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Abstract: The application of information theory to biology can be broadly split into three
areas: (i) At the level of the genome; considering the storage of information using the
genetic code. (ii) At the level of the individual animal; communication between animals
passes information from one animal to another (usually, but not always, for mutual benefit).
(iii) At the level of the population; the diversity of a population can be measured using
population entropy. This paper is concerned with the second area. We consider the evolution
of an individual's ability to obtain and process information using the ideas of evolutionary
game theory. An important part of game theory is the definition of the information available
to the participants. Such games tend to treat information as a static quantity whilst behaviour
is strategic. We consider game theoretic modelling where use of information is strategic and
can thus evolve. A simple model is developed which shows how the information acquiring
ability of animals can evolve through time. The model predicts that it is likely that there is
an optimal level of information for any particular contest, rather than more information
being inherently better. The total information required for optimal performance
corresponded to approximately the same entropy, regardless of the value of the individual
pieces of information concerned.
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1 Introduction

The classical entropy of an observation with discrete probability distribution (pi) is de�ned as

H = �
P

i pilog(pi).

This useful concept is of value in describing the information available in living systems in a variety

of contexts, and is a bedrock of classical information theory (introduced by Shannon, 1948). For

a concise discussion of the important mathematical concepts of information theory and entropy,

see Khinchin (1957).

The application of information theory, to biological problems can be broadly split into three

areas. The most common application has been at the molecular level, considering the storage of

information in long molecules, such as genetic information stored in DNA. It is of particular interest

to �nd if two sequences are related, i.e. that the pattern of residues in the sequences are similar

in some sense. The initial attempts in this area were concerned with global sequence alignments,

where all residues of the compared sequences had to be used (e.g. Needleman and Wunsch,

1970). However since distantly related proteins may only have isolated regions in common, more

recent work has considered local alignments. For an example of this type of approach, see Altschul

(1991). This paper considers how to discover local sequence alignments. In particular it focuses on

substitution matrices, discussing which matrix is best in which circumstances. What constitutes a

signi�cant alignment depends upon the model (in particular the level of mutation expected since

the time of sequence divergence).

H =
P

ij qijlog(qij=pipj)

is the relative entropy of the target and background populations. For some other examples of

the use of these ideas, see Borodovsky and Peresetsky (1994), Hannenhalli and Russell (2000) and

Kawashima et. al. (1994). Another type of application is at the level of the population. The

concept of population entropy as a measure of the diversity of the population, was introduced in

Demetrius (1992). H is the population entropy, where

H = �

R
1

0
p(x)log(p(x))dxR
1

0
p(x)xdx

and p(x) is the density of new o�spring with parents aged x.

One aim of this paper is to distinguish between two distinct population types;

Type I: the population spends most of its history with a population size 
uctuating around some

constant value.

Type II: evolution occurs by recurring periods of rapid exponential growth. According to the

model, mutation-selection drives Type I to higher entropy, Type II to a higher growth rate.

For a related idea using discrete age classes applied to a real case study, generating rather

di�erent predictions, see Smith (1998).
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Thirdly at the level of the organism, individuals gain information from other individuals either

by direct communication or indirectly through some encounter.

For instance Reznikova and Ryabko (2000) performed a series of experiments using the ant

Formica polyctena. Two basic ideas of communication underpin this work.

1) In an e�cient communication system, the more frequent a message, the shorter it should be

(l / �log(p)) - this is common to all human languages.

2) In a complicated numerical system, you need to be able to add and subtract small numbers.

Scout ants �nd aphid colonies, return to their group, and communicate the location. The group

then �nds the colony without its help. Initially messages relating to food in box n had length

proportional to n (which would be sensible if food appeared in each box, independently of all

others, since the number of the box with the �rst food item would follow a geometric distribu-

tion). As ants learnt that some boxes had food more frequently than others, their communication

changed. The authors concluded that the initial ant language seems binary; the ants can change

their numbering system to increase e�ciency; the ants seem to be able to add and subtract small

numbers.

The actual methods used by animals to communicate with each other can be complex and

varied. Holland et al. (2000) studied communication in wrens, in particular looking at how they

convey messages in an environment with a large amount of noise degradation. Signals contain

messages derived from the signalling behaviour (e.g. timing and location) or by coded signal

parameters. Songs consist of `elements' and between element pauses which together form a rhythm.

They found that rhythmicity of song is not essential, whilst actual song elements are required.

Alterations to rhythm, syntax, spectra still elicit a territorial response, although less that the

control. None are essential, but all add to the options for discrimination.

The evolution of language has been considered in terms of information theory in a series of

papers by Nowak and collaborators (Nowak and Krakauer, 1999; Nowak et al. 1999; Plotkin and

Nowak, 2000). It is assumed that communication is of bene�t to both communicating parties.

In particular they model the way that particular signals evolve to gain speci�c meanings. It is

shown in Plotkin and Nowak (2000) that if there is a chance of mistaking signals for others then

evolution leads to a given error limit, and that this limit has a natural interpretation in classical

information theory.

2 Information and Game Theory

Important aspects of animal behaviour have been well modelled using game theory. To �nd the

best strategy, the available strategies, the payo�s and the information available are required. Often

the information available to animals is surprisingly limited; this in turn reduces their strategic
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options (see below).

2.1 Some examples of animals and their information use in contests

1) Hammerstein (2000) looks at the e�ect of the limitations imposed by an animal's psychology on

its choice of behaviour. Two examples are considered to illustrate this. The desert ant Cataglyphis

has a navigation system that enables it to travel long distances and then return to its origin. It

is not possible to predict the ant's system of navigation merely by knowing the problem the ant

has to solve. Through experiments (see Wehner, 1997) it is shown that the ant is not using any

trigonometry but simpler inaccurate systems leading, on occasion, to substantial errors, which

however are correctable. The ant's navigation system looks odd, but works quite well. It has

optimised within a restricted strategy/information set.

2) The second example of Hammerstein (2000) is the desert spider Agelenopsis aperta (see

also Hammerstein and Riechert, 1988). Territorial contests between a web owner and an intruder

occur frequently. The winner takes possession of the web. What are the available spider strategies?

Simplemindedly, the options available to the spider are to �ght or to concede. In particular it

may vary the intensity and duration of any e�ort it puts into a contest before conceding if this is

insu�cient. What information do the spiders possess? They use the web to gauge the weight of

the opponent. They could also in principle compile statistics, to see how large they are compared

to the general population (contests are frequent). This would be useful e.g. if a spider is in an

equal contest it would be advisable to �ght hard if small (this is one of the few opponents you

have a chance of beating) and similarly less hard if large. The spiders do not seem to possess this

ability, and contests tend to depend upon the relative sizes of the protagonists, irrespective of their

position within the overall population. In general large spiders beat small ones and for relatively

equal spiders, the web owner wins, so that the results of contests are as might be expected,

although the durations/intensities are not optimal.

3) Bridge et al. (2000) examines what information is available to males during contests over

females in the orb-weaving spider Metellina mengel. Males engage in pre-copulatory guarding of

females, waiting on the female's web for the arrival of a 
y prior to courtship. During this time

other males may arrive. Contests occur over who will remain. Intruders appear unable to assess

female quality. The contest duration is primarily decided by the absolute size of the loser, not

the relative size of the opponents. This is theoretically consistent with individuals not being able

to discern their opponent's size (at least not very quickly). Fighting is clearly sub-optimal, due

probably to paucity of information.

As the above illustrates, in any situation, the information available a�ects the possible strate-

gies and thus the �nal outcome in any ecological situation. This has been recognised for some

time and built into evolutionary models. Maynard Smith and Parker (1976) modelled several
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situations, such as

asymmetric contests with perfect information; contests with unequal payo�s and perfect informa-

tion; contests with incomplete information; information acquired during a contest. In these and

later models, one consistent feature was that the information available is �xed.

2.2 Information as a strategic concept

Although an important feature of any game-theoretic situation, the information available to the

players is usually considered a constant, unchanging property. However, suppose that animals

could increase their information (at a cost) or reduce it to save resources. Extra information

would have to have a certain minimum value to be worth having (in the same way as you are

willing to pay the price to acquire some books, but not others). Thus natural selection can act

on the information level as well as on the playing strategies, and so the available information can

evolve in the same way that strategies do.

We consider a very simpli�ed situation, not necessarily realistic for any population, but with the

aim of demonstrating the general evolutionary principles and the kind of results that are possible

with the minimum of complication.

A contest is held between two individuals over an item of value V . The contestants have a

choice of two strategies, the classical options of Hawk (H) and Dove (D) introduced by Maynard

Smith and Price (1973). Each individual has a dominant feature which is critical for the outcome

of contests; we shall call this `size'. For convenience size is scaled between 0 and 1, so that every

animal has a size between these two extremes.

We further suppose that in any contest, if one animal plays the aggressive Hawk and the other

the passive Dove, then the Hawk player will win, otherwise the larger animal wins (in a Hawk

versus Hawk contest, the smaller loser incurs a cost C, i.e. receives a reward �C where C > V ).

Thus, in a contest between a larger animal Player 1 (P1) and a smaller one Player 2 (P2) rewards

are decided by the relative size of individuals, so that the following contest types lead to the

rewards given

P1 plays P2 plays P1 receives P2 receives

H H V �C

H D V 0

D H 0 V

D D V 0
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2.3 The use of information

Let the size of an individual be represented by its expansion in base h. We suppose that individ-

uals cannot gauge size exactly, but have information which they use to make an estimate of the

opponent's size. P1 has n pieces of information about the size of individuals (we shall say that this

individual has information n, or is an n-individual), which are the �rst n terms in the expansion,

so that it knows the other's size to n places in the expansion.

Thus if h = 2 then the expansion will be binary, e.g. 0:1101001 : : :.

If another animal has n = 3, then it will see only 0.110, and so the animal could have size anywhere

between 0.110 and 0.111.

P2 knows the �rst m places (both players know which has the greater information, but not the

extent of their (dis)advantage).

For simplicity we further suppose that in a particular population of animals, the sizes of the

individuals are uniformly distributed on (0,1).

What strategies should players choose and what rewards do they get?

2.4 The game where information is �xed

Let us suppose that m < n Thus P1 is at an informative advantage, knows this, but does not

know the extent of its advantage.

Denoting [z] as the greatest integer less than or equal to z, if the size of P1 is x and the size of

P2 is y, then we have the following possibilities:

1) [hmx] > [hmy]. Both players know that P1 is the larger, so that P1 plays H and receives V , P2

plays D and receives 0.

2) [hmx] < [hmy]. Both players know that P2 is the larger, so that P2 plays H and receives V , P1

plays D and receives 0.

3) case 1) does not occur but [hnx] > [hny]. P1 knows that it is larger, but P2 is not sure (both

players appear the same to it). Thus P1 plays H, P2 plays H with probability �.

4) case 2) does not occur but [hnx] < [hny]. P1 knows that it is smaller, but P2 is not sure (both

players again seem equal to it). P1 does not know that it is not in situation 2 (if it knew, it

may be able to `blu�'). Thus P1 plays D, P2 plays H with probability �, since 3) and 4) are

indistinguishable to it.

5) [hnx] = [hny]. Neither player is sure which is the larger (both players appear the same). Thus

P1 plays H with probability �, P2 plays H with probability �.

Assuming that the size of an animal is independent of its information level, the overall expected
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rewards are thus

E[P1] =
V

2

�
1�

1

hm

�
+

�
1

hm
�

1

hn

��
(1� �)

V

4
+
V

2

�
+

1
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�
V

2
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C

2

�
(1)

E[P2] =
V

2

�
1�

1

hm

�
+

�
1

hm
�

1

hn

��
(1� �)

V

4
+ �

V � C

2

�
+

1

hn

�
V

2
(1 + � � �) � ��

C

2

�
(2)

The payo� for P2 is maximised when � = 0. Given that this is true, the payo� to P1 is maximised

when � = 1 (thus when P2 is unsure (cases 3-5) it plays D, when P1 is unsure it plays H).

The optimal play can thus be summarised as follows;

When n > m P1 plays H when it knows it is larger or is unsure, and plays D when it knows it is

smaller.

P2 plays D when it is smaller or unsure, and plays H when larger.

The payo�s are

E[P1] = V=2 + (h�n + h
�m)V=4 (3)

E[P2] = V=2 � (h�n + h
�m)V=4: (4)

When n = m the players know that they are evenly matched in information; when they both know

that one is larger, then that player plays H receiving V , the smaller playing D and receiving 0.

When both are unsure, we have the classical Hawk-Dove game where both play H with probability

V=C.

The payo�s are

E[P1] = E[P2] = V=2 � h
�m

V
2
=(2C): (5)

2.5 Variable information

Suppose that each piece of information costs an amount K. Early information is important, later

increasingly irrelevant. If each animal could choose which value of n to pick, which would be the

`best'? Of course it is unlikely that all players have such a free choice, but mutation may cause

individuals with di�erent information levels to emerge; whether these dominate the population or

die out is then determined by natural selection.

If everyone has information n, can you do better by changing to any other information? (if the

answer is no, then n is a stable information state). In particular changing to n�1 or n+1 are the

most signi�cant alternatives, but not the only ones of interest (see later). To �nd if changing to

n�1 is better can be found by comparing the payo� to a player with information n�1 against one
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with n (E[n� 1; n]), against the payo� to an n individual against another n individual (E[n; n]),

since when almost all players are n individuals, it is how a player does against these that matter.

E[n� 1; n]� E[n; n] = K �

�
1

hn�1
+

1

hn

�
V

4
+

1

hn

V
2

2C
(6)

Thus E[n� 1; n]� E[n; n] > 0 if K > V (C(h+ 1) � 2V )=(4Chn).

Doing the same thing for the change to n+ 1 gives

E[n+ 1; n]�E[n; n] = �K +

�
1

hn+1
+

1

hn

�
V

4
+

1

hn

V
2

2C
(7)

and E[n+ 1; n]� E[n; n] > 0 if K < V (C(h+ 1) + 2hV )=(4Chn+1):

Let us represent the expected payo� to an n individual in a population comprised of a proportion

p of n individuals and 1 � p m individuals by

E[n; p(n) + (1� p)(m)]. It is assumed that opponents are met at random so that this expression

rearranges to

p(E[n; n]) + (1 � p)(E[n;m])

In general we shall say that n beats m if in any mixture of n and m animals, evolution leads

to a complete population of n animals i.e. E[n; p(n) + (1� p)(m)] > E[m; p(n) + (1� p)(m)] for

every value of p 2 [0; 1]: Similarly n loses to m if m beats n.

Suppose that in the current population there is a proportion of individuals p of information n,

and a proportion 1� p of information n + 1.

E[n; p(n) + (1� p)(n + 1)]�E[n+ 1; p(n) + (1 � p)(n + 1)] =

p(E[n; n]� E[n+ 1; n]) + (1 � p)(E[n; n + 1]�E[n+ 1; n + 1]) =

p(K �
�
1

hn
+

1

hn+1

�
V

4
�

1

hn

V
2

2C
) + (1� p)(K �

�
1

hn
+

1

hn+1

�
V

4
+

1

hn+1

V
2

2C
) =

K �

�
1

hn
+

1

hn+1

�
V

4
+

1

hn+1

V
2

2C
� p

V
2(h+ 1)

2Chn+1
(8)

which decreases with p, so that n individuals do relatively worse, the more of them that there are.

Thus this reduces to saying that n beats n + 1 if E[n + 1; n] � E[n; n] < 0, n + 1 beats n if

E[n+1; n+1]�E[n; n+1] > 0 and a mixture of the two informations will result if neither of the

above is true (solving for p when setting the above expression equal to zero gives the composition

of this mixture.

It is easy to show that if m > n then E[m + 1; n] < E[m;n] so that if E[n; n] > E[n + 1; n]

then E[n; n] > E[m;n] for all m > n.
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We know that E[n; n]� E[n� 1; n] > 0 if K < V (C(h+ 1)� 2V )=(4Chn).

Let us consider another m s.t. m < n.

0 < E[n; n]�E[m;n] =

�
1

hn
+

1

hm

�
V

4
�

V
2

2Chn
� (n �m)K

) K <
V (C(1 + h

n�m)� 2V )

4Chn(n�m)
(9)

This is true whenever E[n; n]� E[n� 1; n] > 0, except when

Cf1 + h
n�m � (n�m)(h+ 1)g < �2(n�m+ 1)V (10)

which is only true if m = n� 2, h = 2 and C < 6V (since h � 2 and C > V ).

Thus if n beats n � 1 and n + 1 then it is the uniquely best information level, except in the

above case where it must also be compared to n� 2.

n is the best information level (except when (10) holds, see below) if K > V (C(h + 1) �

2V )=(4Chn) and K < V (C(h+ 1) + 2hV )=(4Chn+1) which implies that

�
V

4CKh
(C(h+ 1) + 2hV )

�
< h

n
<

�
V

4CK
(C(h+ 1) � 2V )

�
)

1

logh
log

�
V

4CKh
(C(h+ 1) + 2hV )

�
< n

<
1

logh
log

�
V

4CK
(C(h+ 1) � 2V )

�
(11)

For the case when h = 2, E[n� 2; n] > E[n; n] i� V=C > 5=8 so that n is not the unique best

information level if this occurs, even if indicated by equation (11). Roughly, equation (11) leads

to n / 1=log(h)

Thus nlog(h) is approximately constant for all values of h. This is of interest, as the entropy

of a single piece of information is

H = �
P

i pilog(pi) = �log(1=h) = log(h)

since pi are the probabilities from a discrete uniform distribution. Thus the entropy for n pieces of

information is nlog(h). So it seems that there is a critical entropy level that the total information

must reach.

2.6 A numerical example

For example, setting C = 10V;K = 0:01V gives

0:91629 + log(12 + 10=h) < nlog(h) < 0:91629 + log(8 + 10h) (12)
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This yields the following best values of n

best n 1 1/2 2 3 4 5 6

range of h 31-1 26-30 6-25 4,5 3 - 2

The value of p, the proportion of 1 individuals for the cases h = 26 � 30 can be found by

rearranging equation (8). This yields

p =
0:2h2 � 5h� 4

h+ 1
(13)

giving

h 26 27 28 29 30

p 0.044 0.243 0.441 0.640 0.839

3 Discussion

A simple model has been developed which shows how the information acquiring ability of animals

can evolve through time. Furthermore the model predicts that it is likely that there is an optimal

level of information for any particular contest, rather than more information being inherently bet-

ter. The value of the extra information in the game diminished as more was obtained, whereas the

cost did not. This is reasonable for con
ict situations in general. An animal's �ghting ability can

usually be assessed fairly accurately by a small number of important measures, other measures

adding relatively little to this. Mixtures of information levels were possible, but for our example

at least, these would not occur frequently. The number of pieces of information required depended

upon the value of the information; in our game the larger h the more valuable the information,

in the sense that the same number of pieces of information identi�ed an animal's size to within a

smaller range of possibilities the larger h was. The entropy H of each piece of information also in-

creased with h (H=log(h)). The total information required for optimal performance corresponded

to approximately the same entropy, regardless of the value of the individual pieces of information

concerned.

There was an unusual situation for a restricted set of parameters in the game, which meant

that in some circumstances individuals with information n � 2 could invaded a population of

individuals with information n, but that individuals with information n� 1 could not. This could

potentially lead to three (or more) information levels coexisting in a stable mixture. Whether this

would be important depends upon the nature of the evolution process. If mutations occur so that

new individuals are at most one information level away from the current dominant type (so that

possible changes occur as small steps, not large leaps) then if n � 1 cannot invade n, then the

situation of n� 2 individuals competing in a population of n individuals would never occur.

The model that has been considered here is very idealised, and clearly will not be applicable

for real populations, but was rather designed to illustrate the possibilities. It would be of great
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interest to examine real populations to see if the behaviour of this type is exhibited. In particular

it would be of use to compare radically di�erent populations with di�erent options and rewards

to see if the information levels predicted by this type of model are realistic. Of course for genuine

populations, a more sophisticated and specialised version of the model would be required.
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