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1 Introduction

The quantization of matter fields in curved space-times is, as widely believed, a preliminary step

towards a more complete theory of quantum gravity [1]. In this framework the most important

result is the thermal evaporation of black holes, whose temperature T is related to surface gravity

κ by the relation κ ∼ T ∼ (GM)−1, where M is the mass of the black hole [2]. Such a result has

been obtained also for Rindler space-time [3, 4, 5, 6, 7], corresponding to an accelerating observer,

with the difference that the surface gravity is replaced by the acceleration a of the observers

(κ → a).

In a recent paper [8], we have shown that the quantization of a complex scalar field in a curved

manifold can be carried out in the framework of quantum algebras. In this new setting, one can

study the thermal properties of quantum field theory in curved space-times. In particular, as

shown in [8], one can derive the functional relation between the entropy of black holes and the

area of the event horizon. To be more specific, we have shown that a suitable deformation of the

algebra hk(1) of the annihilation and creation operators of the scalar fields, initially quantized

in Minkowski space, induces the canonical quantization of the same field in a static gravitational

background. The basic result arising from our approach is that the parameter of deformation q is

related to the physical parameters characterizing the gravitational field, hence the event horizon

(for example, the acceleration in the case of Rindler space-time, or the Schwarzschild radius for

the Schwarzschild geometry). As a consequence, q is related to the surface gravity which is

proportional to the inverse of the event horizon. This occurs in geometries with a single event

horizon.

The aim of this paper is to present some applications of the formalism developed in [8]. Namely,

we shall emphasize the robustness against interaction with the environment of the entanglement

of the quantum vacuum, due to the non-unitarity of the mapping between the vacua in the flat

and curved frames of reference. Furthermore, we shall derive the entropy of black holes for the

Schwarzschild, de Sitter, and Rindler geometries, characterized by having a unique event horizon.

The paper is organized as follows. In Section 2 we recall the main features of the formalism

proposed in [8]. Section 3 is devoted to the analysis of the vacuum properties for the Minkwoskian

and the generic observers. This analysis shows that the entangled structure of the vacuum is robust

against interaction with the environment in the infinite volume limit. Besides, we calculate the

black hole entropy for static and stationary geometries with a unique event horizon. Conclusions

are drawn in Section 4. Some further thermal features are commented in the Appendix.
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2 Deformed Algebra, Thermal Operators and Entropy

A complex massive scalar field φ(x), quantized in Minkowski space-time, can be expanded in terms

of the complete set of modes {Uk(x)},

φ(x) =
∑

k

[akUk(x) + ā†kU
∗
k(x)] , (1)

where k = (k1, ~k), ~k = (k2, k3). The Hamiltonian operator is then given by

HM =
∑

k

ωk (a†kak + ā†kāk) , (2)

where ωk =
√

k2
1 + |~k|2 + m2, and ak, a

†
k (āk, ā

†
k) are the annihilation and creation operators,

respectively, for particles (antiparticles). They act on the Fock space H, whose Minkowski vacuum

is defined by ak|0M > = āk|0M > = 0, ∀k. The operators entering the standard expansion (1)

satisfy the usual canonical commutation relations (CCRs) [ak, a
†
k′ ] = δkk′ and so on. Algebraically

speaking, the CCRs identify an infinite number of Weyl-Heisenberg algebras hk(1), one for each

momentum k. Within these algebras we want to use the operation of co-product, which will

enable us to deal with the partition of the Minkowski space-time into two sectors (±). This is

the preliminary step towards the introduction of the unique event horizon. The coproduct of the

operators ak and āk is defined as

∆ak = ak ⊗ I + I ⊗ ak ≡ a
(+)
k + a

(−)
k , ∆āk = āk ⊗ I + I ⊗ āk ≡ ā

(+)
k + ā

(−)
k . (3)

The operators a
(σ)
k and ā

(σ)
k , σ = ±, satisfy the CCRs

[a
(σ)
k , a

(σ′)
k′ ] = 0 , [a

(σ)
k , a

(σ′) †
k′ ] = δσσ′δkk′ , σ , σ′ = ± , ∀k , k′ , (4)

and similarly for ā
(σ)
k . They act on the full Hilbert space, i.e. H ⊗ H, where the ground state

(vacuum) is defined as |0M > ⊗|0M >. For brevity we shall indicate |0M > ⊗|0M > with |0M >,

and H⊗H with H . The q-deformation of the coproduct (3) is

∆qak = a
(+)
k q

1
2 + a

(−)
k q−

1
2 , ∆qāk = ā

(+)
k q

1
2 + ā

(−)
k q−

1
2 , (5)

where q = q(p). In what follows we shall consider the case of real deformation parameter q. More

generally, q could depend on a momentum p which may or may not coincide with k. Furthermore,

q may depend also on other parameters: q = q(phys,p) (where “phys” stands for the proper

physical quantity [8, 9]). We also require that that q(p) = q(p̃), (here p ≡ (Ω, ~p), p̃ ≡ (Ω,−~p),

Ω > 0, and ~p = (k2, k3)), i.e. q-deformation plays the same role on particles and antiparticles.

Furthermore we shall make use of the standard relation q(p) = e2ε(p).
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As explained in Ref. [8], by using the deformed coproducts (5), one can construct new operators

acting in an Hilbert space with a non-flat (non-Minkowskian) space-time as a support. To preserve

the canonical algebra we use a complete orthonormal set of functions {F (k,p)} to introduce the

smeared operators

d(σ)
p ≡ ∑

k

F (k,p) a
(σ)
k , d̄(σ)

p ≡ ∑

k

F (k,p) ā
(σ)
k , (6)

The q-deformed coproduct of d and d̄ is given by [8]

∑

k

F (k,p)∆q(p)ak ≡ Dq(p) ≡ D(+)
q (p) + D(−)

q (p) ,

∑

k

F (k,p)∆q(p)āk ≡ D̄q(p) ≡ D̄(+)
q (p) + D̄(−)

q (p) , (7)

respectively, where the following short-hand notation has been used

D(σ)
q (p) ≡ qσ 1

2 (p) d(σ)
p , D̄(σ)

q (p) ≡ qσ 1
2 (p) d̄(σ)

p . (8)

By using (8) we can simply take suitable linear combinations to obtain

d(σ)
p (ε) ≡ 1

2
(D(σ)

q (p) + D
(σ)
q−1(p)) +

1

2
(D̄

(−σ)†
q−1 (p̃)− D̄(−σ)†

q (p̃))

= d(σ)
p cosh ε(p) + d̄

(−σ)†
p̃ sinh ε(p)

= G(ε)d(σ)
p G−1(ε) , (9)

and

d̄
(−σ)†
p̃ (ε) ≡ 1

2
(D(σ)

q (p)−D
(σ)
q−1(p)) +

1

2
(D̄

(−σ)†
q−1 (p̃) + D̄(−σ)†

q (p̃))

= d(σ)
p sinh ε(p) + d̄

(−σ)†
p̃ cosh ε(p)

= G(ε)d̄(−σ) †
p G−1(ε) , (10)

Here G(ε) ≡ exp g(ε), where

g(ε) =
∑
p

ε(p)gp =
∑
p

∑
σ

ε(p)[d(σ)
p d̄

(−σ)
p̃ − d(σ) †

p d̄
(−σ) †
p̃ ] . (11)

G(ε) is the generator of the Bogoliubov transformations (9) and is a unitary operator at finite

volume: G−1(ε) = G(−ε) = G†(ε).
Eqs. (9) and (10) relate vectors of H to vectors of another Hilbert space Hε labelled by ε. The

relation between these spaces is established by the generator G(ε): H → Hε. For the vacuum

state one has

|0(ε) > = G(ε) |0M > , (12)
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where |0(ε) > is the vacuum state of the Hilbert space Hε annihilated by the new operators(
d(σ)
p (ε), d̄

(−σ)
p̃ (ε)

)
. Note that even though ε = ε(phys,p), the vacuum |0(ε) > does not depend on

p, but only on the physical parameter, as follows from Eq. (11). Furthermore |0(ε) > appears to

be a SU(1, 1) generalized coherent state [10] of Cooper-like pairs (Bose-Einstein condensate). Of

course similar considerations hold also for the state |0M > by reversing G(ε) in Eq. (20). One

can also see that the Hilbert spaces H, Hε, and Hε′ , ∀ε 6= ε′, become unitarily inequivalent in the

infinite volume limit (V -limit).

We now observe that the physical meaning of having two distinct momenta k and p for states in

the Hilbert spaces H and Hε, respectively, is the occurrence of two different reference frames: the

M -frame (Minkowski) and the new frame, which we shall call Mε-frame. To explore the physics in

the Mε–frame, one has to construct a diagonal operator which plays the role of the Hamiltonian.

To this end we exploit the deformation of the algebra above introduced (see Eq. (5)). One starts

by considering the (1, 0)–component of the generator of the Lorentz transformations defined as

[11]

M10 = −i
∑

k

[
a†

k1
~k

√
ωk

(
∂

∂k1

√
ωk ak1

~k

)
+ (a → ā)

]
. (13)

By deforming the coproduct of M10, one can write the Hamiltonian as [8]

Hε =
∑
σ

∑
p

σΩ
[
d(σ)†
p (ε)d(σ)

p (ε) + d̄
(σ)
p̃ (ε)d̄

(σ)†
p̃ (ε)

]

= H(+)(ε)−H(−)(ε) , (14)

where the operators d(σ)
p (ε) and d̄

(σ)
p̃ (ε) are given in (9). Notice that Hε acts on states defined in

the new Hilbert space Hε, and has as space–time the new frame Mε.

Turning now our attention to |0M >, from Eq. (9) one gets that the number of modes of the

type d(σ)
p (ε) in |0M > is given by

N (σ)
d(ε) ≡< 0M |N (σ)

d(ε)|0M >= sinh2 ε(p) , σ = ± , (15)

where N
(σ)
d(ε) = d(σ)†

p (ε)d(σ)
p (ε). An analogous formula holds for the modes of type d̄

(σ)
p̃ (ε). Eq. (15)

makes clear the condensate structure of |0M >. While one can work indifferently in one of the two

sectors, σ = + or σ = −, we shall use σ = +.

The entropy S ≡ S(+)(ε) of the Minkowskian vacuum as felt by the observer in the Mε-frame,

is given by [8]

S(+)(ε) = −∑
p

[
N

(+)
d(ε) lnN (+)

d(ε) −
(
1 + N

(+)

d̄(ε)

)
ln

(
1 +N (+)

d̄(ε)

)
+ (d → d̄)

]
. (16)

The entropy operator (16) agrees with the definition of von Neumann entropy S = −N lnN ,

where N is the number of microscopic states. For the reader convenience, in the Appendix we shall
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comment on further thermal properties. In particular we observe that, under extremal conditions,

the number of particles N (+)
d(ε) in the Mε-frame computed in the Minkowski vacuum |0M > gives

a Bose-Einstein distribution. In the regime of thermal equilibrium, the induced partition of the

Mε space–time into two sectors, σ = + and σ = −, indicates the emergence of an event horizon,

namely the emergence of a gravitational field. All that is encoded in the condensate structure of

|OM >. As can be seen from Eqs. (4) and (5) in the Appendix, a constant temperature T = β−1

implies that the Mε-frame is static and time-independent.

We remark that one of the advantages of the approach outlined above relies on the fact that the

CCRs in the Mε–frame have not to be imposed by hands, as usually done in QFT in curved space–

time, but they are naturally recovered via q-deformation [8]. The physical parameter characterizing

the background geometry is related to the q-deformation parameter.

3 Applications to Schwarzschild, de Sitter and Rindler Space–Times

Our aim now is to apply the previous results to some specific geometries. First we derive the

functional relation between the event horizon and the surface gravity in geometries with a unique

event horizon. Let us consider a space-time with spherical symmetry whose line element is of the

form

ds2 = g00dt2 − grrdr2 − r2(dθ2 + sin2 θdϕ2) . (17)

The surface gravity κ is defined as [12]

κ = −1

2

(√ −1

g00grr

dg00

dr

)

rh

, (18)

where rh is the value for which g00(rh) = 0. Let us consider the usual case in which the components

of the background geometry are such that g00 = g−1
rr and that g00 has the form

g00(r) = α− γrn , (19)

where n can be positive or negative, and α and γ are numerical factors. From g00(r) = 0 it follows

rh = n

√
α/γ. With a simple calculation, one immediately derives that the surface gravity is

κ =
nα

2rh

∼ r−1
h .

Consequences of this result will be studied in the following Subsections in the framework of

Schwarzschild, de Sitter and Rindler geometries. Nonetheless, before moving to those applications,

we want to present other important results of our treatment of the vacuum entanglement. Note

that these features are common to all the above mentioned geometries.
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3.1 Vacuum Structure and Entanglement

As we have noted, the relation between the spaces H and Hε is established by the generator G(ε):

H → Hε, or by its inverse G−1(ε): Hε → H. Thus the Minkowskian vacuum is expressed in terms

of the generic ε-vacuum as follows

|0M〉 = G−1(ε)|0(ε)〉 . (20)

This relation holds only at finite degrees of freedom, i.e. finite volume. Note that G(ε) is an

element of2 SU(1, 1) × SU(1, 1). Of course the same structure arises by writing G−1(ε) in terms

of the d(ε)s, all one has to do is to replace d → d(ε) in the Eq. (11). Thus by using the Gaussian

decomposition, the Minkowski vacuum can be expressed as a SU(1, 1) × SU(1, 1) generalized

coherent state [10] of Cooper-like pairs

|0M〉 =
1

Z
exp

[∑
σ

∑
p

tanh ε(p)d(σ)†
p (ε)d̄

(−σ)†
p̃ (ε)

]
|0(ε)〉 , (21)

where Z =
∏

p cosh2 ε(p).

In the continuum limit in the space of momenta, i.e. in the infinite-volume limit, the number

of degrees of freedom becomes uncountable infinite, hence we have

〈0(ε)|0M〉 → 0 as V →∞, ∀ε (22)

〈0(ε)|0(ε′)〉 → 0 as V →∞, ∀ε, ε′, ε 6= ε′ , (23)

where V is the volume of the whole (D − 1)-dimensional space. This means that the Hilbert

spaces H and Hε become unitarily inequivalent in the continuum limit. In this limit ε, related to

the deformation parameter by the relation q = e2ε, labels the set {Hε,∀ε} of the infinitely many

unitarily inequivalent representations of the CCRs.

Let us now discuss the entanglement of the vacuum |0M〉 in (21), that we rewrite in the following

convenient form

|0M〉 =
1

Z

[
|0(ε)〉+

∑
p

tanh ε(p)
(
|1(+)

p , 0̄〉 ⊗ |0, 1̄(−)
p̃ 〉+ |0, 1̄(+)

p̃ 〉 ⊗ |1(−)
p , 0̄〉

)
+ . . .

]
, (24)

where, we denote by |n(σ)
p , m̄

(σ)
p̃ 〉 a state of n particles and m antiparticles in whichever sector

(σ). Note that for the generic nth term, the state |n(σ)
p , 0̄〉 ≡ |1(σ)

p1
, . . . , 1(σ)

pn
, 0̄〉, and similarly for

antiparticles.

2To be more precise, for each mode, we have the direct product of two two-boson realizations of SU(1, 1):
[T i

+, T i
−] = −2T i

0, [T i
0, T

i
±] = ±T i

±, i = 1, 2, where [T 1, T 2] = 0, for all the generators T . This is seen by defining
T 1

+ = d(+)†d̄(−)†, T 1
− = d(+)d̄(−), T 1

0 = 1
2 (d(+)†d(+) + d̄(−)†d̄(−)), while T 2

+, T 2
−, T 2

0 are obtained by replacing
(+) ↔ (−).
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By introducing a well known notation, ↑ for a particle, and ↓ for an antiparticle, the two-particle

state in (24) can be written as

| ↑(+)〉 ⊗ | ↓(−)〉+ | ↓(+)〉 ⊗ | ↑(−)〉 , (25)

which is an entangled state of particle and antiparticle living in the two causally disconnected

regions (±). The generic nth term in (24) shares exactly the same property as the two-particle

state, but this time the ↑ describes a set of n particles, and ↓ a set of n anti-particles. The

mechanism of the entanglement, dynamically induced by gravitational effects, takes place at all

orders in the expansion, always by grouping particles and antiparticles into two sets. Thus the

whole vacuum |0M〉 is an infinite superposition of entangled states3

|0M〉 =
+∞∑

n=0

√
Wn|Entangled〉n , (26)

where

Wn =
∏
p

sinh2np ε(p)

cosh2(np+1) ε(p)
, (27)

with

0 < Wn < 1 and
+∞∑

n=0

Wn = 1 . (28)

The coefficients
√

Wn of the expansion in Eq. (24) appear also in the discussion about the entropy

of the black hole on which we shall concentrate in the following Sections. Details of calculations

can be found in Appendix A.

Of course, the probability of having entanglement of two sets of n particles and n antiparticles

is Wn. At finite volume, being Wn a decreasing monotonic function of n, the entanglement is

suppressed for large n. It appears then, that only a finite number of entangled terms in the

expansion (26) is relevant. Nonetheless this is only true at finite volume (the quantum mechanical

limit), while the interesting case occurs in the infinite volume limit, which one has to perform in

a quantum field theoretical setting.

The entanglement is generated by G(ε), where the scalar field modes in one sector (σ) are

coupled to the modes in the other sector (−σ) via the parameter ε(p). We remark that ε(p)

actually describes the ”environment”, namely ε(p) takes into account the effects of the background

gravitational field [8]. Surprisingly in the present formulation the origin of the entanglement

is the environment, in contrast with the usual quantum mechanical view, which attributes to

the environment the loss of the entanglement. In the present treatment such an origin for the

entanglement makes it quite robust.

3A similar structure also arises in the temperature-dependent vacuum of Thermo-Field Dynamics [13].
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One further reason for the robustness is that this entanglement is realized in the limit to the

infinite volume once and for all, since then there is no unitary evolution to disentangle the vacuum:

at infinite volume one cannot ”unknot the knots”. Such a non-unitarity is only realized when all

the terms in the series (26) are summed up, which indeed happens in the V → ∞ limit. In a

future work we will comment with more details on the specific topic of the entanglement.

3.2 The Schwarzschild Geometry

We shall start with the Schwarzschild geometry. In polar coordinates, the line element of this

space–time is (in natural units)

ds2 =
(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2) , (29)

α = 1, γ = 2GM and n = −1 in (19). The event horizon is given by rh = 2GM . According

to our discussion (see Section II and the Appendix), the parameter β is related to the surface

gravity, so that we can impose the identification β ∼ rh, or T ∼ (GM)−1, which is the Bekenstein-

Hawking temperature defined in the Introduction. The q-deformation parameter is related to

β (see Appendix) hence to the Schwarzschild radius rS = 2GM ≡ rh, which characterizes the

geometrical structure underlying the Mε-frame.

Let us now analyze the entropy operator. At the origin of the entropy (16) there are the vacuum

fluctuations of quantum states, which have a thermal character for different observers related to

the Minkowski observer through a diffeomorphism. In a curved space-time the momentum concept

can be defined only locally. Keeping this in mind, it is convenient to make calculations in the

continuum limit,
∑
p

→ V

(2π)3

∫
dp =

V

(2π)3

∫ ∞

0
dΩ

∫
d2k .

We shall use the relation

d(+) †
p (ε)|0(ε) >= b(+)(~p)|p, ε > ,

where b(+)(~p) is a wave–packet (
∫
|b(+)(~p)|2d2p < ∞), similarly for d̄

(+) †
p̃ (ε).

The expectation value on the vacuum |0M > of the entropy operator defined in Eq. (16), gives

the entropy density, s(+)(ε) ≡< S(+)(ε) >M /V , hence

s(+)(ε) ∼ −
∫ ∞

0
dΩ sinh2 ε(Ω) ln sinh2 ε(Ω) +

∫ ∞

0
dΩ cosh2 ε(Ω) ln cosh2 ε(Ω) , (30)

up to a factor of dimensions [lenght]−2. The integration in Eq. (30), see also Eq. (4) in the

Appendix, yields [14]

s(+)(ε) ∼ β−1 ∼ r−1
h . (31)
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From Eq. (31) immediately follows that the entropy < S(+)(ε) >M of a spherical shell of radius δ

is4, again up to a factor of dimensions [lenght]−2,

< S(+)(ε) >M∼ r3
h s(+)(ε) ∼ r2

h ∼ (GM)2 ∼ A , (32)

namely the entropy is proportional to the horizon area A of the black holes [2, 15].

3.3 The de-Sitter Space–Time

Another interesting static geometry is the de Sitter one characterized by the line element [16]

ds2 =

(
1− r2

R2

)
dt2 −

(
1− r2

R2

)−1

dr2 − r2(dθ2 + sin2 θdϕ2) , (33)

which clearly exhibits a horizon at rh = R. Here R is the radius of the four-dimensional hyper-

boloid

(x0)2 − (x1)2 − (x2)2 − (x3)2 − (x4)2 = −R2

embedded in a five-dimensional flat space-time. The comparison with (19) gives α = 1, γ = 1/R2

and n = 2. By using (18) it follows that κ = R−1 = r−1
h . For the above argument, β ∼ R. Thus

the entropy s(+) turns out to be

s(+) ∼ β−1 ∼ R−1 ,

and the total entropy is given by (see (30)-(32))

< S(+)(ε) >M∼ R3 s(+) ∼ R2 ∼ A

and again the proportionality between entropy and area of the horizon is recovered.

3.4 The Rindler Geometry

As further example, we shall now analyze a geometry in which again only one horizon is present

but g00 6= g−1
rr . This is the case of Rindler space-time. It is described by the line element (see for

example [1])

ds2 = e2aξ(dτ 2 − dξ2)− dy2 − dz2 , (34)

4The proper volume V of the shell is determined by the relation

V =
∫ √

grrgθθgϕϕ drdθdϕ ∼ 4πr3
h

∫ 1+h

1

x5/2

√
x− 1

dx ∼ r3
h

where h = δ/rh ¿ 1.
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which reduces to Minkowski space-time letting

t =
eaξ

a
sinh aτ , x =

eaξ

a
cosh aτ .

This metric covers a portion of Minkowski space-time with x > |t|. The boundary planes are

determine by x± t = 0 [17].

From Eq. (18) we get κ = a = 1/β. The volume V is given by

V =
∫

e2aξ dξdyRdzR = Aa−1 ,

where A =
∫

dyRdzR is the area of the surface of constant x and it has been evaluated at ξ = 0.

Following the same calculations as for the Schwarzschild case, one infers that the entropy density

turns out to be

s(+) ∼ β−1 ∼ a

so that the entropy is

< S(+)(ε) >M∼ Aa−1s(+) ∼ A ,

which agrees with the result of Ref. [18].

It is worth noting that in the case of Rindler space-time, results are formally equivalent to the

Schwarzschild geometry since the surface gravity of the black holes is the gravitational acceleration

at radius r measured at the infinity.

4 Conclusions

In this paper we exploited a model developed in a previous paper [8], where it was shown how the

q-deformation of the canonical algebra of a complex scalar field quantized in the Minkowski space–

time reproduces some of the typical structures of a quantized field in a space–time with a unique

horizon. The deformation parameter q depends on physical quantities related to the geometrical

properties characterizing the background. The parameter q(phys)→ 1, as the physical parameters

vanish, and the curved space-time reduces to a locally flat space-time.

We are then led to conclude that: i) quantum deformations can be described in terms of

gravitational field effects; ii) the origin of the vacuum entanglement is the environment (contrarily

to the common view which attributes to the environment the loss of the entanglement); iii) this

entanglement is realized in the limit to the infinite volume once and for all, since then there is no

unitary evolution to disentangle the vacuum. For the last two reasons the entanglement in this

context is quite robust.

On the other hand, we have also derived the relationship between the entropy and the area of

event horizons for Schwarzschild, de Sitter and Rindler space-times. The results obtained here, as
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well as in [8], hold for geometries in which the horizon separates the space-time in two regions. It

will be certainly interesting to extend our analysis to the case of geometries with more than one

horizon, where the space-time is made of more than two regions. For instance, in the Kerr and

Reissner-Nordstrom geometries one has two horizons, r+ and r−, to which correspond two distinct

surfaces gravity, k+ and k−, as well as two distinct temperatures, T+ and T− (k± ∼ T±).

The key point in handling such geometries in our approach is to find a suitable deformation of

the co-product. This implies a more careful analysis in deriving, from the deformed algebra, the

Bogoliubov transformations (9) that are at the core of the thermal properties inferred in [8]. This

work is currently under investigation, as well as the extension to the fermionic fields.
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Appendix: Thermal Properties and Free Energy

The generator of the Bogoliubov transformations g(ε), in Eq. (11), is one of the generators of

SU(1, 1), as can be easily seen by Eq. (9). Thus one can invert Eq. (20), and use the Gaussian

decomposition for SU(1, 1) (see, for instance, Ref.[10]), to express the Minkowski vacuum as

|0M >=
1

Z
exp

[∑
σ

∑
p

tanh ε(p)d(σ)†
p (ε)d̄

(−σ)†
p̃ (ε)

]
|0(ε) > , (1)

where Z =
∏

p cosh2 ε(p). Moreover, < 0(ε)|0(ε) >= 1,∀ε, and in the infinite-volume limit, we

have

< 0(ε)|0M >→ 0 , < 0(ε)|0(ε′) >→ 0 as V →∞, ∀ε, ε′, ε 6= ε′ , (2)

i.e. the Hilbert spaces H, Hε and Hε′ , ∀ε 6= ε′, become unitarily inequivalent in the infinite volume

limit (V -limit).

By knowing the Hamiltonian and the entropy, Eqs. (14) and (16) respectively, one can define

the free-energy as [19, 13, 20]

F (+)(ε) ≡< 0M |H(+)(ε)− 1

β
S(+)(ε)|0M > , (3)

where β = T−1. Looking for values of ε(p) making F (+)(ε) stationary, one obtains

βΩ = − ln tanh2 ε(p) ⇔ sinh2 ε(p) =
1

eβΩ − 1
, (4)
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from which, by using Eq. (15), follows that

N (+)
d(ε) =

1

eβΩ − 1
, (5)

and similarly for N (+)

d̄(ε)
. We stress here that Eq. (5) is a direct consequence of the interplay between

the doubling (d(+)(ε) and d(−)(ε), and similarly for the antiparticles) built in the coproduct, and

the deformation of the latter.

Summarizing [8]: i) β is related to the event horizon, namely to the surface gravity; ii) being

β constant in time, the Mε frame is static and time-independent, in agreement with the fact that

we deal with systems at thermal equilibrium; iii) the gravitational field itself vanishes as the

deformation parameter ε → 0.



Entropy 2002, 4 181

References

[1] N.D. Birrel and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University

Press, Cambridge, 1982.

[2] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975).

[3] P.C.W. Davies, J. of Phys. A8, 609 (1975).

[4] W.G. Unruh, Phys. Rev. D14, 870 (1976).

[5] S. Takagi, Progress of Theor. Phys. Suppl. 88 (1986).

[6] R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics,

University of Chicago Press, 1994.

[7] S.A. Fulling and S.N.M. Ruijsenaars, Phys. Rep. 152, 137 (1987), and references therein.

[8] A. Iorio, G. Lambiase, G. Vitiello, Ann. Phys. 294, 234 (2001).

[9] S. De Martino, S. De Siena, and G. Vitiello, Int. J. Mod. Phys. B10, 1615 (1996);

E. Celeghini, S. De Martino, S. De Siena, A. Iorio, M. Rasetti and G. Vitiello, Phys. Lett.

A244, 455 (1998).

[10] A. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin, Hei-

delberg, 1986.

[11] C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw–Hill, 1980.

[12] J. Jing, Il Nuovo Comento 113B, 1075 (1998).

[13] H. Umezawa, H. Matsumoto, M. Tachiki, Thermo Field Dynamics and Condensed States,

North Holland, 1982.

[14] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Fifth Edition,

Academic Press, San Diego, CA, 1994.

[15] J.D. Bekenstein, Phys. Rev. D9, 3292 (1974).

R.M.Wald, in Black Holes and Relativistic Stars, Ed. R.M. Wald, University of Chicago

Press, 1999.

P. Mitra, Entropy of Extremal Black Holes, hep-th/9704201.

[16] D. Polarski, Phys. Rev. D41, 442 (1990).



Entropy 2002, 4 182

[17] W. Rindler, Essential Relativity, Springer, Berlin, 1977.

[18] R. Laflamme, Phys. Lett. B196, 449 (1987).

[19] Y. Takahashi and H. Umezawa, Int. J. Mod. Phys. B10, 1755 (1996) (reprinted from Collect.

Phenomen. 2, 55 (1975)).

[20] E. Celeghini, M. Rasetti, and G. Vitiello, Ann. Phys. 215, 156 (1992).


