the decay exponent d + σ of the microscopic model, and r, u coupling
constants as in the nearest-neighbour case. The qσ term, which is new compared to the
nearest-neighbour theory, results from the Fourier transformation of the added long-range
interacting term: ∫

ddx
∫

ddy
∫

dτ
ϕ(x, τ)ϕ(y, τ)

|x − y|d+σ
(297)

of the order-parameter field ϕ [40]. As the relevant modes for the QPT are the ones with
long wavelengths, it is clear that, for σ ≥ 2, the q2 term gives the leading contribution in
q; the qσ term can be neglected and, therefore, the system is, in this case, described by the
short-range interacting theory. In contrast to this, a different critical behaviour distinct
from the short-range case is possible for σ < 2. With the same argument as above, the
q2 term becomes negligible for σ < 2. In the following, we will focus on this regime,
where the behaviour differs from the nearest-neighbour case. In order to gain insight
into the QPT affected by long-range interactions, an investigation of the Gaussian theory
is a good starting point to enter the framework of perturbative renormalisation group
calculations [20,21,113] like the ϵ-expansion in Ref. [20]. From Equation (296), one can
directly read off the propagator of the Gaussian theory as

G0(q, ω)−1 = qσ + g̃ω2 + r . (298)

From field-theoretical power-counting arguments, Dutta et al. [20] derived several prop-
erties of the Gaussian theory. Using the divergence of the mass renormalisation term, the
lower critical dimension below which no phase transition is occurring can be derived as
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dlc = σ/2 [20]. By regarding the Gaussian propagator, one finds directly that η = 2 − σ as
η is defined by the deviation from 2 of the leading power by which the momentum enters
the propagator (see Equation (A37)). Note that, in the long-range case, the Gaussian theory
has an η ̸= 0. From further power-counting analysis, it is possible to derive more critical
exponents from the Gaussian theory [20]:

γ = 1 ν =
1
σ

z =
σ

2
η = 2 − σ. (299)

In the limit σ → 2, the short-range mean-field exponents are recovered [20]. With the
argument that the hyperscaling relation still holds directly at the upper critical dimension,
Dutta et al. [20] derived the upper critical dimension by inserting the long-range Gaussian
exponents (see Equation (299) and α = 0).

2 − α = ν(d + z) −→ 2 =
1
σ
(duc +

σ

2
) ⇔ duc =

3σ

2
. (300)

In addition to the investigation of the Gaussian part of the action in Equation (296), one can
derive non-trivial exponents below the upper critical dimension by deriving perturbative
corrections to the Gaussian exponents in an ϵ-expansion around the upper critical dimen-
sion [113]. Dutta et al. [20] established with a one-loop renormalisation group expansion of
flow equations that the Gaussian fixed point is stable for d ≥ duc. Therefore, the long-range
Gaussian exponents (see Equation (299)) are valid for σ ≤ 2D/3. For d < duc, the correction
indicates a flow to a non-trivial fixed point. The first-order corrections of the ϵ-expansion
for ν and γ are provided [20], and the first-order corrections to η and z are argued to be
zero [20]. It should be noted that the dynamic correlation exponent z ̸= 1 for σ < 2 and,
therefore, correlations are not isotropic in the space and imaginary-time direction [20,21].
“For any value of σ < 2, η sticks to its mean-field value 2 − σ, because the renormalization
does not generate new qσ terms” [20]. This also fits well with the claim that σ = 2 − ηSR,
because, then, there is no discontinuity at the boundary [1–3,21,244].

A recent study by Defenu et al. [21] with a functional renormalisation group approach
investigated the flow of couplings in an effective action with anomalous dimension effects.
This analysis showed that the boundary between the short-range and the non-trivial long-
range regime does not occur at σ = 2, but at σ = 2 − ηSR. So, it is shifted towards lower
σ by the anomalous dimension of the short-range criticality. This anomalous dimension
consideration in [21] is mainly driven by the following argument: From the functional
renormalisation group ansatz, the authors derived two flow equations for the coupling of
the long-range coupling Zk (connected to a in Equation (296)) and the short-range coupling
Z2,k (connected to b in Equation (296)):

∂tZk = (2 − σ − η)Zk (301)

∂tη =
∂zZ2,k

Z2,k
. (302)

The first flow Equation (301) has fixed points for η = 2 − σ or limk→0 Zk = 0. The first
fixed point results in long-range exponents, whereas the second fixed point means that the
long-range coupling becomes irrelevant.

In addition to this anomalous dimension effect, the authors in [21] also calculated criti-
cal exponents in the non-trivial intermediate phase with their functional renormalisation
group technique. They also compared their results with Monte Carlo simulations of the
dissipative non-Ohmic spin chains, which can be mapped to the same behaviour as the
long-range interacting quantum Ising model [245], showing reasonable agreement.

6.1.2. Critical Exponents and Critical Points for One- and Two-Dimensional Systems

The criticality of the ferromagnetic LRTFIM has been studied by a wide variety of
methods with different strengths and weaknesses. Overall, all methods qualitatively
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agree with each other and confirm the three expected regimes from the field-theoretical
analysis [20,21], namely a long-range mean field, a short-range regime, and an intermediate
non-trivial long-range regime, which connects the two limiting regimes with monotonously
changing exponents. In the limit σ → 0, the value of the critical field hc diverges as
the energy cost for a single spin flip in the low-field phase becomes extensive and the
quantum fluctuations introduced by the transverse field fail to compete with the Ising
interaction. In the limit σ → ∞, the value of hc converges towards the exact value for the
nearest-neighbour transverse-field Ising model [25,29,32,246].

In the case of the LRTFIM on the one-dimensional linear chain, the model has been
studied by perturbative continuous unitary transformation with Monte Carlo embedding
(pCUT + MC) [29,31,34,247], the functional renormalisation group (FRG) [21], the density
matrix renormalisation group (DMRG) [28,248], as well as stochastic series expansion
(SSE) [32,34,247,249], path integral (PI) [33] QMC, and QMC with stochastic parameter
optimisation (QMC+SPO) [250].

The critical value of the transverse field was calculated with the pCUT method [29,31,34]
by estimating the gap closing using DlogPadé extrapolation of the perturbative gap series
coming from the high-field phase, by the DMRG using finite-size scaling of the fidelity
susceptibility [28], and by SSE QMC calculations using finite-size scaling of the mag-
netisation [32,249]. The finite-temperature transition points were studied by PI QMC
calculations [33] for σ = 0.5 in the long-range mean field regime and σ = −0.95 in the
strong long-range regime.

Depending on the method, different critical exponents were extracted. Only in the
case of pCUT + MC and SSE QMC calculations[34,247], all three regimes were investigated.
By extracting three independent critical exponents, the authors were able to provide the
full set of critical exponents for each method individually. In the case of the pCUT + MC
approach [34,247], the exponents were computed by (biased) DlogPadé extrapolants of high-
order series of the gap (zν), the one-quasiparticle static spectral weight ((2 − z − η)ν), and
the control-parameter susceptibility (α). In SSE QMC studies [34,247], the exponents were
calculated using data collapses of the magnetisation (β/ν and ν) and the order-parameter
susceptibility (γ/ν). The DMRG study [28] applied the method of data collapse to the
fidelity susceptibility to extract the single exponent ν in the non-trivial long-range regime.
Another DMRG study [248] extracted critical exponents by using finite-size scaling for
the energy gap (z) and the squared order parameter (2β/ν and ν). Using the FRG [21],
the exponents ν and z were calculated, from which one can additionally calculate the
exponent α. In the PI QMC study [33], the finite-temperature criticality of the LRTFIM
was investigated for σ = 0.5 in the long-range mean field regime and σ = −0.95 in the
strong long-range regime. The study includes the extraction of an exponent θt, which
can be related to ν, from the Binder cumulant and classical order-parameter susceptibility
via finite-size scaling, as well as the exponent γθt from finite-size scaling of the classical
order-parameter susceptibility. In Figure 21, the critical field hc and the canonical critical
exponents are plotted for the discussed studies.

The two-dimensional case of the square lattice is less studied. The critical values of the
transverse field were only calculated by the pCUT + MC [29] and SSE QMC method [32,249].
There is so far no study that has extracted the full set of critical exponents altogether. With
pCUT [29], the gap exponents zν were also extracted by DlogPadé extrapolants of the gap
series. In the FRG study [21], the critical exponents z and ν were calculated, and in the
SSE QMC study [32], the critical exponents β and ν were extracted from the data collapses
of the magnetisation. These results are summarised in Figure 22. Note that we present
the results from pCUT + MC calculations from Ref. [29] with one additional order to the
maximal order in the perturbation parameter.
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Figure 21. Critical field values and exponents from numerical studies of the ferromagnetic LRTFIM
on the linear chain. The panels display hc/|J| (top), α (second row left), β (second row right), γ (third
row left), δ (third row right), η (fourth row left), ν (fourth row right), and z (bottom). The labels
refer to the references in the following way: “SSE QMC (2021) [32,249]”, “SSE QMC (2022) [34,247]”,
“pCUT+MC (2022) [34,247]”, “pCUT+MC α from SSE (2022) [34,247]”, “DMRG (2018) [28]”, “DMRG
(2019) [248]”, “FRG (2017) [21]”, “PI QMC (2021) [33]”, and “QMC+SPO (2023) [250]”. The values
for the critical exponents of the transition in the nearest-neighbour model α = 0, β = 1/8, γ = 7/4,
δ = 15, η = 1/4, ν = 1, and z = 1 [246,251,252] and in the long-range mean-field regime α = 0,
β = 1/2, γ = 1, δ = 3, η = 2 − σ, ν = 1/σ, and z = σ/2 [20,21] are given by the dashed lines.
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Figure 22. Critical field values and exponents from numerical studies of the ferromagnetic LRTFIM
on the two-dimensional square lattice. The panels display hc/|J| (top), ν (middle left), z (middle
right), zν (bottom left), and β (bottom right). The data points “SSE QMC (2021)” for hc/J, ν, and β are
from Ref. [32,249]. The data points “pCUT+MC (2019)” for hc/J and zν are from Ref. [29]. The data
points “FRG (2017)” for ν and z originate from the functional RG study in Ref. [21]. The values for the
critical exponents of the transition in the nearest-neighbour model ν = 0.629971(4), β = 0.326419(3),
and z = 1 [253] and in the long-range mean-field regime ν = 1/σ, z = σ/2, and β = 0.5 [20,21] are
given by the dashed lines.

Overall, the different methods all perform well even for relatively small σ. For the
pCUT and SSE QMC studies, where all three regimes were simulated, the limiting cases of
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long-range mean-field criticality and nearest-neighbour criticality were correctly reproduced,
which underlines the reliability of the presented results in the intermediate regime. The
main challenge that the methods are facing is to sharply resolve the regime boundaries due
to rounding effects, which are probably due to the limited length scales in the simulation.
Additionally, the boundary to the long-range mean field regime is spoiled by logarithmic
corrections to scaling at the upper critical dimension. Even in the case of pCUT + MC, which
is a method operating in the thermodynamic limit, there is an intrinsic limit of the length
scale due to the finite order of the series. In particular, the rounding makes it hard to verify
(or falsify) the claim that the boundary between the short-range and non-trivial long-range
regime is shifted 2 → 2 − ηSR. For 1D, the boundary is shifted to σ = 1.75, which could
be resolvable in extensive simulation. However, in 2D, the boundary is only marginally
shifted to σ ≈ 1.964, which is probably not resolvable by the reviewed methods. The best
boundary resolution is probably given by the SSE QMC study [34]. If one is interested in
studying the shift of the boundary, one could, therefore, push the SSE QMC simulations of
the one-dimensional chain to larger systems for σ ⪅ 2. Another difficulty for the methods
operating on finite systems is the breakdown of the common hyperscaling relation and
standard FSS above the upper critical dimension, which affects the processing of data in the
long-range mean-field regime for σ < 2d/3. The scaling above the upper critical dimension
was already outlined in Section 2.3. However, we will recapitulate the most important points
in the following Section 6.1.3, not only because this modified scaling was used in several
of the above-mentioned methods to extract critical exponents [32–34], but also because the
LRTFIM constitutes a testing ground for quantum Q-FSS scaling and the modified scaling
of the correlation length was confirmed in a study of the LRTFIM [34].

6.1.3. Scaling above the Upper Critical Dimension

As discussed in Section 6.1.1, for σ < 2 − ηSR, the action describing the QPT and
its universality changes from short range to long range. In this long-range regime, the
upper critical dimension duc = 3σ/2 was found to depend on the value of σ [20,21]. This
means that the connectivity of the system increases for decreasing σ and a smaller spatial
dimension d < 3 is already sufficient to reach or even exceed the upper critical dimension.
The sigma below which the model is above its upper critical dimension is σuc = 2d/3. In
this regime, it is not possible to correctly extract all critical exponents from the standard
FSS, and the common hyperscaling relation:

2 − α = (d + z)ν (303)

becomes invalid as the critical exponents become independent of the dimension d. The
origin of this discrepancy comes from the effect of dangerous irrelevant variables that one
has to take into account in the derivation of scaling above the upper critical dimension.
When doing so, one obtains a modified hyperscaling relation:

2 − α =

(
d
ϟ
+ z
)

ν (304)

with the exponent ϟ = max(1, d/duc). This relation can be used for the conversion of
different critical exponents [34,35].

Additionally, the standard FSS scaling form of an observable O with power-law
singularity O(r, L−1 = 0) ∼ |r|ω is modified to [34]

O(r, L−1) = L−ωϟ/νΨ(Lϟ/νr) (305)

following the formulation of the Q-FSS for classical [15–19,41] and quantum [34] systems.
Finite-size methods that rely on the method of data collapse or other FSS-based techniques
have to use this adapted formula to extract all the critical exponents successfully [34]. For a
more elaborate description of quantum Q-FSS, please refer to Section 2.3 or to Ref. [34].



Entropy 2024, 26, 401 87 of 135

On the other side, the LRTFIM can also be used as a testing ground for quantum
Q-FSS. One key difference that distinguishes the Q-FSS from standard FSS is that the
correlation sector is also affected by the DIV in the case of the Q-FSS. This leads to a
modified scaling of the characteristic length scale ξL(r) = LϟΞ(Lϟ/νr) with the system
size instead of ξL(r) ∼ LΞ(L1/νr), as it is for standard FSS. The characteristic length scale
was measured in the SSE QMC study [34] in the long-range mean-field regime, and the
exponent ϟ was extracted by a data collapse with fixed mean field value ν = σ−1. The
extracted values coming from Ref. [34] are presented in Figure 23 and are clearly in line
with the predictions made by the Q-FSS.

Figure 23. Exponent ϟ extracted by the data collapse of ξ(LRω) and ξ(LRτ) for different decay expo-
nents of the LRTFIM on the linear chain [34]. The black dashed line depicts the prediction by the
Q-FSS ϟ = max(1, d/duc), while the grey dashed line shows the prediction from standard FSS ϟ = 1.
In the regime above the upper critical dimension for σ < 2/3, the predictions start to deviate and the
extracted values for ϟ are clearly in line with the Q-FSS scenario. Figure adapted from Ref. [34].

6.2. Antiferromagnetic Long-Range Transverse-Field Ising Models on Bipartite Lattices

In this section, we review results for the antiferromagnetic LRTFIM on lattices where
the coupling structure of the nearest-neighbour couplings forms a bipartite lattice. A lattice—
or, more generally, a graph—is called bipartite if the sites can be split into two disjoint sets
A and B so that there are no edges between sites within each of the two sets A and B. In
the case of a lattice, A and B are called bipartite sublattices. Note that, only in the nearest-
neighbour limit on bipartite lattices, there is an exact duality between the ferromagnetic and
antiferromagnetic TFIM, and the quantum-critical properties coincide. This duality comes
from a sublattice rotation of π along the x-axis for the spins in one of the two sublattices.
In the nearest-neighbour limit, there is an x-polarised symmetric high-field phase and a
Z2 symmetry-broken low-field phase. The low-field phase is adiabatically connected to
the zero-field limit. In the zero-field limit, there are two ground states associated with
the states where the spins on the sites in one set of the bipartite sublattices are pointing
in one direction while the others point in the other direction. Note that these states can
be directly mapped onto the two ferromagnetic ground states by the above-mentioned
sublattice rotation. As for the ferromagnetic nearest-neighbour TFIM, the QPT between
these two phases is of (d + 1)D-Ising universality.

The antiferromagnetic long-range interaction beyond the nearest-neighbours induces
a hierarchy of competing interactions. Due to the long-range interactions, there is no longer
a bipartite coupling structure as the spins cannot be aligned such that the energy of all
interactions is minimised. Nevertheless, there is evidence that the two ground states in the
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low-field phase of the nearest-neighbour limit are adiabatically connected to the ground
states in the low-field phase for all (d + σ) > 0 [23–26,29,31,32,111].

For the all-to-all connected case (d + σ) = 0, every state with zero z-magnetisation is a
ground state of the system [30,40] at h = 0. The Hamiltonian (292) can then be written in
terms of total spin σκ

tot = ∑i σκ
i with κ ∈ {x, z} as

H = −hσx
tot +

J
2
(σz

tot)
2 − J

2
N (306)

with the total number of spins N → ∞ [30,40]. For all finite transverse fields h > 0, the
ground state of Equation (306) is directly located in the x-polarised phase [40,254].

The natural questions arising for the QPT in the antiferromagnetic LRTFIM on the
bipartite lattices are similar to the ferromagnetic LRTFIM: How does the algebraically
decaying long-range interaction influence the critical field value of the QPT? Is there a
change in the universality class of the QPT depending on the precise values of the decay
exponent (d + σ)?

Regarding the critical field values in one-dimensional chains, there are MC-based
studies using the SSE QMC (see Section 5) [32] and pCUT+MC (see Section 4) [25,31], as
well as the DMRG [24,26,248] and matrix product states [23]. We summarise the results
regarding critical field values and selected critical exponents of the studies mentioned above
in Figure 24. In two-dimensional systems, there are MC-based studies for the square lattice
using SSE QMC (see Section 5) [32] and pCUT+MC (see Section 4) [29] (for selected results,
see Figure 25). Variational methods in two dimensions such as projected entangled pair
states [255,256] or DMRG calculations [257] have not been applied for antiferromagnetic
systems on bipartite lattices. Entanglement-based methods become more challenging from
the increased entanglement due to the area law in two dimensions [258]. Further, there are
reports about the violation of the area law for one-dimensional systems with long-range
interactions [23,24]. On general grounds, one cannot efficiently represent algebraically
decaying long-range interactions in these techniques [259,260]. However, there exist DMRG
calculations for antiferromagnetic LRTFIMs on non-bipartite lattices [27,54,55,109].

In general, it has been numerically demonstrated that the critical field values decrease
monotonically as a function of σ from the nearest-neighbour value at σ = ∞ to zero at
(d + σ) = 0 [23–26,29,31,32,248]. Regarding the QPT on the antiferromagnetic chain, the
established picture is that it is of the (1 + 1)D-Ising type for all σ ≥ 1.25 [23–26,31,32,248].
In the regime of ultra-long-range couplings σ ≤ 1.25, recent finite-size DMRG findings
by G. Sun [26] and R. Puebla et al. [248] suggest that the (1 + 1)D-Ising universality
even holds for any σ > −1. The only study indicating a change in criticality below
the boundary of σ ≤ 1.25 uses matrix product states generalising the time-dependent
variational principle (TDVP) [23]. Note that there is no further theoretical motivation for
this boundary besides this single numerical study, which does not provide convincing
evidence for its existence. The more recent results from Refs. [26,248] challenge these
findings and establish the (1 + 1)D-Ising universality for all σ > −1. The studies using
MC-based techniques [25,31,32] cannot extract reliable critical exponents in this regime.
In the SSE QMC study [32], the increasing competition of the long-range interactions
is the major problem making the numerical simulations in this regime impractical. If
the long-range interaction becomes more prominent, this leads to similar algorithmic
challenges as in frustrated systems [32,40,261,262]. The autocorrelation times of the SSE
QMC algorithm increase as more and more bond operators are present in the operator
sequence, and the field operators diffuse only slowly [32]. Nevertheless, following the
trend of the results in Ref. [32], the scenario of a single universality class across the entire σ
range is plausible. Regarding the pCUT+MC studies [25,31], the main obstacle to extract
information about the quantum criticality in the regime σ < 1 is the fact that the critical
field value is decreasing. Refs. [25,31] use a perturbative expansion around the high-field
limit; therefore, if the critical field value increases, then the extrapolation of the gap series
becomes increasingly challenging.
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Figure 24. Critical field values and exponents from numerical studies of the antiferromagnetic
LRTFIM on the chain. The upper panel displays critical field values hc/J; the lower left panel displays
values for the critical exponents ν and zν and, the lower right panel, values for the critical exponents
β. The data points “SSE QMC (2021)” and “SSE QMC L ≤ 64 (2021)” for hc/J, ν, and β are from
Ref. [32,249]. The data points “pCUT+MC (2019)” for hc/J and zν are from Ref. [29]. The data points
“TDVP (2012)” for hc/J, ν, and β originate from Ref. [23]. The exponents ν and β are calculated from
the scaling dimensions in Ref. [23] under the assumption of z = 1, which is reasonable according
to [248]. The data points “DMRG (2016)” for hc/J are from Ref. [24]. The data points “DMRG (2017)”
for hc/J and ν originate from Ref. [26]. The data points “DMRG (2019)” for hc/J are from Ref. [248].
The values for the critical exponents of the transition in the nearest-neighbour model ν = 1, β = 1/8,
and z = 1 [246,251,252,263] are given by the black dashed lines.

To summarise, there are studies indicating a change from the (1 + 1)D-Ising criticality
on the chain for small σ values [23,24]. These studies also report a possible breakdown
on the area law of the entanglement entropy for the ground state in this regime [23,24],
which is a vital prerequisite for the methods they implemented. Two more recent stud-
ies [26,248] demonstrate no change in the universality class, which is backed by [25,30,31].
For two-dimensional systems, the universality class is demonstrated to be (2 + 1)D-Ising
for σ > 0.5 [29,32], and no trend is reported that the universality class should change for
smaller values of σ.



Entropy 2024, 26, 401 90 of 135

1 2 3 4 5 6 7 8

σ

1.5

2.0

2.5

h
c
/J

0 2 4 6 8

σ

0.58

0.60

0.62

0.64

0.66

ν

0 2 4 6 8

σ

0.30

0.31

0.32

0.33

β

0.58

0.60

0.62

0.64

0.66

z
ν

SSE QMC (2021) pCUT+MC (2019)

Figure 25. Critical field values and exponents from numerical studies of the antiferromagnetic
LRTFIM on the square lattice. The upper panel displays critical field values hc/J; the lower left
panel displays values for the critical exponents ν and zν and, the lower right panel, values for the
critical exponents β. The data points “SSE QMC (2021)” for hc/J, ν, and β are from Ref. [32,249]. The
data points “pCUT+MC (2019)” for hc/J and zν originate from Ref. [29]. The values for the critical
exponents of the transition in the nearest-neighbour model ν = 0.629971(4), β = 0.326419(3), and
z = 1 [253] are given by the dashed lines.

In general, a great algorithmic challenge that remains for the MC-based methods with
regard to the antiferromagnetic LRTFIM on bipartite lattices is a reliable study of the regime
of small values (d + σ). Here, as discussed above, all of the commonly applied methods
have a handicap in some way.

6.3. Antiferromagnetic Long-Range Transverse-Field Ising Models on Non-Bipartite Lattices

We start with an antiferromagnetic nearest-neighbour interacting TFIM on a non-
bipartite lattice (e.g., the sawtooth chain, triangular lattice, Kagome lattice, pyrochlore
lattice) at zero field. In the case of non-bipartite lattices, one can always find an odd number
of Ising bonds (edges) that form a closed loop. The presence of a loop of odd length means
it is impossible to satisfy all antiferromagnetic couplings simultaneously. The phenomenon
of not being able to minimise all interactions due to geometrical lattice constraints is called
geometrical frustration [264]. A notion for the strength of geometric frustration can be
defined using the resulting ground-state degeneracy [265]. A theoretical tool to access the
ground-state degeneracy is through Maxwell counting arguments [265–267]. For systems
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with a large degree of frustration, e.g., the antiferromagnetic nearest-neighbour TFIM on the
triangular or Kagome lattice, there is a finite residual entropy per site in the thermodynamic
limit [168,268–271].

In general, extensively degenerate ground-state spaces due to frustration pose a great
resource for emergent exotic quantum phenomena. Quantum fluctuations introduced,
e.g., by a transverse field result in a breakdown of the extensive ground-state degeneracy
and the potential emergence of non-trivial ground states [270,271]. In general, it is useful
to think about the low-field physics as a degenerate perturbation theory problem on the
zero-field ground-state space [30,32,270,271]. We will later review that this is a reasonable
framework in order to treat the breakdown of the degenerate subspace due to fluctuations
and algebraically decaying long-range interactions on the same footing [30,32,112].

Perturbing extensively degenerate ground-state spaces with fluctuations may result
in several distinct scenarios. First, a distinct symmetry-broken order can emerge for
infinitesimal perturbations (order-by-disorder) [168,270–273]. Further, a direct realisation
of a symmetry-unbroken phase may occur (disorder-by-disorder). This phase can either be
trivial [168,274] or exotic, e.g., quantum spin liquids [99–101,275,276].

For the first part of this section, we review the antiferromagnetic LRTFIM on the
triangular lattice [27,29,30,32,40,110,277]. In the nearest-neighbour limit of that model, the
zero-field case has an extensively degenerate ground state [268,270,271,273]. When adding
an infinitesimal transverse field, this ground-state degeneracy breaks down and a Z2 ×Z3-
symmetry-broken clock order emerges from an order-by-disorder mechanism [270,271,273].
The effective Hamiltonian describing the breakdown of the degeneracy in leading order
can be expressed as a quantum dimer model [270,271,273]. By investigating the degenerate
ground-state space, it was observed that there are local spin configurations in which
spins can be flipped without leaving the ground-state space. These configurations, called
flippable plaquettes, consist of a spin surrounded by six spins with alternating orientation.
It can be easily seen that flipping the spin in the middle of the flippable plaquette results in
turning the plaquette by π/3 (see Figure 26).

↑ ↓

↑↓

↑

↓ ↑

↓ ↓

↑↓

↑

↓ ↑

↑ ↑

↓↑

↓

↑ ↓

↓ ↑

↓↑

↓

↑ ↓

Figure 26. Illustration of the four local spin configurations called flippable plaquettes. The arrows
denote the local spin orientation in the z-direction. The grey lines in the back visualise the triangular
lattice. Solid (dotted) black lines are depicted on (anti)ferromagnetically aligned bonds. Note that
flipping the spin in the centre of each configuration maps the left to the right configuration in each
row and vice versa.
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The effective low-field quantum dimer model [270,271,273], consisting of the plaquette
rotation term, is, therefore, the hexagonal-lattice version of the Rokhsar–Kivelson quantum
dimer model with t = h and v = 0 [270,271,278]:

HQDM = t
(∣∣∣ 〉〈 ∣∣∣+ h. c.

)
+ v
(∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣) . (307)

From this mapping, the nature of the state at h > 0 was predicted, as well as the breakdown
of the order with a 3D-XY QPT [270,271]. Further numerical studies extended the insights
into this system [168,262,273]. The critical field value at which the phase transition between
the symmetric x-polarised paramagnetic high-field phase and the symmetry-broken gapped
clock-ordered low-field phase occurs is at h/J = 1.65 ± 0.05 [168,273].

To infer the nature of the full phase diagram including the transverse field and the
long-range interaction, the next step is to discuss the zero-field limit of the Ising model
with long-range interactions. As the antiferromagnetic long-range interactions introduce
a hierarchy of constraints due to the interaction between sites further apart, the long-
range interaction breaks the ground-state degeneracy of the nearest-neighbour zero-field
as well [30,110,277,279]. It is important to emphasise that the long-range interaction lifts
the degeneracy in a different way and stabilises a gapped stripe phase breaking the trans-
lational symmetry in a different way than the clock order promoted by the transverse
field [30,110,277,279,280]. This plain stripe state is sixfold degenerate by rotations around
π/3, as well as spin flips [30,110,277,279]. The spins are aligned in straight lines with
alternating z-orientation [30,110,277,279]. An important aspect is that these stripe states are
gapped and, therefore, stable against finite transverse fields [30,110,277].

Regarding the limit of large transverse fields, pCUT+MC was used to investigate
the QPT between the x-polarised high-field phase and the clock-ordered phase [29,30].
Similar to the antiferromagnetic models on the bipartite lattices, the critical field value is
reduced by the long-range interaction towards smaller field strengths [29,30] (see Figure 27).
On the triangular lattice, the universality class of the transition from the high-field to a
clock-ordered phase is of the (2+1)D-XY type [270,271,273]. It is reported to remain in this
category for all σ values investigated (σ ≥ 1) [29]. For small σ values, the extrapolation of
high-field series expansion is inconclusive [29,30]. Infinite DMRG (iDMRG) investigations
on triangular lattice cylinders suggest that the clock order vanishes for small values of σ
and a direct transition to a low-field stripe phase occurs [27]. A first-order phase transition
between the x-polarised high-field phase and a low-field stripe phase would be consistent
with the incapability of the high-field gap to track the transition [27,29,30,277]. Note that
the stripe phase determined from the iDMRG study [27] does not agree with subsequent
studies focusing on the low-field ground states of the model [30,32,277,279,280].

Complementary to the high-field analysis and numerical iDMRG studies, approaches
in the low-field limit have also been conducted [30,110,277] (see Figure 27). As already
mentioned, it was discussed in the literature for some time [30,279,280] and recently demon-
strated using a unit cell-based optimisation technique [110] that gapped plain stripes are the
zero-field ground state as soon as long-range interactions are present. Therefore, in a phase
diagram with a σ and a transverse-field axis, the clock order phase is wedged between
the high-field phase from above and the plain stripe phase from below [27,29,30,277] (see
Figure 27). The extent of both the stripe phase and the high-field phase increases with
stronger long-range interactions [27,29,30,277]. This behaviour was also demonstrated
perturbatively from the nearest-neighbour zero-field limit by treating the long-range inter-
action, as well as the transverse field as perturbations on the degenerate subspace [30,277].
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Figure 27. Phase diagrams for the long-range transverse-field Ising model on the triangular lattice
(left panel) and triangular lattice cylinders with infinite extent in the x-direction and a circumference
of 6 sites in the y-direction (YC6) (right panel). Right panel: The critical field values hc/J for the
triangular lattice for the QPT between the high-field polarised phase originate from pCUT+MC
calculations [29]. The inset of the right panel represents the critical exponents zν determined from
the series expansion [29]. The black dashed line represents the critical value zν = 0.67175(10) of the
3D-XY universality class [281,282]. The critical exponent zν confirms the (2 + 1)D-XY universality
class within the limitations of the series expansion. Left panel: The transitions values between the
high-field x-polarised phase and the

√
3 ×

√
3-clock-ordered phase are from the gap closing of the

high-field series obtained from pCUT+MC [30]. The transition between the plain stripe low-field
phase and the

√
3 ×

√
3-clock-ordered phase is terminated via a level crossing of both ground-state

energies, which were calculated perturbatively [30]. The phase diagrams for small σ values are not
yet conclusively determined [27,29,30].

We sketch a qualitative picture of the quantum phase diagram in Figure 28. The
precise ground state at small values of σ is still an open research question. We believe
that there is some evidence that, after a certain value of σ, only a transition between the
high-field phase and the low-field stripes remains, which is expected to be of first order.
However, there is, by now, no numerical technique to make reliable statements in this
regime. In this context, the high-field series expansions cannot detect a first-order phase
transition from the elementary excitation gap. There is an SSE QMC study of the system
by S. Humeniuk [40] applying the algorithm discussed in Section 5.1. The direct QMC
simulation was used to determine the critical point between the high-field phase and the
clock-ordered phase for α = 3 [40]. For smaller transverse fields, the author identified
a “region dominated by classical ground states [40]”, which are adiabatically connected
to the zero-field states. Therefore, there is a qualitatively sketch of a phase diagram in
Ref. [40] similar to Figure 28. Nevertheless, the naive application of the SSE QMC approach
as discussed in Section 5.1 is not as efficient as for models with interactions that are not
competing [40,261,262]. However, there are ideas on how to implement efficient quantum
cluster algorithms for frustrated Ising models in a transverse field [261,262], which need to
be adjusted for long-range interacting Ising models.
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Figure 28. Sketch of a generic phase diagram of a long-range transverse-field Ising model (LRTFIM)
for which a degenerate subspace at σ = ∞ and h = 0 breaks down in an order-by-disorder scenario
for h > 0 and into a different crystalline state due to the long-range interactions (LRIs) σ < ∞. An
example is the LRTFIM on the triangular lattice, where the order-by-disorder phase is the clock-
ordered phase and the crystalline phase is the plain stripe phase [27,29,30,110,277,279,280]. The
transition between the crystalline phase and the order-by-disorder phase is believed to be a first-order
lever-crossing transition [29,30,110,277].

The antiferromagnetic LRTFIM on the triangular lattice is a well-studied example of
the interplay between long-range interactions and order-by-disorder. Recently, several more
examples arose from the field of Rydberg atom quantum simulators [54,55,109,110,112].
In Rydberg atom simulators, atoms are positioned in a desired configuration using op-
tical tweezers [52] and are laser-driven to a Rydberg state [52]. The Rydberg blockade
mechanism leads to an algebraically decaying interaction between Rydberg excitations,
which decays with (d + σ) = 6 [52]. Using the Matsubara–Matsuda transformation [89],
the excitations/non-excitations of a Rydberg atoms are associated with spin degrees of
freedom [52]. The density–density interaction transforms into an Ising interaction [110,112].
Rydberg atom quantum simulators are capable of simulating the antiferromagnetic LRT-
FIM with (d + σ) = 6 and a longitudinal field [52,54,55,109]. Order-by-disorder scenarios
are described for the Kagome lattice at a filling of f = 2/9 Rydberg excitations [54],
the Ruby lattice at a filling of f = 1/4 Rydberg excitations [55,109], and at vanishing
longitudinal field [112]. Regarding these examples, the order-by-disorder was studied
for a long-range interaction truncated after the third-nearest neighbours [54,55,109,112].
Considering the remaining long-range interaction as a perturbation to the degenerate
ground-state space for most of these mechanisms, a similar scenario as for the triangular
lattice is expected [54,55,109,110]. Using the same unit cell-based optimisation method as
for the triangular lattice, Koziol et al. [110] have calculated ground states of the zero-field
model using the full untruncated long-range interaction. For the Kagome lattice at a filling
of f = 2/9 Rydberg excitations [54] and the Ruby lattice at a filling of f = 1/4 Rydberg
excitations [54,55,109], gapped ground states were determined [110], which do not coincide
with the order arising from the order-by-disorder mechanism. Interestingly, in all these
examples, the zero-field ground state determined by the long-range interaction possess
none of the motifs relevant for the leading-order order-by-disorder mechanism [110]. For
example, on the triangular lattice, the plain stripe states contain zero flippable plaquettes,
which are the relevant motif to lower the energy at a finite transverse field in leading
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order. Recently, an order-by-disorder mechanism for the antiferromagnetic J1-J2-J3 TFIM
on the Ruby lattice was introduced by A. Duft et al. [112]. The remarkable aspect of the
mechanism is that adding long-range interactions does stabilise the same order, which is
also selected by the quantum fluctuations [112]. A general theory, under which conditions
the long-range interactions stabilise the same order as quantum fluctuations or stabilise a
completely disjoint order, is yet to be found.

Conclusively, the breakdown of extensively degenerate ground-state spaces due to
an interplay of long-range interactions and quantum fluctuations is a highly vibrant and
relevant field. Long-range interactions are relevant for a wide range of quantum–optical
quantum–simulation platforms, including cold atoms [52,70,72] and ions [74–77,79–82,84].
These platforms can be used to realise exotic phases of matter, e.g., quantum spin liq-
uids [54,55,109], glassy behaviour [283], or clock-ordered states [29,30,112,277]. To under-
stand the emergence of these exotic states of matter, simplified models are oftentimes
considered [54,55,109,112,283], which truncate the long-range interaction. Therefore, it is
imminent to understand the effects of the full long-range interactions on the mechanisms
driving the emergence of these exotic phases. At the moment, the commonly used tools to
investigate the phase diagrams of these frustrated systems consist of the following:

1. The derivation of effective models [30,54,55,109,112]. These can be used in order to
predict exotic emergent phases and the nature of QPTs [30,54,55,109,112].

2. DMRG calculations [27,54,55,109], which are used to obtain a numerical insight into
the ground-state phase diagrams.

3. QMC calculations, in particular the SSE, as discussed in Section 5.1, can be used for
an unbiased sampling of ground-state properties [40]. In order to omit the slowdown
of the algorithm due to the geometric frustration, algorithmic improvements are
required [261,262]. It is still an open research question how to set up an algorithm
that samples long-range interaction and frustration efficiently.

4. High-order high-field series expansions using a graph decomposition. This is also a very
capable tool to track the first QPT coming from the high-field limit. With this method,
the critical field value, as well as critical exponents can be determined [29,30,112]. It
is also possible to infer information about the phase on the other side of the phase
transition by studying the momentum at which the elementary excitation gap is
located [29,30,112]. An MC embedding of white graphs can be performed to study the
entire algebraically decaying long-range interaction [29,30], while an ordinary graph
decomposition can be used for systems with truncated interactions [112].

7. Long-Range Transverse-Field XY Chain

In this section, we review results on the XY chain with long-range interactions in
a transverse field from Ref. [31]. The Hamiltonian of the long-range transverse-field
anisotropic XY model (LRTFAXYM) on a one-dimensional chain is given by

H = h ∑
i

σz
i −

J
4 ∑

i ̸=j

1
|i − j|1+σ

[(1 + β)σx
i σx

j + (1 − β)σ
y
i σ

y
j ] , (308)

with Pauli matrices σκ
i and κ ∈ {x, y, z} describing spin-1/2 degrees of freedom on the

i-th lattice site of the chain. The transverse-field strength is given by h > 0, and the
strength of the coupling between sites i and j is given by ∼ J/|i − j|1+σ. The coupling is
(anti)ferromagnetic for J > 0 (J < 0). We include a continuous interpolation parameter
β ∈ [0, 1] to tune the system from the XY chain with isotropic interactions (β = 0) to Ising
interactions (β = 1). The exponent σ determines the decay of the long-range interaction.
The limit of short-range interactions is recovered for σ = ∞ and the limit of all-to-all
couplings for σ = −1.

Similar to the discussion of the transverse-field Ising model, it is useful to express
Equation (308) in terms of hard-core bosonic operators bi , b†

i using the Matsubara-Matsuda
transformation [89]
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σz
i = 1 − 2b†

i bi σx
i = b†

i + bi σ
y
i = i(b†

i − bi ) . (309)

We obtain

H = ϵ0N + ∑
i

b†
i bi − ∑

i ̸=j

λ

4
1

|i − j|1+σ
[(1 + β)(b†

i bj + b†
i b†

j ) + (1 − β)(b†
i bj − b†

i b†
j ) + h. c.] (310)

in units of 2h with ϵ0 = −1/2 being the unperturbed ground-state energy per site, N
the number of sites, and λ = J/(2h) the perturbation parameter associated with the
perturbation V (second sum) taking the form V = T−2 + T0 + T2 in the pCUT language, so
that a high-order series expansion about the high-field limit can be performed.

In the limit J = 0, the ground state is a nondegenerate z-polarised state that serves
as an unperturbed reference state. Elementary excitations are called local spin flips at
an arbitrary site i, which can be annihilated (created) by the hard-core bosonic operator
b(†)i . Upon increasing λ, these quasiparticles (qps) become spin flips dressed by quantum
fluctuations induced by the perturbation V . In the limit of h = 0, the system exhibits
ferromagnetic or antiferromagnetic magnetic order depending on the sign of J in the x-
direction (y-direction) for β > 0 (β < 0). When tuning the interpolation parameter β from
pure Ising to isotropic XY interactions, ordering in the x-direction starts to compete with
ordering in the y-direction.

In order to better appreciate the results for σ < ∞, we briefly discuss the quantum
phase diagram in Figure 29 of the model (308) with nearest-neighbour interactions [284–293].
For any β ̸= 0, the system with nearest-neighbour interactions undergoes a (1+1)D-Ising
QPT at J = ±h from the paramagnetic symmetric high-field phase to the (anti)ferromagneti-
cally ordered low-field phase, where the ground state spontaneously breaks the Z2 sym-
metry of the Hamiltonian [284]. The transition along the β = 0 line between the two
distinct Z2 symmetry-broken phases is of the (Ising)2 type, which is conformally and U(1)
invariant [284]. These critical lines meet at β = 0 and J = ±h in multicritical points M1/2
with critical exponents z = 2 and ν = 1/2 [284].
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Figure 29. Quantum phase diagram of the ferromagnetic nearest-neighbour XY chain in a transverse
field (see Ref. [284]). M1 and M2 denote multicritical points. The phase transition between the
symmetric high-field polarised phases and magnetically ordered low-field phases are of (1+1)D-Ising
universality for β ̸= 0. For β = 0, the transition at the multicritical points M1 and M2 has critical
exponents z = 2 and ν = 1/2. The transition between ⟨σx

i ⟩ ̸= 0 and ⟨σy
i ⟩ ̸= 0 is of the (Ising)2 type.
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For β = 0, the Hamiltonian (310) becomes particle-conserving as the terms annihilating
(creating) two quasiparticles b(†)i b(†)j cancel each other, making the isotropic XY Hamiltonian
U(1) symmetric. Due to this particle-conserving nature of Equation (310), there are no
quantum fluctuations dressing the symmetric λ = 0 ground state for λ > 0 and the
perturbative treatment of the high-field dispersion becomes exact in first order of the
perturbation theory [31]. This distinguished symmetry property of the β = 0 case motivates
that we review the properties of the isotropic transverse-field XY chain in the ferromagnetic
and antiferromagnetic case first in Section 7.1. Subsequently, we discuss the anisotropic XY
chain for ferromagnetic interactions in Section 7.2 and for antiferromagnetic interactions in
Section 7.3. Here, we show improved results of the ones shown in Ref. [31] since we noticed
right after their publication that the Monte Carlo runs were performed with a suboptimal
choice of the simulation parameters.

7.1. Isotropic Long-Range XY Chain in a Transverse Field

To consider the isotropic XY chain, β = 0 is set in the Hamiltonians in Equations (308)
and (310). The quantum criticality of this model was studied in Ref. [31] in an analytical
fashion, by evaluating the ground-state energy and the dispersion of the elementary
excitations analytically. Setting β = 0, Equation (310) reads

H = ϵ0N + ∑
i

b†
i bi − ∑

i ̸=j

λ

2
1

|i − j|1+σ
[b†

i bj + h. c.] (311)

since the pair creation and annihilation terms b(†)i b(†)j cancel, as stated above. The perturba-
tion V acting on the unperturbed z-polarised ground state does not introduce any quantum
fluctuations. Therefore, the z-polarised state becomes an exact eigenstate for arbitrary λ
and stays in the ground state until a QPT occurs [31]. Analogously, the one-quasiparticle
dispersion is exact in first-order perturbation theory. The one-particle dispersion in the
symmetric high-field phase reads [31]

ω(k) = 1 − 2λ
∞

∑
δ=1

cos(kδ)

δ1+σ
. (312)

The critical value λc can be determined from the dispersion (312) via the closing of the
quasiparticle gap ∆(λ). The critical exponent zν associated with the gap closing can be
extracted from the dominant power-law behaviour of the gap near λc:

∆(λ) ∝ |λ − λc|zν . (313)

Further, it is possible to separate the dynamic z and static ν exponent by evaluating the 1qp
dispersion ω(k) at the quantum-critical point such that

ω(k)|λ=λc ∝ |k − kc|z , (314)

which allows the extraction of the critical dynamic exponent z. For ferromagnetic XY
interactions, the minimum of the dispersion (312) is located at the momentum k = 0. There-
fore, the gap series is given by ∆(λ) = 1 − 2λζ(1 + σ) and λc(σ) = (2ζ(1 + σ))−1. The
Riemann-zeta function ζ(1 + σ) := ∑∞

n=1 n−(1+σ) is convergent for all σ > 0 and diverges
for σ → 0. This mathematical observation coincides with the qualitative behaviour found
in ferromagnetic Ising systems discussed in Section 6.1 in the sense that limσ→0 λc(σ) = 0.
Since the expression for the gap ∆(λ) is linear in λ, the critical exponent is zν = 1, indepen-
dent of the σ value. Using the expression for the dispersion (312), the knowledge about λc,
and the definition of the dynamic critical exponent (314), Adelhardt et al. [31] evaluated z
and, therefore, also ν as a function of σ. The results of their calculations are presented in
Figure 30. The exponents resulting from the consideration of the dispersion can be cate-
gorised into two distinct regimes: For σ > 2, the critical exponents of the nearest-neighbour
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transition are found (z = 2 and ν = 1/2). For σ < 2, the exponent z decreases linearly from
2 to 0 and ν increases like 1/z from 1/2 to ∞. Note that this linear decrease of z and the
divergence of ν appear similar to the behaviour of the ferromagnetic LRTFIM at small σ
values (see Section 6.1) [20,21]. To explain this behaviour, a quantum field theory was pro-
posed in Ref. [31]. The idea was to add a kσ term (analogous to [20,21]) to the well-studied
bosonic action used for the study of the isotropic short-range transition [113,231,284,294].
The suggested action reads

S =
1
2

∫
k,ω

(ak2 + bkσ + igω + r)|ψk,ω |2 + u
∫

k,ω
|ψk,ω |4 (315)

with ψ being a complex c-number order-parameter field of the transition, a, b > 0, and the
real constants u, g and r [31]. The notation of Equation (315) is taken from Ref. [31,231].
From power counting, one obtains the critical exponents:

z =

{
2 for σ ≥ 2
σ for σ < 2

(316)

ν =

{
1/2 for σ ≥ 2
1/σ for σ < 2

(317)

from the Gaussian part of the action in Equation (315) [31]. Following the arguments of
Ref. [231], these exponents hold “presumably” [231] for 1 ≤ d ≤ duc below the upper
critical dimension duc = 2. Refs. [231,294] provide arguments that the self-energy vanishes
for every order in u and the renormalisation of u can be performed in all orders via ladder
diagrams [31]. The vanishing self-energy is explained by the fact that, in each diagram,
every pole in ω lies in the complex upper-half plane. The frequency integral can be
deformed into the lower half-plane to give zero [294]. The fact that the free propagator
of the field theory is not changed by a self-energy is a manifestation of the absence of
fluctuations that do not preserve the particle number [31]. The predictions of the field
theory (315) for z in Equation (316) and ν in Equation (317) are in perfect agreement with
the results of the high-field excitation gap (see Figure 30) [31].

Note that, in the nearest-neighbour case, the low-field ground state does not break
the U(1) symmetry of the Hamiltonian due to the Hohenberg–Mermin–Wagner (HMW)
theorem, ruling out continuous symmetry breaking [113,130,131,284,295,296]. Long-range
interactions are a known mechanism to circumvent the HMW theorem [22,35,297–306].
With the high-field approach discussed above, it is not possible to determine the nature of
the low-field ground state and if a continuous symmetry breaking occurs for sufficiently
small decay exponents. We are not aware of studies addressing this topic.

For the remainder of this section, we discuss the antiferromagnetic isotropic XY chain
in a transverse field along the same lines as for the ferromagnetic case. The minimum of the
dispersion is at momentum k = π, and the gap can be expressed as ∆(λ) = 1 − 2λη(1 + σ)
with η(1+ σ) being the Dirichlet eta function (also known as the alternating ζ function) [31].
The Dirichlet eta function η(1 + σ) is convergent for all σ > −1; therefore, the definition of
an excitation gap is also possible in the regime of strong long-range interactions (σ ≤ 0).
Analogous to the discussion of the Ising interaction in Section 6.2, the extent of the low-
field phase is diminishing for decreasing σ values. For σ → −1, the energy gap closes at
diverging λc → ∞ [31]. With a similar analysis to the ferromagnetic case, the same critical
exponents z = 2 and ν = 1/2 are found along the entire σ line [31]. This is also analogous
to the antiferromagnetic LRTFIM discussed in Section 6.2, where the nearest-neighbour
criticality is believed to be the correct universality class for all values of σ.
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Figure 30. Critical exponents z and ν for the ferromagnetic long-range transverse-field XY model as a
function of σ. The data points zω and νω were determined in Ref. [31] by studying the dispersion of the
elementary excitations at the critical point that can be determined exactly in first-order perturbation
theory from the high-field limit. The lines zft and νft are theoretical predictions from the QFT
investigated in Ref. [31]. The region with the blue-shaded background denotes the regime in which
the nearest-neighbour XY universality occurs [284], while for σ < 2, the QPT is in a long-range regime
with continuously varying exponents.

7.2. Ferromagnetic Anisotropic Long-Range XY Chain in a Transverse Field

The fundamental difference between the isotropic β = 0 and anisotropic β > 0
XY chain in a transverse field is that, for β ̸= 0, the Hamiltonian is no longer U(1)-
invariant (particle-conserving); see Equation (310). Therefore, a perturbative treatment of
the anisotropic model with long-range interaction from the high-field limit requires the
entire procedure described in Section 4 to perform pCUT+MC calculations. In Ref. [31], this
procedure was applied to obtain the critical values λc and critical exponents zν from the gap.
We review these results in this section, followed by the results for the antiferromagnetic
case in Section 7.3.

Critical values λc and critical exponents zν for several β values as a function of σ are
depicted in Figure 31. The overall σ dependence of λc for β > 0 is similar to the β = 0
case (see the inset of Figure 31). However, the low-field ferromagnetic phase becomes
more stable for increasing β values [31]. Note that the perturbative parameter is λ = J/2h;
therefore, a QPT at smaller λ values means a larger extent of the phase in h/J. In Ref. [307],
the QPT of the anisotropic LRTFAXYM was studied with exact diagonalisation, and the
critical point was determined for β = 1/2, which coincides perfectly with the value from
pCUT+MC (see Figure 31). For all β > 0, Adelhardt et al. [31] identified the same three
regimes for the universality of the QPT as for the ferromagnetic LRTFIM. The gap exponent
behaves analogously to the LRTFIM (β = 1), as depicted in Figure 31. Solely the β = 0
exponent behaves in a special manner, being zν = 1 for all σ values, in full agreement
with the existence of a multicritical point in the nearest-neighbour model. For β > 0, the
first domain identified in Ref. [31] is the long-range mean-field regime for σ < 2/3 with
zν = 1/2. For large values of σ, the gap exponent is zν = 1 and the transition belongs to
the 2D-Ising universality class [31]. Third, in the intermediate regime, the critical exponents
vary continuously between the two values in a non-trivial fashion [31].

The criticality regimes for β > 0 can be understood using the same field-theoretical ar-
gument (see Section 6.1.1) as for the ferromagnetic LRTFIM, since the underlying symmetry
that is spontaneously broken is, in both cases, the same Z2 symmetry of the Hamiltonian.
Therefore, at σ = 2/3, the upper critical dimension as a function of σ becomes smaller than
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one and the transition enters the regime above the upper critical dimension. The boundary
between nearest-neighbour criticality and the intermediate long-range non-trivial regime
is expected to be at σ = 2 − ηSR [21]. The data from Ref. [31], presented in Figure 31,
are in good agreement with these three regimes. Nevertheless, the changes between the
regimes cannot be determined accurately by the pCUT+MC approach. In Figure 31, we
can observe that the interfaces between the nearest-neighbour and intermediate long-range
regime become more pronounced for increasing β values, while at the interface between
the long-range mean-field and intermediate regime, the deviation is the same for all values
of β > 0. The reason for the distinct deviations at the nearest-neighbour interface may
be due to the finite nature of the perturbative series or may also be indicative of different
corrections to scaling. At σ = 2/3, where the system dimension equals the upper critical
dimension of the transition, there are multiplicative logarithmic corrections to the critical
exponents [125,135,308–310]. From the biased DlogPadé extrapolations at σ = 2/3, Adel-
hardt et al. [31] determined these corrections to scaling at the upper critical dimension with
a qualitatively good agreement for different β values.
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Figure 31. Critical gap exponent zν and critical values of λ (see inset) as a function of σ for the
anisotropic ferromagnetic transverse-field XY model. The data points “pCUT+MC” are improved
results from Ref. [31], and the data point “ED” is from Ref. [307]. The anisotropy parameter β is
tuned from β = 1 (Ising) to β = 0 (isotropic XY). As discussed in Section 7.1, the isotropic case is
analytically solvable with zν = 1 and λc = (2ζ(σ + 1))−1. The black lines denote the values of zν if
the ferromagnetic LRTFIM is in the nearest-neighbour and the long-range mean-field regime.

To summarise the findings, we provide the following: Similar to the ferromagnetic
LRTFIM, the ferromagnetic LRTFAXYM is a paradigmatic toy model extending the LRTFIM.
With the pCUT+MC method described in Section 4, the critical exponents as a function of the
decay exponent σ can be determined as demonstrated in Ref. [31]. The LRTFAXYM displays
three distinct regimes of quantum criticality including a mean-field regime above the upper
critical dimension for σ < 2/3 for all β > 0. The sensitivity of the series expansion method
suffices to even study corrections to scaling at the upper critical dimension. The limiting
case β = 0 is especially interesting, as in the high-field limit, the ground state contains no
quantum fluctuations, the dispersion is exactly solvable in first-order perturbation theory,
the underlying QFT is different from the case β > 0, and two instead of three critical
regimes were found. We would expect that the setup of an SSE QMC algorithm following
the directed loop idea [215,217,311] is conceptually possible for the model.
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7.3. Antiferromagnetic Anisotropic Long-Range XY Chain in a Transverse Field

For frustrated antiferromagnetic interactions, we begin our discussion with the Ising
case at β = 1. Here, we have already discussed in Section 6.2 that, for the antiferromagnetic
LRTFIM, there is strong numerical evidence that it remains in the 2D-Ising universality
class for all σ > −1. It was also demonstrated that it is possible to determine critical gap
exponents up to σ ≈ 0.5 with the pCUT+MC method [29,31,35].

Following the same procedure as for the ferromagnetic model, the critical values
λc and the critical gap exponents zν were studied in Ref. [31], and we summarise these
results in Figure 32. The critical values λc shift towards larger values when decreasing σ,
eventually diverging for σ → −1. It is possible to reliably determine the critical exponents
for the anisotropic XY chain until σ ≈ 0.5, but it becomes increasingly challenging to extract
the exponents for smaller σ due to the shifting of λc [31]. For β ̸= 0, the critical values
λc behave qualitatively in a similar way to β = 0. However, the larger β, the more the
high-field phase is stabilised (see the inset of Figure 32). As a consequence, we observe
more reliable exponent estimates in the regime σ < 0.5 for β values closer to zero. In
general, the observations in Ref. [31] are in line with a constant gap exponent zν = 1 within
the limitations of the method.

This promotes the scenario that the nearest-neighbour 2D-Ising universality class
remains the correct universality class for all considered σ values and β > 0. For β = 0,
the critical exponents zν = 1 and critical values λc = (2η(1 + σ))−1 were determined
analytically in Section 7.1, and it was shown that the universality class of the nearest-
neighbour isotropic chain remains for all σ > −1 [31]. A recent study [312] investigated
the multicritical point using exact diagonalisation for comparably small system sizes. The
critical points for β = 1/2 and β = 1/5 agree well with the exact limit and the pCUT+MC
values. The study further confirms 2D-Ising universality up to σ > −0.4; however, in
contrast to Ref. [31], signatures of a different crossover criticality at σ = −0.4 are claimed.
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Figure 32. Critical gap exponent zν and critical values of λ (see inset) as a function of σ for the
anisotropic antiferromagnetic transverse-field XY model [31]. The anisotropy parameter β is tuned
from β = 1 (Ising) to β = 0 (isotropic XY). As discussed in Section 7.1, the isotropic case is analytically
solvable with zν = 1 and λc = (2η(σ + 1))−1.
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8. Long-Range Heisenberg Models

We review the results obtained from SSE and pCUT+MC calculations for Heisenberg
models with long-range interactions. The starting point is the nearest-neighbour Heisenberg
model, which can be written as

H = ∑
⟨i,j⟩

S⃗iS⃗j = ∑
⟨i,j⟩

(
Sx

i Sx
j + Sy

i Sy
j + Sz

i Sz
j

)
(318)

with the spin-1/2 operators Sκ = σκ/2 and κ ∈ {x, y, z}. Instead of a transverse field
that induces quantum fluctuations in the (anti)ferromagnetic phase of the (LR)TFIM or
(LR)TFAXYM, a magnetic field would immediately break the SU(2)-symmetry of the
Heisenberg Hamiltonian. Here, we introduce a dimerisation limit. We consider two layers
of lattices with Heisenberg spins on each site stacked on top of each other, where each
spin couples to its nearest-neighbour. The nearest-neighbour coupling between the layers
gives rise to interlayer dimers, also referred to as rungs. In one dimension, the layers are
just two chains, resulting in a ladder system, while in two dimensions, we consider two
square lattice layers, resulting in a square lattice bilayer model. Generalising this model for
long-range interactions gives rise to intralayer, as well interlayer long-range couplings. The
generic antiferromagnetic Hamiltonian is then given by

H = J⊥ ∑
i

S⃗i,1S⃗i,2 −
1
2 ∑

i ̸=j

[
Jq(i − j)

(
S⃗i,1S⃗j,1 + S⃗i,2S⃗j,2

)
︸ ︷︷ ︸

intralayer

+J×(i − j)
(

S⃗i,1S⃗j,2 + S⃗i,2S⃗j,1

)
︸ ︷︷ ︸

interlayer

]
, (319)

where the first term couples the nearest-neighbour spins between the layers with coupling
strength J⊥ > 0, the second term describes the long-range intralayer coupling with Jq,
and the third term the long-range interlayer coupling of Heisenberg spins with J×. The
long-range interaction is given by

Jµ,ν(i − j) = J
(−1)∥⃗ri,µ−⃗rj,ν∥1

|⃗ri,µ − r⃗j,ν|d+σ
, (320)

where J is the coupling constant, i and j are the rung dimer indices, and µ and ν are the
indices of the respective legs (layers) of the ladder (bilayer) model. In Equation (319), we
use the notation Jq(i − j) = J1,1(i − j) = J2,2(i − j) and J×(i − j) = J1,2(i − j) = J2,1(i − j).
The long-range interaction introduced is similar to the one introduced in the sections
before, however with the difference that the alternating sign in the numerator gives rise to
staggered, non-frustrating antiferromagnetic long-range interactions, as we chose J > 0.
The exponent of the numerator is given by the one-norm ∥·∥1, while the usual geometric
distance in the denominator given by | · | can be identified as the two-norm | · | = ∥·∥2.
When increasing the overall interaction strength J of intralayer and interlayer coupling
and, likewise, making the long-range decay exponent σ smaller, the Heisenberg spins
will anti-align at odd distances and align at even distances, inducing a Néel-ordered
antiferromagnetic phase. For σ ≤ 0, the system becomes superextensive (analogous to the
ferromagnetic LRTFIM in Section 6.1), and for σ → ∞, we recover the antiferromagnetic
short-range ladder or bilayer model.

In order to employ the pCUT+MC method, we need an exactly soluble limit about
which we can perform the series expansion. We introduce the perturbation parameter
λ = J/J⊥ rescaling the Hamiltonian by J⊥ and identify the first term of Equation (319) as
the unperturbed part H0, which corresponds to a sum over Heisenberg dimers that can be
easily diagonalised. For a single dimer, the lowest lying state with total spin S = 0 is the
antisymmetric combination of S = 1/2 spins:

|s⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩), (321)
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also called a rung singlet in our case with the associated energy ϵ0 = −3/4. The total spin
S = 1 states:

|t−⟩ = |↓↓⟩, |t0⟩ =
1√
2
(|↑↓⟩+ |↓↑⟩), |t+⟩ = |↑↑⟩ (322)

are three-fold degenerate with the energy 1/4 and are called triplets. Alternatively, we can
use an SU(2)-symmetric basis, where the singlet and triplet states read

|s⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩),

|tx⟩ = − 1√
2
(|↑↑⟩ − |↓↓⟩),

∣∣ty
〉

=
i√
2
(|↑↑⟩+ |↓↓⟩), |tz⟩ =

1√
2
(|↑↓⟩+ |↓↑⟩).

(323)

There is also a convenient mapping from the spin operators to bosonic, SU(2)-symmetric
operators creating and annihilating these states introduced in Ref. [313], which can be read-
ily adapted to hard-core bosonic operators for triplet excitations [314]. We use the mapping

S⃗α
i,1 =

1
2

(
t†
i,α + ti,α − iϵα,β,γt†

i,βti,γ

)
,

S⃗α
i,2 =

1
2

(
t†
i,α + ti,α + iϵα,β,γt†

i,βti,γ

)
,

(324)

where ϵα,β,γ is the Levi-Civita symbol, and insert these expressions into Equation (319).
After some straightforward manipulations, we obtain

H = ϵ0NR + ∑
i,α

t†
i,αti,α

+
1
4 ∑

i ̸=j
λq(i − j)

(
t†
i,αt†

j,α + t†
i,αtj,α − t†

i,αt†
j,αti,βtj,β + t†

i,αt†
j,βti,βtj,α + h.c.

)
+

1
4 ∑

i ̸=j
λ×(i − j)

(
−t†

i,αt†
j,α − t†

i,αtj,α − t†
i,αt†

j,αti,βtj,β + t†
i,αt†

j,βti,βtj,α + h.c.
)

,

(325)

where NR is the number of rungs, λq(i − j) = Jq(i − j)/J⊥, and λ×(i − j) = J×(i − j)/J⊥.
The second and third line constitute the perturbation V = T−2 + T0 + T2 associated with
the physical perturbation parameter λ. The T1 and T−1 operators are absent, as terms
contributing to these operators cancel out due to the reflection symmetry about the centre
of the rung dimers.

For λ = 0, the ground state is given by a trivial product state of rung singlets, and
for small, but finite λ, the ground state is still adiabatically connected to this product
state. We refer to this adiabatically connected ground state as the rung-singlet ground state.
Elementary excitations in this phase are called triplons [315], corresponding to dressed
triplet excitations. For large λ ≫ 0, we expect the non-frustrating antiferromagnetic
long-range interaction to induce an antiferromagnetic phase giving rise to a quantum
phase transition (QPT) between these two phases. In contrast to the transverse-field
Ising model and the anisotropic XY model, where the ground state in the ordered phase
spontaneously breaks the discrete Z2 symmetry of the Hamiltonian, the Néel-ordered
antiferromagnetic ground state for strong long-range couplings must break the continuous
SU(2) symmetry of the Heisenberg Hamiltonian. Related to this observation, we present
in the following two prominent theorems of great importance that apply to Hamiltonians
with continuous symmetries:

First, there is the Hohenberg–Mermin–Wagner (HMW) theorem [130,131,295], which
rules out the spontaneous breaking of continuous symmetries in one- and two dimensional
systems for T > 0. From the quantum–classical correspondence (see Ref. [113]), we can
infer that, for one-dimensional systems, a QPT at T = 0 breaking such symmetry should be
ruled out as well. Indeed, it was shown rigorously by Pitaevskii and Stringari in 1991 [296]
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that it is prohibited in one dimension for T = 0 as well. However, there is the restriction
that the interaction must be sufficiently short-ranged, i.e., the condition σ > 2 for T > 0
must hold for the long-range decay exponent. A stronger condition was given by Ref. [316]
with σ ≥ d, where d is the spatial dimension of the system. For the quantum case, it was
shown in Ref. [317] for a staggered antiferromagnetic long-range Heisenberg chain (d = 1)
that long-range order is absent for all σ > 2.

Second, Goldstone’s theorem [318–320] applies. The theorem states that, when sponta-
neous breaking of a continuous symmetry occurs, it gives rise to massless excitations, also
known as Nambu–Goldstone modes [318–320]. For instance, magnons that are quantised
spin–wave excitations are a manifestation of such gapless Nambu–Goldstone modes inside
the ordered phase of Heisenberg systems. The recent findings in Ref. [321] actually go
beyond the conventional scenario of Goldstone modes due to long-range interactions. The
authors identified three regimes depending on the decay exponent σ: for ferromagnetic
(antiferromagnetic) interactions, they found standard Goldstone modes for σ ≥ 2 (σ ≥ 0)
and an anomalous Goldstone regime with ω ∼ |k|s and s < 2 (s < 1) for σ < 2. Interest-
ingly, a third regime for strong long-range interactions σ ≤ 0 (σ ≤ −2) was found where
the Goldstone modes become gapped via a generalised Higgs mechanism [321]. A recent
large-scale QMC study [38] investigating the dynamic properties of the non-frustrating
staggered antiferromagnetic square lattice Heisenberg model confirmed these three sce-
narios and found evidence that the Higgs regime already occurs in the regime σ ≤ 0.2
when the Hamiltonian is still extensive [38]. Let us mention at this point that previous
results from linear spin–wave theory [22,322] already indicated the existence of a sublinear
dispersion in the staggered antiferromagnetic long-range Heisenberg chain a decade earlier.
Remarkably, the existence of gapped Goldstone modes in the Heisenberg model with
long-range interactions was already pointed out in the 1960s by Refs. [323,324].

The HMW theorem, as well as Nambu–Goldstone modes are a distinguishing feature
of quantum systems with continuous symmetries like Heisenberg antiferromagnets. The
quantum field theory describing dimerised Heisenberg antiferromagnets [113] is given by
the action

Sϕ =
∫

ddx
∫ β

0
dτ [{g(∂τϕ(τ, x))2 + (∇xϕ(τ, x))2 + rϕ(τ, x)2}+ uϕ(τ, x)4] , (326)

which is the same n-component ϕ4-theory as the one describing the transverse-field Ising
model. Here, the order-parameter field ϕ(τ, x) is now a 3-component field instead of a
1-component one. We can readily include long-range interactions by adding the term∫

ddx
∫

ddy
∫

dτ a
ϕ(τ, x)ϕ(τ, y)
|x − y|d+σ

(327)

to the action (326). For a more detailed discussion of the short-range ϕ4 action, we refer to
Appendix A and to Section 6.1.1, where the implications of long-range interactions were
already discussed for n = 1. The classical equivalent of the n = 3 action can describe the
finite temperature phase transition of the ferromagnetic Heisenberg model [1,36,113,325].
Interestingly, the action of zero-temperature Heisenberg ferromagnets is not given by
the above action [113]. In fact, the quantum field theory describes a class of dimerised
Heisenberg antiferromagnets, which can be appropriately described by Equation (326)
since their low-energy physics can be mapped onto the n = 3 quantum rotor model
because pairwise antiferromagnetically coupled Heisenberg spins are an effective low-
energy representation of quantum rotors [113]. We can see this correspondence by looking
at the Hamiltonian of the O(3) quantum rotor model:

H = Hkin + V =
K
2 ∑

i
L2

i − J ∑
⟨i,j⟩

ninj , (328)
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where the first part Hkin = K/2 ∑i L2
i with K > 0 and L the angular momentum operator

gives the kinetic energy of the rotors. The second part V = −J ∑⟨i,j⟩ nini with J > 0 is
the interaction between the three-component quantum rotors inducing parallel ordering
of the rotors [113]. The physical picture is that the kinetic energy is minimised when the
orientation of the rotors is maximally uncertain and the energy of the interaction term
is minimised when the rotors are aligned [113]. The eigenvalues of the kinetic term of a
single quantum rotor are given by Ekin(l) = K/2 l(l + 1) with l ∈ N corresponding to a
(2l + 1)-fold degenerate state. Now, given two spins S interacting antiferromagnetically
with coupling strength J⊥ forming a dimer, the total spin is 0 ≤ Stot ≤ 2S and the eigenen-
ergies are given by Edimer(Stot) = J⊥/2 (Stot(Stot + 1)− 2S(S + 1)) with a (2Stot + 1)-fold
degeneracy. This gives a one-to-one correspondence to the kinetic energy of a rotor, but
with an upper bound for the energy. Thus, this mapping is only valid when considering
the low-energy properties of the models [113] and holds certainly for large K/J. We just
introduced a powerful mapping from the low-energy properties of the antiferromagnetic
Heisenberg systems like ladder and bilayer models forming Heisenberg dimers on the
rungs (see Equation (319)) to an O(3) quantum rotor model, which is described by the
action (326). It turns out that this mapping is not only valid for large K/J, but also in the
ordered phase and at the quantum critical point [113]. To include algebraically decaying
long-range interactions, the term (327) must be added to the action. The implications of
long-range interactions for an n-component order-parameter field in the ϕ4 field theory
was already extensively discussed in the 1970s [1–3] for the classical action, but it took until
2001 for the quantum analogue to be studied by Ref. [20]. More studies followed by N.
Defenu et al. employing functional RG approaches [21,244,326].

The predictions for long-range Heisenberg models are in large part the same as for
the LRTFIM. We expect long-range mean-field behaviour with a Gaussian fixed point for
σ ≤ σuc, a regime of nearest-neighbour criticality for σ ≥ σ∗, and a non-trivial regime with
continuously varying critical exponents in between [20,21,244,326]. For d = 1, however,
there is the major difference that a QPT associated with the spontaneous breaking of
continuous symmetries is ruled out by the HMW theorem [130,131,295,296], at least for
σ > 2 [21,244,317,326]. The boundary is then called lower critical exponent σlc. For the
Heisenberg model, the previously discussed action (326) with long-range interactions (327)
holds, which together with the HMW theorem rules out the breaking of the order-parameter
field for sufficiently short-range interactions and, therefore, a QPT in the regime σ > σlc.
For σ ≤ σlc, a QPT breaking the continuous symmetry is predicted [20,21,244,326]. Indeed,
it has been long confirmed by several numerical studies [22,297–306,327] that the HMW
theorem can be circumvented if the long-range interaction is sufficiently strong. Notably, in
recent experiments with trapped ions [328] and Rydberg atoms [329] continuous symmetry
breaking was realized in one and two dimensions which would be prohibited in the
abscence of long-range interactions.

So far, most of the studies considered only Heisenberg Hamiltonians with long-range
interactions in one-dimensional systems [22,35,297–306,327], however often considering
various modifications to the Hamiltonian. Some studies considered a one-dimensional
Heisenberg chain with non-frustrating (staggered) antiferromagnetic long-range interac-
tions [22,300,305], while others included an anisotropy along the z-components resulting
in the XXZ-model [302,303,327]. An interesting example with frustrating long-range in-
teractions is the exactly solvable Haldane–Shastry model [330,331] with ∼ r−2, which
is known to show quasi-long-range order (QLRO) just like the conventional Heisenberg
chain, but with vanishing logarithmic corrections [332]. For the dimerisation transition
between the QLRO and a valence bond solid (VBS), the frustrated long-range interac-
tion seems to play only a minor role compared to the J1-J2 model [213]. Based on this,
in Refs. [213,297–299,333], a model combining the frustrated J1-J2 model with additional
non-frustrating staggered long-range interaction was investigated. The initial intention
was to realise a one-dimensional analogue of deconfined criticality [334–337] between a
Néel-order phase and a VBS. As the transition was found to be of first order, the authors
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in Ref. [338] later turned to the one-dimensional long-range J-Q model, indeed finding
evidence for a continuous deconfined QPT. Interestingly, a very recent paper [327] also
predicts a deconfined QPT in the antiferromagnetic long-range XXZ chain. There are also
studies considering larger spin S = 1. In Ref. [304], a Heisenberg chain with single-ion
anisotropy was studied, while in Ref. [301], the XXZ chain was under scrutiny. In both
cases, a rich phase diagram was found with intriguing quantum critical properties. For
instance, continuous symmetry breaking due to long-range interactions gives rise to a
new, possibly exotic, tricritical point in the XXZ chain with no analogue in short-range
one-dimensional spin systems [301].

In Sections 6 and 7, we reviewed the results of various numerical studies investigating
the quantum-critical properties of the LRTFM [23–26,28–30,32–34] and the LRTFAXYM [31]
with the focus on extracting the critical exponent as a function of the long-range decay
σ. In comparison to the LRTFIM, for long-range Heisenberg models, just recently, efforts
have been made to extract the critical exponents associated with the QPT as a function of
the long-range decay exponent [22,35,37,206]. Reference [22], studying a one-dimensional
long-range Heisenberg chain, is one notable exception in the sense that it was ahead of
its time, performing large-scale SSE QMC simulations for long-range Heisenberg systems
already in 2005, way before the rapid progress in implementing quantum simulators in
quantum optics reignited the interest in long-range interacting systems.

In the following, we will first review the results from Refs. [37,206,339] for the long-
range square-lattice Heisenberg bilayer model in Section 8.1. Then, we proceed with the
discussion of the results from Ref. [35] for long-range Heisenberg ladders in Section 8.2.
Finally, we conclude this section with the discussion of the long-range Heisenberg chain
from Ref. [22] in Section 8.3.

8.1. Staggered Antiferromagnetic Long-Range Heisenberg Square Lattice Bilayer Model

In this section, we consider two square lattices stacked directly on top of each other,
where the Heisenberg spins on each lattice site interact with their nearest neighbours. When
the two spins on top of each other form a rung dimer interacting with coupling strength J⊥,
the Hamiltonian describing the bilayer system is given by Equation (319). Here, we neglect
the long-range interlayer interactions, which results in the Hamiltonian

H = J⊥ ∑
i

S⃗i,1S⃗i,2 −
1
2 ∑

i ̸=j

[
Jq(i − j)

(
S⃗i,1S⃗j,1 + S⃗i,2S⃗j,2

)]
. (329)

We consider staggered non-frustrating long-range interactions along the layers Jq(i − j) of
the form (320). The short-range model (σ → ∞) was the subject of several studies from
the 1990s onward [162,183,184,340–346] investigating its quantum-critical properties. For
a critical coupling ratio λ = Jq/J⊥, the system undergoes a QPT breaking the continuous
SU(2) symmetry of the Hamiltonian from a ground state adiabatically connected to the
product singlet state towards an antiferromagnetic Néel ground state with gapless magnon
excitations (Nambu–Goldstone modes). For long-range interactions, we expect that these
Goldstone modes are altered [38,321] and that the criticality of the system changes as a
function of the decay exponent σ. We expect short-range criticality until σ ≥ σ∗ = 2 − ηSR,
a non-trivial regime of continuously varying criticality in σuc ≤ σ < σ∗ with σuc = 4/3,
and a long-range mean-field regime for σ < σuc [20,21,244,326].

Until recently, to the best of our knowledge, there was a complete absence of numerical
confirmation of this scenario. The first data for the critical point and exponents as a
function of σ were published by Song et al. [37] using the SSE QMC algorithm and is now
supplemented by pCUT+MC data from Adelhardt and Schmidt [206,339].

In Figure 33, the critical values from Refs. [37,206,339] are plotted together with
the results from functional renormalisation group (FRG) calculations from Ref. [21] for
the O(3) quantum rotor model. The critical points λc for both methods are in excellent
agreement over the entire σ-range. However, the critical exponents cannot be directly
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compared since the FSS of the magnetisation curves from SSE QMC simulations give β and
ν, while pCUT+MC calculations for the gap and spectral weight give zν and (2 − z − η)z.
While the QMC data show relatively large error bars in the long-range mean-field regime,
the pCUT approach overestimates the critical exponents in the short-range regime. For
the two-dimensional long-range Heisenberg bilayer, the deviation is larger than for the
LRTFIM in two dimensions. This is no surprise, as a previous series expansion for the
nearest-neighbour square-lattice Heisenberg bilayer model showed similar deviations [347].
Also, the critical exponents from QMC are better at capturing the boundaries of the long-
range mean-field and the short-range regime. In general, both approaches show good
agreement with the FRG results from Ref. [21] for the non-trivial intermediate regime
(which apparently has its own shortcomings at the boundary to the short-range regime).
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Figure 33. Critical values and exponents from numerical studies of the Néel-ordering transition in the
unfrustrated antiferromagnetic long-range Heisenberg square-lattice bilayer model. The upper panel
shows the critical values. The middle left panel displays critical exponent values zν, the middle right
panel the exponent (2 − z − η)ν, the lower right panel the exponent ν, and the lower right panel the
one-particle spectral weight exponent β. The data points “QMC (2024)” for ν and β originate from
Ref. [37]. The data points “pCUT+MC (2024)” for zν and (2 − z − η)ν originate from Ref. [206,339].
The data points “FRG (2017)” for ν and zν originate from Ref. [21]. The black dashed lines denote
the critical exponents in the regime of short-range O(3) criticality (ν = 0.7116(10), β = 0.36932(16),
zν = 0.7116(10), and (2 − z − η)ν = 0.6847(10) [348,349]) and long-range mean-field criticality
(ν = 1/σ, β = 1/2, zν = 1/2, and (2 − z − η)ν = 1/2 [20,21]).
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In conclusion, we summarised the results from SSE QMC and pCUT+MC studies for the
square-lattice Heisenberg bilayer model with staggered antiferromagnetic interactions. Both
approaches are in good agreement and confirm the three critical regimes [1–3,20,21,244,326]
from the two-dimensional O(3) quantum rotor model within their limitations.

8.2. Staggered Antiferromagnetic Long-Range Heisenberg Ladder Models

After the discussion of the square-lattice bilayer model, we can imagine the Heisenberg
ladder models as effectively reducing the dimension of the square-lattice bilayer model
by one now considering two linear chains coupled by rung interactions. The long-range
ladder Hamiltonian then reads

H = J⊥ ∑
i

S⃗i,1S⃗i,2 −
1
2 ∑

i ̸=j

[
Jq(i − j)

(
S⃗i,1S⃗j,1 + S⃗i,2S⃗j,2

)
+ J×(i − j)

(
S⃗i,1S⃗j,2 + S⃗i,2S⃗j,1

)]
, (330)

with long-range coupling Jq(i − j) along the legs of the ladder and J×(i − j) between spins
of different legs. Recalling the long-range interactions of Equation (320) and the definitions
of Jq(i − j) and J×(i − j), thereafter, we define two distinct Hamiltonians Hq = H|J×=0 and
H▷◁ = H, where the first one includes long-range interactions only along the legs, while
the second one is the original Hamiltonian including long-range interactions both along
and in between the legs.

A sketch of these ladders is provided in Figure 34. As for the bilayer model, for small
J/J⊥ (cf. Equation (320)), the ground state is adiabatically connected to the product state of
rung singlets (rung-singlet ground state), while for strong coupling ratios, the long-range
interactions want to induce an antiferromagnetic ground state. However, in contrast to
the bilayer model in Section 8.1, there is no QPT for the nearest-neighbour Heisenberg
ladder [350–352], due to the HMW theorem ruling out continuous symmetry breaking
for one-dimensional quantum models [296]. Note that the HMW theorem only rules out
a QPT with continuous symmetry breaking and not a QPT in general. For instance, the
nearest-neighbour isotropic XY model in a transverse field exhibits a QPT without breaking
the U(1) symmetry [284–293], while in the nearest-neighbour Heisenberg ladder, there is no
QPT at all [350–352]. In fact, a QPT was ruled out until σ ≥ 2 in another one-dimensional
model, namely the staggered antiferromagnetic long-range Heisenberg chain in Ref. [317].
As there is a one-to-one correspondence between antiferromagnetic Heisenberg ladders
and the low-energy properties of the one-dimensional O(3) quantum rotor model [113],
we can expect a QPT predicted by the quantum field theory given by the action (326) with
Equation (327) for σ ≤ σlc = 2 − ηsr with ηSR = 0 [20,21,244]. The existence of a lower
critical decay exponent σlc has the consequence that there are only two quantum-critical
regimes. One is the long-range mean-field regime for σ ≤ 2/3, and the other one is a
regime of a continuously varying critical exponent with a non-trivial fixed point. The third
regime in these models is non-critical.

The only study investigating the full parameter space of this model is Ref. [35] using
pCUT+MC and complementary linear spin–wave calculations. A previous study [306]
using QMC and DMRG investigated the λ = 1 parameter line for H▷◁. There are also
known limiting cases of decoupled staggered long-range Heisenberg chains at λ = ∞,
where a QPT from a QLRO phase towards the same Néel-ordered antiferromagnetic phase
occurs. We can compare the critical points determined by pCUT+MC for Hq and the linear
spin–wave results to the SSE QMC data from Ref. [22] and also to the linear spin–wave
calculations in Refs. [22,322] of the long-range Heisenberg chain. In fact, the linear spin–
wave calculations for Hq can be seen as a generalisation of the ones for the Heisenberg
chain and, therefore, exactly including them as a limiting case.

We can find a plot in Figure 35 showing a ground-state phase diagram for both Hq and
H▷◁ from Ref. [35,353]. The figure also includes other known values from Refs. [22,306],
which fit into the overall picture of the pCUT+MC results. We also show the critical
exponents zν, (2 − z − η)ν, and α determined by the pCUT+MC approach. It is easy to
identify the two critical regimes of long-range mean-field behaviour and continuously
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varying critical exponents as predicted by quantum field theory [20,21,244]. In the non-
trivial regime, the exponents shown here diverge when approaching the lower critical
dimension σ → σlc, which is in reasonable agreement with FRG results in Ref. [21,244]. The
largest deviation can be seen for α, which is the hardest exponent to extract from DlogPadé
extrapolations. Using the (hyper)scaling relations (3)–(9), the remaining critical exponents
can be determined. See Figure A2 in Appendix D showing all critical exponents for the
Heisenberg ladders. It should be noted that there are three main difficulties discussed
in Ref. [35]. First, as just stated, the α exponent is difficult to determine. Second, it
becomes increasingly hard to extrapolate the perturbative series in the regions σ ≳ 1.1
(σ ≳ 1.2) for Hq (H▷◁). Third, the presence of logarithmic corrections to the dominant
power-law behaviour close to the critical point spoils the exponents around the upper
critical dimension at σ = 2/3. In the end, all factors play a role when determining all
critical exponents due to error propagation. We can observe in Figure A2 that several
exponents from the pCUT+MC approach deviate from the FRG exponents significantly in
the non-trivial regime. For instance, the ν exponent seems to approach a constant value
ν ≈ 1 for σ → σlc for pCUT+MC, while the FRG predicts a diverging exponent. Another
important finding is that the lower critical decay exponent σlc is apparently not universal in
these two models and considerably smaller than the predicted value σlc = 2 from quantum
field theory [21,244]. This claim is made in Ref. [35] due to the known limiting case of the
long-range Heisenberg chain [22] from SSE QMC simulations and due to linear spin–wave
calculations [35].

Figure 34. Illustration of the quantum spin ladders with long-range interactions. For nearest-
neighbour interactions (σ = ∞), both long-range ladders Hq (left) and H▷◁ (right) reduce to the same
Heisenberg ladder. The coupling on the rungs ∼ J⊥ is illustrated with black lines, and the long-range
coupling along the legs ∼ Jq(i − j) and in between the legs ∼ J×(i − j) is depicted in blue for Hq and
in purple for H▷◁. The figure is adapted from Ref. [35,353].

Beyond these interesting discrepancies, there was speculation about a possible decon-
fined quantum critical point along the λ = 1 parameter line for H▷◁ in Ref. [306]. The reason
for this was the fact that the staggered long-range Heisenberg ladder undergoes a QPT from
a disordered phase with a non-local string order parameter towards a Néel-ordered phase
with conventional order. Also, they found a sharp peak and a gap in the dynamic structure
factor at the ordering momentum kc in the ordered phase, which could be indicative of
deconfined excitations in terms of spinons [306,354]. Usually, when there is a QPT between
two competing ordered phases, the system undergoes a first-order phase transition or
there must be a coexistence phase. There is also a much more exotic scenario beyond the
Landau–Ginzburg–Wilson theory of phase transitions [334]. A deconfined quantum critical
point [334–337] is a second-order QPT that is not described by a “confining” order parame-
ter, but by an emergent U(1)-symmetric gauge field with “deconfined” degrees of freedom
accompanied by a fractionalisation of the order parameters [334]. A paradigmatic example
is the deconfined QPT between a Néel-ordered antiferromagnetic ground state and a VBS
state on a two-dimensional lattice [334,335,337,355–360]. While deconfined criticality was
originally proposed in two dimensions, similarities in terms of a conventional Luttinger Liq-
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uid theory description have been drawn in one dimension [361–368]. Interestingly, a very
close analogy to a two-dimensional deconfined critical point was found in Ref. [338] using
a toy model with six-spin Heisenberg interactions and long-range two-spin interactions
inducing a continuous phase transition between a VBS phase and an antiferromagnetic
phase. A scenario between a conventional order and non-local string order as proposed by
Ref. [306] would go even beyond the one-dimensional scenarios found so far. However, it
was argued in Ref. [35] that there should be no such deconfined critical point in the above
long-range Heisenberg ladders due to the critical exponents found and the fact that the
rung-singlet phase is adiabatically connected to the trivial product state of rung singlets not
falling into the category of symmetry-protected topological phases despite the presence of
a non-local string order parameter [35,369]. Another possible interpretation of the finding
in Ref. [306] is probably along the lines of Refs. [38,321]. The observed gap in the dynamic
structure factor is in agreement with strong finite-size artefacts arising from the altered
dispersion ω ∼ |k|s of sublinear behaviour s < 1 in the anomalous Goldstone regime σ ≤ 2.
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Figure 35. Critical values and exponents from numerical studies of the Néel-ordering transition
in the unfrustrated antiferromagnetic long-range Heisenberg ladders. The panels show the critical
values λc (upper left), zν (upper right), (2 − z − η)ν (lower left), and α (lower right). The data points
“pCUT+MC Hq”, “SW Hq”, “pCUT+MC H▷◁”, and “SW H▷◁” originate from Ref. [35,353] and refer to
parallel (q) and parallel + diagonal (▷◁) interactions. The “SSE QMC (2005)” data point from Ref. [22]
shows a λc = ∞ value on the long-range Heisenberg chain, which corresponds to the limiting case of
decoupled legs. The “QMC (2022)” data [306] shows a λc = 1 value for H▷◁. The data points “FRG
2020” are from Ref. [244] and show the critical exponents for the one-dimensional O(3) quantum
rotor model. The blue-shaded region denotes the σ regime in which long-range mean-field criticality
is expected. The black-dashed lines denote long-range mean field critical exponents.
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In this subsection, we have seen that the antiferromagnetic Heisenberg ladders with
staggered long-range interactions show two quantum-critical regimes: one regime with
long-range mean-field behaviour and a second non-trivial regime with continuously vary-
ing critical exponents. There is also a third regime that does not show any QPT because
continuous symmetry breaking is ruled out by the HMW theorem. Despite the numerical
confirmation of the two critical regimes predicted from quantum field theory [20,21,244,326],
a discrepancy between the upper bounds of the Néel-ordered phase and the predicted lower
critical exponent σlc was identified by Ref. [35]. On the other hand, the data in Ref. [35,353]
are in agreement with other literature for the limiting case of long-range Heisenberg spin
chains [22,322]. We also discussed briefly the possibility of a deconfined QPT and the
presence of anomalous Goldstone modes in one dimension for the above ladder models.
To put it briefly, the Hamiltonian (330) hosts some intriguing physics with several aspects
that need further clarification.

8.3. Staggered Antiferromagnetic Long-Range Heisenberg Chain

Lastly, we consider another one-dimensional system, the Heisenberg chain with
staggered non-frustrating antiferromagnetic long-range interactions:

H = ∑
i

[
S⃗iS⃗i+1 −

∞

∑
j=2

λ(i − j)S⃗iS⃗i+j

]
. (331)

In the previous two models (bilayer and ladders), the unperturbed part at λ = 0 consisted
of uncoupled dimers with a trivial product singlet state as its ground state and local
triplet excitations above. Here, the unperturbed part is the nearest-neighbour Heisenberg
chain with a ground state exhibiting quasi-long-range order (QLRO) and fractionalised
elementary excitations. These excitations are referred to as spinons and can be seen as
propagating domain walls carrying S = 1/2 degrees of freedom. The perturbation consists
of long-range interactions that couple sites beyond the nearest-neighbours. This interaction
is of the same algebraic form as Equation (320). Because of the non-frustrating nature of
the antiferromagnetic long-range interactions, it induces a Néel-ordered antiferromagnetic
phase upon increasing its coupling strength. Again, a QPT breaking the SU(2)-symmetry
of the Hamiltonian is only allowed when the long-range decay exponent satisfies σ < 2
due to the HMW theorem [22,317], and thus, such a transition can be ruled out for larger
decay exponents. In this model, a QPT from a QLRO towards an ordered phase is expected
to occur, and therefore, the ϕ4 theory of Equation (326) does not apply. The k = 1 Wess–
Zumino–Witten non-linear σ model [370,371] is known to describe the low-energy physics
of Heisenberg chains and includes topological coupling to account for the presence of
QLRO in the lattice model [22,213]. As for the ϕ4 theory, a long-range coupling analogous
to Equation (327) can be added to describe the Hamiltonian (331) [22].

Reference [22] is a comprehensive study of the Heisenberg chain (331) using large-
scale SSE QMC simulations to extract the critical properties of the QPT. The results for
the critical point, as well as the critical exponents η and z can be found in Figure 36.
The overall behaviour of the critical point as a function of the decay exponent σ is very
similar to the one found in the previous subsection for the Heisenberg ladder. Here, the
critical point diverges at about σ ≈ 1.8 when approaching the lower critical exponent
σ → σlc. The hard boundary for a QPT is again given by the HMW theorem. Yet, there
is a significant difference. While, for the Heisenberg ladders, the disordered rung-singlet
phase exists for any σ > 0, for the Heisenberg chain, the QLRO phase only exists for
σ > 1. Thus, for the Heisenberg chain, the critical line terminates in a marginal point
at σ = 1 and λ = 0. For any σ < 1, the perturbation parameter λ becomes irrelevant,
and the system is always in the antiferromagnetic phase [22]. The long-range Heisenberg
chain (331) was also studied in Ref. [213,297,333] in the context of a Heisenberg chain
with frustrated next-nearest-neighbour and non-frustrating long-range interactions, i.e.,
the J1 − J2 chain with staggered long-range interactions. In both models, the QLRO-Néel
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QPT can be identified by a level crossing between a triplet S = 0 and quintuplet S = 2
excitations (The transition was initially misidentified as a level crossing between two S = 0
states in Refs. [213,297] until it was later clarified to be a level crossing between the S = 0
and S = 2 states [333]). The critical point from finite-size scaling of the level crossing
from the ED [297] and DMRG [333] is in very good agreement with the QMC results at
λ = 1 (see Figure 36). Proceeding with the critical exponents, we can see that the critical
exponent η matches well with the field-theoretical expectations η = 2 − σ (linear in at least
leading order, but also a simple scaling argument predicts the linear behaviour [22]) in
the range 1 ≤ σ ≤ 1.3. For σ > 1.3, the η from SSE QMC simulations starts to deviate
from the linear behaviour. One interesting observation was pointed out in Ref. [35]. In
both the Heisenberg ladders and the Heisenberg chain, the linear behaviour η = 2 − σ is
expected from the underlying quantum field theory, yet the data from pCUT+MC and SSE
QMC studies indicate a deviation from this with η ≤ 2 − σ for the Heisenberg ladders and
η ≥ 2 − σ for the Heisenberg chain. It should be noted, however, that the exponent from
the pCUT+MC approach is determined using scaling relations and, therefore, can suffer
from unfavourable error propagation, especially when the α exponent is involved. The
dynamical exponent z of the Heisenberg chain was extracted from SSE QMC simulations as
well. The exponent z is one at the marginal point σ = 1 and then quickly drops to z ≈ 0.75,
where it seems to be constant within the error bars up to σ = 1.7. This finding is also in
contrast to the RG prediction, where z = 1 in leading order, and the exponent is expected
to be constant even in higher orders [22]. In Ref. [213], for λ = 1, the dynamic exponent
z was determined in excellent agreement with the QMC results (see Figure 36). Also, the
results for the J1 − J2 model with non-frustrating long-range interactions, where the same
QLRO-Néel transition is realised, the exponent is in agreement with z ≈ 0.75 [213,297].
Further, the RG analysis in Ref. [22] gave also a prediction for ν. However, this could not
be compared with QMC as it was not possible to obtain accurate estimates of ν [22]. Note,
also, that neither the long-range transverse-field XY chain nor the Heisenberg chain show
long-range mean-field behaviour.

The Heisenberg chain with staggered long-range interactions is another prime example
of long-range models hosting intriguing critical behaviour. The remaining discrepancy
between the numerical SSE QMC results and the underlying field-theoretical description
shows that the critical properties are not yet fully settled and further exploration of the
model is necessary.
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Figure 36. Critical values and exponents from numerical studies of the QLRO-Néel transition in the
unfrustrated antiferromagnetic long-range Heisenberg chain. The upper panel shows critical values
λc; the lower left shows the critical exponent z; the lower right shows η. The data points “SSE QMC
2005” are from Ref. [22]; “ED 2010” are from Refs. [213,297]; the single data point “DMRG 2018” is
from Ref. [333]. The dashed line is for η and is the prediction from the first-order RG and scaling
arguments provided in Ref. [22].

9. Summary and Outlook

In this review, we gave an overview of recent advances in the investigation of the
quantum-critical properties of quantum magnets with long-range interactions focusing on
two techniques, both based on Monte Carlo integration, but complementary in spirit. On
the one hand, we described pCUT+MC, where classical Monte Carlo integration is decisive
in the embedding scheme of white graphs. This allows extracting series expansions of
relevant physical quantities directly in the thermodynamic limit. On the other hand, SSE
QMC enables calculations on large finite systems where finite-size scaling can be used to
determine the physical properties of the infinite system. Both quantitative and unbiased
approaches take the full long-range interaction into account and can be used a priori in any
spatial dimension for any geometry.

In recent years, both techniques, alongside other methods, have been applied success-
fully to one- and two-dimensional quantum magnets involving long-range Ising, XY, and
Heisenberg interactions on various bipartite and non-bipartite lattices. In this work, we
have summarised the obtained quantum-critical properties including quantum phase dia-
grams and the (full sets of) critical exponents for all these systems coherently. Further, we
reviewed how long-range interactions are used to study quantum phase transitions above
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the upper critical dimension and how the scaling techniques are extended to extract these
quantum critical properties from the numerical calculations. This is indeed generically the
case for all unfrustrated systems in this review, with the exception of the one-dimensional
isotropic XY and Heisenberg chain. For frustrated systems, one can apply both MC tech-
niques successfully for Ising interactions, while in general, only the pCUT+MC method
is applicable (if an appropriate perturbative limit exists) due to the sign problem of SSE
QMC. Nevertheless, in all frustrated cases, the small-σ regime of long-range interactions is
challenging for both approaches, and further technical developments are desirable.

In the future, several extensions and research directions are interesting. As mentioned
in Section 6.3 of this review, the interplay between long-range interactions and geometric
frustration is a vibrant research field at the moment. It has been demonstrated numerically
and experimentally that this interplay provides a great resource to engineer exotic phases
of matter [54,55,109,283,372] with the most spectacular example being the Z2 quantum
spin liquid on the Ruby lattice [55,109,372]. We expect further rapid development in the
field since many promising theoretical proposals can be realised in analogue quantum
simulation platforms (e.g., programmable Rydberg atom quantum simulators [52,55]).

In terms of methods, pCUT+MC is yet to be extended to arbitrary unit cells, larger
spin values, and multi-spin interactions. The access to larger unit cells will enable the
investigation of the interplay between long-range interactions and frustration on even
more relevant lattice structures, e.g., the Kagome or Ruby lattice. There are systems
with multi-spin interactions hosting deconfined quantum criticality [338,355–359], and an
introduction of long-range interactions to this type of systems seems to be an interesting
research topic [338]. We hope to spark further interest in the development and application
of pCUT+MC by other users.

The SSE QMC approach is a widely used numerical tool for the calculation of unbiased
thermal averages of observables. A large variety of distinct QPTs is potentially accessible
by these QMC simulations. We envision that, for all systems that do not suffer from a
sign problem, SSE QMC, in combination with appropriate zero-temperature protocols and
finite-size scaling, can be used to study how long-range interactions affect QPTs beyond
the standard O(n)-symmetry. The SSE QMC method has also been extended to tackle
frustrated systems in a more efficient way [261,262,373]. However, an efficient treatment
of both the long-range interaction and frustration has not been introduced yet [32,40].
Reference [374] developed an SSE QMC approach to access the toric code quantum spin
liquid regime [55,109,372]. An application of the SSE QMC approach to extended long-
range interacting Bose–Hubbard models (see Section 5.5) along the lines of directed loop
updates [215–217] would also be a natural development. This would enable numerically
calculating observables with SSE QMC for ultracold gas experiments with optical lattices. A
possible application could be the study of complex crystalline phases and their breakdown
in frustrated Bose–Hubbard systems with long-range interactions [64,73,111,230].

Finally, in the context of the long-range mean-field regime above the upper critical
dimension, much research has been conducted regarding finite-size scaling in classical
systems [12–19,41,125,128,142,145], including the study of multiplicative logarithmic cor-
rections for the characteristic length scale at the upper critical dimension [17] and the
investigation of the role of Fourier modes and boundary conditions [19]. On the con-
trary, its quantum counterpart has only been treated successfully in recent years [32,34].
In addition to the transfer of established concepts from classical to quantum Q-FSS, one
interesting open question is a detailed understanding of the crossover regime between
classical and quantum Q-FSS for small temperatures. Even though we focused on the quan-
tum version of the Q-FSS of Ref. [34] due to the quantum nature of the models analysed
in this review, the ground work has been conducted by the inventors of classical Q-FSS
(Refs. [15–19,41,125]) and, in general, many other researchers who provided valuable in-
sight into the scaling above the upper critical dimension, e.g., Refs. [10,12–14,127,128,142].
Overall, it is exciting that the abstract concept of dangerous irrelevant variables and the
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physics above the upper critical dimension are accessible in quantum–optical platforms
realising long-range interactions.
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Abbreviations
The following abbreviations are used in this manuscript:

AF antiferromagnetic
DIV dangerous irrelevant variable
DMRG density matrix renormalisation group
DOF degrees of freedom
F ferromagnetic
FRG functional renormalisation group
FSS finite-size scaling
GHF generalised homogeneous function
HMW theorem Hohenberg–Mermin–Wagner theorem
iDMRG infinite density matrix renormalisation group
LCE linked-cluster expansion
LRI long-range interactions
LRTFAXYM long-range transverse-field anisotropic XY model
LRTFIM long-range transverse-field Ising model
MC Monte Carlo
MCI Monte Carlo integration
pCUT perturbative continuous unitary transformation
PDF probability density function
PI path integral
QLRO quasi long-range order
QMC quantum Monte Carlo
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QPT quantum phase transition
qp quasiparticle
RG renormalisation group
SSE stochastic series expansion
SPO stochastic parameter optimisation
TDVP time-dependent variational principle
VBS valence bond solid

Appendix A. Short-Range O(n) Transition ϕ4-Theory

For ferromagnetic short-range interacting transverse-field Ising models (see
Equation (292)) the underlying Z2 symmetry of the Hamiltonian is spontaneously broken
at the quantum phase transition [113]. The associated order parameter is the magnetisa-
tion in coupling direction which is microscopically defined as ∑i σz

i for Ising couplings
in z-direction. Rewriting the partition function of the TFIM in the picture of Feynman
path integrals, coarse-graining and going to the continuum limit is the general approach
to derive a field theoretical description at criticality [113]. The fields of the quantum field
theory ϕ(x, τ) are obtained by coarse-graining the order parameters at imaginary time τ
for a coarse-graining neighbourhood N (x) [113]

ϕ(x, τ) ∝ ∑
i∈N (x)

σz
i . (A1)

By properly [113] taking care of the microscopic degrees of freedom leading to terms of
order (ϕ2)k with k ∈ N, the resulting sufficiently truncated action leading to the right
partition function to describe the phase transition is given by

Z =
∫

Dϕ(x, τ) e−Sϕ (A2)

Sϕ =
∫

ddx
∫ β

0
dτ [{g(∂τϕ)2 + (∇xϕ)2 + rϕ2}+ uϕ4] (A3)

with periodic boundary conditions in imaginary time τ [113]. Note that the dependencies
of ϕ(x, τ) remain, but are dropped to lighten the notation. Gradient and time derivative
terms are accounting for the spatial and temporal direction fluctuations [113,132]. The
initial couplings in Equation (A3) are depending on the values of the couplings in the
microscopical Hamiltonian [113]. Regarding the action in Equation (A3) the symmetry-
breaking quantum phase transition between ⟨ϕ⟩ = 0 and ⟨ϕ⟩ ̸= 0 becomes visualised as
tuning the coupling r to a negative sign changes the minimum structure of the action into
the symmetry broken Mexican hat. The field theory defined in Equation (A3) is a distilled
representation of the key features of the quantum short range Ising criticality with ϕ having
the interpretation of an “order parameter field”.

In general, field theories as in Equation (A3) are used to study QPT with a spontaneous
breaking of a O(n) symmetry. Here, O(n) refers to the orthogonal group (the group of
all orthogonal (n × n)-matrices). The study of a O(1)-symmetry breaking is equivalent
to the study of a Z∈-symmetry breaking since both groups are isomorphic. Dependent
on n of the orthogonal group O(n) the quantum fields ϕ(x, τ) of the action Equation (A3)
become multicomponent fields [113,132]. In order to study a O(n) symmetry breaking QPT
real-valued fields ϕ(x, τ) with n components are considered.

After introducing actions of the form Equation (A3) to describe quantum criticality,
we review basic computations that can be performed within this framework. We start with
the derivation of field correlators

G(n)(x1, τ1; . . . ; xn, τn) =
1
Z
∫

Dϕ(x, τ) ϕ(x1, τ1) . . . ϕ(xn, τn) e−Sϕ (A4)
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from a field-path-integral formulated partition function is technically accomplished by addi-
tionally coupling the order parameter field ϕ(x, τ) linearly to an auxiliary field j(x, τ) [132]

Sϕ,j =
∫

ddx
∫ β

0
dτ [{g(∂τϕ)2 + (∇xϕ)2 + rϕ2}+ uϕ4 − ϕ(x, τ)j(x, τ)] . (A5)

The n-field correlator can now be understood as the functional derivative of the partition
function with respect to the respective auxiliary fields [132]

G(n)(x1, τ1; . . . ; xn, τn) =
1
Z

[
δ

δj(x1, τ1)
. . .

δ

δj(xn, τn)

∫
Dϕ(x, τ) e−Sϕ,j

]
j=0

. (A6)

From the expression for the spatial correlator in Table 1 we see that at criticality the
system is scale-free therefore for distances x ≫ a much larger than the lattice spacing the
theory should be invariant under a scaling transformation of coordinates in space and time

x → x′ = x/b (A7)

τ → τ′ = x/bz (A8)

with b being a rescaling factor [113]. We define the power by which a quantity O has
to be rescaled in order to preserve the structure as the scaling dimension [O] of that
quantity [113]. The Gaussian part of the action in Equation (A3) keeps its structure under
scaling transformations if the field ϕ and the mass coupling r are also scaled appropriately.
One can calculate the scaling dimensions of ϕ and r as follows,∫

ddx′
∫ β

0
dτ′(∂τ′ϕ

′(x′, τ′))2 = b−d−z+2z+2[ϕ]
∫

ddx
∫ β

0
dτ (∂τϕ(x, τ))2 (A9)∫

ddx′
∫ β

0
dτ′(∇x′ϕ

′(x′, τ′))2 = b−d−z+2+2[ϕ]
∫

ddx
∫ β

0
dτ (∇xϕ(x, τ))2 (A10)∫

ddx′
∫ β

0
dτ′ r′ϕ′(x′, τ′)2 = b−d−z+[r]+2[ϕ]

∫
ddx

∫ β

0
dτ rϕ(x, τ)2 (A11)

⇓
−d − z + 2z + 2[ϕ] = 0 (A12)

−d − z + 2 + 2[ϕ] = 0 (A13)

−d − z + [r] + 2[ϕ] = 0 (A14)

⇓
z = 1 (A15)

[ϕ] = (d − z)/2 = (d − 1)/2 (A16)

[r] = 2z = 2 (A17)

⇓
ϕ → ϕ′(x′, τ′) = b(d−1)/2ϕ(x, τ) (A18)

r → r′ = b2r . (A19)

So far the following naively obtained power counting scaling dimensions were encountered,

[ddx] = −d (A20)

[dτ] = −z = −1 (A21)

[∇x] = 1 (A22)

[∂τ] = z = 1 (A23)

[ϕ] = (d − z)/2 = (d − 1)/2 (A24)

[r] = 2 . (A25)
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Note, one can fix z = 1 from the three linear equations (A12) to (A14). That means the
fact that the TFIM has an exponent z = 1 and therefore space/imaginary time isotropy is
available directly in the quantum field theoretical description by the form of the appropriate
action. Requiring also scale-invariance for the ϕ4 terms of the action in Equation (A3), one
finds additionally to Equations (A12) to (A14) the relation

[ddx] + [dτ] + [u] + 4[ϕ] = 0 . (A26)

Therefore, the ϕ4 term remains invariant for a scaling dimension of [u] = 3z − d = 3 − d.
We can now regard the scaling in terms of differential equations representing the renormal-
isation group flow of the coupling constants using b = 1 + dl for dl ≪ 1 and building up a
finite rescaling b = el by repeated action of infinitesimal rescalings [113]

r + dr = edl[r]r = (1 + dl[r])r = r + dl[r]r (A27)

u + du = edl[u]u = (1 + dl[u])u = u + dl[u]u (A28)

⇓
dr
dl

= 2r (A29)

du
dl

= (3 − d)u . (A30)

Focusing only on the flow of r (see Equation (A29)) one sees that for r > 0 it flows towards
the stable fixed point at r = ∞, and towards the stable fixed point at −∞ for r < 0, while
there is an unstable fixed point at r = r⋆ = 0. Regarding also the coupling u one sees
directly one fixed point of the coupled flow at (r⋆ = 0, u⋆ = 0). For d > 3 the flow in u is
stable towards the fixed point while for d < 3 it is unstable. That is a hint of the irrelevance
of the coupling u for systems with d > 3 as independently of the starting condition the
system is always in the attraction basin of u⋆ = 0.

A coupling c with scaling dimension [c] < 0 always has one stable fixed point at c⋆ = 0.
Independent of the starting point it always flows to zero and is called irrelevant [10,127]. As
long as the coupling is not dangerously irrelevant (see Section 2.3), meaning that there is no
additional singular behaviour in observables approaching c → 0 [127], it can be neglected.
That is the reason why it is sufficient to regard an action with ϕ4 as its highest power as all
higher powers have irrelevant couplings [10].

The spatial dimension d at which the coupling of u has scaling dimension zero [u] = 0
is called the upper critical dimension. Below the upper critical dimension the coupling u
needs to be included perturbatively and a “ true ” decimation of degrees of freedom is neces-
sary [113]. In this thesis we will not deal with the technicalities, but in order to understand
some arguments from other resources a basic understanding of the principle and the results
of renormalisation group techniques are required. The decimation of degrees of freedom
(DOF) is often done in this context by a momentum shell renormalisation [113]. Here as a
first step “ fast” DOF, i.e., DOF with large momentum/frequency, are partially integrated
out [113,132,375]. One chooses a momentum cutoff Λ and frequency cutoff J and defines
Λ̃ = Λ/b and J̃ = J /bz. After that one integrates the “ fast” DOF between Λ and Λ̃ and
respectively J and J̃ [113,132,375]. After that one rescales x′ = x/b which is equivalent
to Λ′ = bΛ̃ = Λ and τ′ = τ/bz which is equivalent to J ′ = bzJ̃ = J [113,132,375]. Tech-
nicalities can be found in [113,132,375]. The most important result of this scheme are
new modified couplings

r̃ = r + fr(u, r) (A31)

ũ = u + fu(u, r) (A32)
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which are related to the original couplings plus some contributions fr/u which can be
calculated order by order in u from occurring Feynman diagrams [113]. The modified
couplings scale as [113]

r′ = b2r̃ (A33)

u′ = b3−dũ . (A34)

One can now also calculate the flow equations from those quantities,

dr
dl

= 2r + gr(r, u) (A35)

du
dl

= (3 − d)u + gu(r, u) (A36)

for which we see that the equations are not decoupled like in the case of the Gaussian
theory with an irrelevant u (see Equations (A29) and (A30)) and there is a second fixed
point (r⋆⋆, u⋆⋆) differing from the trivial one r⋆ = u⋆ = 0 [113]. The new non-trivial fixed
point is called Wilson-Fisher fixed point [113]. One can express the fixed point and flow
equations in terms of ϵ = duc − d and perturbatively extract the values of (r⋆⋆, u⋆⋆) as well
as the eigenstates and eigenvalues of the linearised flow equation around the Wilson-Fisher
fixed point [113].

For calculations higher than first-order it is also necessary to rescale the field at least
for the apparent ϕ4 theory of the TFIM due to self-energy contributions changing the
propagator [113]. This could be taken care of by defining a new scaling dimension of the
field [ϕ]new = [ϕ]naive + h(η) from the naive scaling dimension (see Equation (A24)) and a
further functional dependence h(η) on the anomalous dimension exponent to be consistent
with the scaling of the two-point correlators η [113]. The underlying mechanism relating
the anomalous dimension to the self-energy Σ(q) is as follows: We define the self-energy
as the difference between the inverse propagator of the Gaussian field theory and the
propagator including the u terms G−1

0 (q, ω)− G−1(q, ω) = Σ(q, ω) and we find,

G(q, ω) =
1

G−1
0 (q, ω)− Σ(q, ω)

=
1

q2 + Σ(q, ω) + g̃ω2 + r
∝

1
q2−η

(A37)

that the self-energy potentially changes the leading q dependence for small q values [113].
This difference is incorporated into the anomalous dimension [113]. The Fourier transform
of the propagator gives the two-point correlators which again are proportional to two times
the field scaling dimension. Concluding the scaling dimension,

[ϕ] = [ϕ]naive + h(η) (A38)

is always necessary if the anomalous dimension is non-zero [113].
As already seen for the anomalous dimension exponent η in Equation (A37) and the

dynamical correlation length exponent z it is possible to connect the canonical exponents
(see Table 1) to the results of scaling/renormalisation group theory in the field-theoretical
framework. We will now discuss the relations between canonical exponents which char-
acterise a phase transition and scaling results. We will also briefly skim the origin of the
fluctuation-dissipation relation and the analogy between the auxiliary field in Equation (A5)
and the conjugate field to coupling to the order parameter in the microscopic model.

• The correlation length exponent ν is given by the inverse of the relevant eigenvalue
λ1 of the linearised flow equation spectrum at the relevant fixed point of the phase
transition [113]. That means ν = 1/λ1 given by the non-trivial eigenvalue λ1 of the
linearised flow equations at the Wilson-Fisher fixed point below the upper critical
dimension and ν = 1/[r] from the Gaussian fixed point above the upper critical
dimension [113].
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• The dynamical correlation length exponent stands for the space–time anisotropy. So far
the short-range ϕ4-theory defined in Equation (A3) did not have such an anisotropy,
but in the case of long-range interaction models [20,21,31] or the Bose–Hubbard
superfluidity onset transition [31,113,231] such space–time anisotropy occurs.

• The anomalous dimension exponent η is obtained by the q proportionality of the
propagator of the theory G(q, ω) ∝ qη−2 and is defined to stand for the difference to
two in the proportionality [113]. The anomalous dimension η is therefore affected
by self-energy contributions. We will also see in the long-range theory that even in
the free theory without any self-energy contributions an η can occur if the spatial
fluctuations in the action go with a qσ term with σ < 2 [20,21,31].

• The conjugate field used in the consideration of phase transitions in the microscop-
ical model translates to the auxiliary field in Equation (A5) [113,132]. Therefore the
scaling dimension of the auxiliary field is in the Gaussian theory given by the scale
invariance of ∫

ddx
∫

dτϕ(x, τ)j(x, τ) (A39)

[ddx] + [dτ] + [ϕ] + [j] = 0 . (A40)

• According to Equation (A6) one can derive the expectation value of the field ϕ and
the two-point correlator via functional derivatives with respect to the auxiliary field j
and setting j to zero afterwards [132]. This is in full analogy to the derivation of the
magnetisation and the susceptibility from the free energy via derivatives with respect
to the longitudinal field.

• In the linear coupling formalism, Equation (A6) leads to the later used fluctuation-
dissipation relation between the two-point correlator and the susceptibility [113],

Im[χ(q, ω)] = f (ω/T)S(q, ω) (A41)

with f (ω/T) being a function implementing the temperature occupation, S(q, ω) the
dynamic structure factor and Im[χ(q, ω)] the imaginary part of the susceptibility in
momentum and frequency space.

Appendix B. Generalised Homogenous Functions

The following definitions, theorems and comments on generalised homogeneous
functions are replicated from [124]. Proofs to all presented theorems can be found in [124].

Definition A1. A function f (x1, x2, . . . , xn) is a generalised homogeneous function (GHF)
with n variables if there exist n numbers a1, a2, . . . , an such that for all positive λ ∈ R+,

f (λa1 x1, λa2 x2, . . . , λan xn) = λa f f (x1, x2, . . . , xn) . (A42)

a1, a2, . . . , an are being referred to as scaling powers of the respective variables x1, x2, . . . , xn
and a f is the scaling power of f (x1, x2, . . . , xn). The scaling powers a1, . . . an are non-zero.

Remark A1. Regarding a GHF with n variables there are only n independent scaling
powers. This can be seen by setting λ = λ̃p, leading to

f (λ̃pa1 x1, λ̃pa2 x2, . . . , λ̃pan xn) = λ̃pa f f (x1, x2, . . . , xn) . (A43)

If a f = 0 the statement that there are only n independent scaling powers is trivial. If a f ̸= 0
one can set p = 1/a f resulting in

f (λ̃a1/a f x1, λ̃a2/a f x2, . . . , λ̃an/a f xn) = λ̃ f (x1, x2, . . . , xn) . (A44)

Theorem A1. Let f (x1, x2, . . . , xn) and g(x1, x2, . . . , xn) be GHF with scaling powers a1,
a2, . . . , an and respective a f and ag then,
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• f · g is a homogeneous function with scaling power a f + ag.
• f + g is only a homogeneous function if a f = ag. The scaling power of f + g is then a f .

Theorem A2. If f (x1, x2, . . . , xn) is a GHF with n variables with scaling power a f , then

f (j1,j2,...,jn)(x1, x2, . . . , xn) =
∂j1

∂xj1
1

∂j2

∂xj2
2

. . .
∂jn

∂xjn
n

f (x1, x2, . . . , xn) (A45)

is also a GHF

f (j1,j2,...,jn)(λa1 x1, λa2 x2, . . . λan xn) = λa f −∑n
i=1 jiai f (j1,j2,...,jn)(x1, x2, . . . , xn) (A46)

with scaling power a f − ∑n
i=1 jiai.

Theorem A3. Let f (x1, x2, . . . , xn) be a GHF with n variables and scaling power a f . The
Legendre transform of f (x1, x2, . . . , xn) in which xi is replaced as a free parameter by its
conjugate variable xi = f (0,0,...,0,ji=1,0,...,0)(x1, x2, . . . , xn)

f (x1, x2, . . . , xi, . . . , xn) = f (x1, x2, . . . , xn)− xixi (A47)

is also a GHF with the same scaling power a f = a f . The scaling power of xi is given by
Theorem A2 as ai = a f − ai.

Theorem A4. A function f (x1, x2) is a two-variable GHF with scaling power a f and
independent scaling powers a1, a2 if there exists some function g±(u) such that

f (x1, x2) = |x1|a f /a1 gsgn(x1)

(
x2

|x1|a2/a1

)
(A48)

or equally, if there exists some function h±(u) such that

f (x1, x2) = |x2|a f /a2 hsgn(x2)

(
x1

|x2|a1/a2

)
. (A49)

Conversely if f is a GHF then,

g±(u) = f (±1, u) (A50)

h±(u) = f (u,±1) . (A51)

The statement of this theorem is straightforward generalisable to n-variable GHF. Due to
limitations in compact notation for the formulation two-variable GHF are used.

Theorem A5. All GHFs have power-law singularities at the origin when it is approached
along one of the principal axes. The exponent for the path of the approach |xi| → 0 is given
by a f /ai. For a function of n variables that results in,

f (0, . . . , 0, xi, . . . , 0) ∝ |xi|a f /ai f (0, . . . , 0, 1, . . . , 0). (A52)

Theorem A6. Let f (x1, x2, . . . , xn) be a n-variable GHF with scaling power a f . Let

f̃ (x1, x2, . . . , x̃j, . . . , xn) =
∫

ddxj f (x1, x2, . . . , xj, . . . , xn) exp
(
ixj x̃j

)
(A53)

denote the Fourier transform in which xj is replaced by x̃j as the independent variable and
d being the dimensionality of the variable. f̃ (x1, x2, . . . , x̃j, . . . xn) is also a GHF with scaling
power ã f = a f − dãj and the scaling power of the transformed variable x̃j being ãj = −aj

f̃ (λa1 x1, λa2 x2, . . . , λãj x̃j, . . . , λan xn) = λa f −dãj f̃ (x1, x2, . . . , x̃j, . . . xn). (A54)
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Appendix C. Walker’s Method of Alias

Walker’s method of alias is a numerical technique to draw integer random numbers
from a discrete PDF in constant time [212,214]. Let P(ωj) = qj be a discrete probability
distribution with j ∈ {1, . . . , N} elements ωj and their probabilities qj. The key idea of
Walker’s method is to redistribute the unbalanced part of the probability distribution. A
naive way to sample a discrete distribution would be the rejection method. This means to
draw an integer j ∈ {1, . . . , N} uniformly and accept it with probability qj/ max(qj) [214].
However, this leads to O(N) steps until a proposed move eventually gets accepted [214].
In the Walker’s method one draws the integer j uniformly, possibly accepts it with a
probability Pj and otherwise chooses its alias Aj. One therefore succeeds after one try. The
probabilities Pj and the aliases Aj need to be determined in advance such that the correct
distribution qj is sampled. In Ref. [214] an algorithm to set up the tables for Pj and Aj with
complexity O(N) is given. Note that the construction of the tables needs to be conducted
only once before the actual simulation is performed. During the simulation we draw from
qj with the help of the precalculated Pj and Aj in O(1) time. The Walker’s method therefore
does not alter the complexity of the whole algorithm.

In Figure A1 we illustrate the algorithm by Fukui and Todo [214] to set up the tables
Pj and Aj. The algorithm proceeds as follows: One starts by setting Pj to a preliminary
distribution Pj = N · qj and creates an empty alias table Aj. The table Pj is split into Pj ≥ 1
and Pj < 1 (see Figure A1b). The elements of the partition Pj < 1 get filled up by the
elements Pj ≥ 1. Starting from the outermost right elements of both parts in Figure A1b
one fills up the shortfall 1 − Pj (green blocks in Figure A1) of weight Pj and sets the alias Aj
to the number corresponding to the weight left from the separating line of the partitions
(j = 5 and Aj = 6 in Figure A1b). This alias is later chosen with probability 1 − Pj if j gets
drawn. In order to compensate for this, one cuts the weight PAj of the alias by 1 − Pj (red
blocks in Figure A1). If the new weight PAj falls below 1, it is transferred to the partition
with Pj < 1 (see e.g., j = 6 in Figure A1d,e). This filling up of the shortfalls is performed as
long as the partition Pj < 1 is not empty. Figure A1f therefore shows the last step.

1  2  3  4  5  6 1  3  6 2  4  5 1  3  6  2  4    

-   -   -     -   -   - -   -   -     -   -     6

 

5

1  3  6  2    

-   -   -     -     6  6

4  5 1  3 

-   -           6  6  6

2  4  56 1  3 

-   -        3  6  6  6

2  4  56

a) b) c)

d) e) f)

-

Figure A1. Illustration of Walker’s method. The horizontal dashed line corresponds to the mean of
the probability distribution qj with j ∈ {1, . . . , N}. (a) Definition of a tentative probability Pj = n · qj

which compares the probabilities qj with the mean q = 1/N. (b) The probabilities qj are discarded,
a table Aj for the aliases is created and the distribution is splitted into Pj ≥ 1 and Pj < 1. (c–f) The
weights of Pj are gradually redistributed by creating aliases until the distribution is flattened. The
weights that are taken away are depicted with red bars and the added weights with green bars.
The values of Pj and Aj that get modified during a step are written in red. At the right part of
the distributions, the weights which are already filled up are gathered. In the middle part of the
distribution there are the weights which still need to be filled and the left part contains all weights
that are at least full from the beginning and yet need to be redistributed. (c) Weight of 6 is added to 5
and A5 = 6 is set. (d) Weight of 6 is added to 4 and A4 = 6 is set. (e) Weight of 6 is added to 2 and
A2 = 6 is set. (f) Weight of 3 is added to 6 and A6 = 3 is set. After this, the middle part is empty and
we are done with the redistribution.
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For drawing ωj corresponding to its original weight qj, one draws a candidate k for j
uniformly in 1, . . . , N and a uniform number u ∈ [0, 1]. If u < Pk then j = k and otherwise
j = Ak.

Appendix D. Critical Exponents for Long-Range Heisenberg Ladders
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Figure A2. Critical exponents of the Néel-ordering transition in the unfrustrated antiferromagnetic
long-range Heisenberg ladders. The panels display the exponents α (first row left), β (first row left), γ

(second row left), δ (second row right), η (third row left), ν (third row right), and z (fourth row left).
The data points ’pCUT+MC Hq’ and ’pCUT+MC H▷◁’ are from Ref. [35,353] and refer to parallel
(q) and parallel + diagonal (▷◁) interactions. The other data ’FRG 2020’ is from Ref. [244] and show
the critical exponents for the one-dimensional O(3) quantum rotor model. The blue shaded region
denotes the σ regime in which long-range mean-field criticality is expected. The black dashed lines
denote long-range mean field critical exponents.
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