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Abstract 

 
In the present study, heat transfer and entropy analysis for flow through a pipe system is 
considered. The Reynolds number and the pipe wall temperature effects on entropy distribution 
and total entropy generation in the pipe are investigated. Numerical scheme employing a control 
volume approach is introduced when solving the governing equations. Steel is selected as pipe 
material, while water is used as fluid. It is found that increasing pipe wall temperature and 
Reynolds number increases the entropy production rate, in which case, entropy generation due to 
heat transfer dominates over that corresponding to fluid friction. 
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Introduction 
 
 Flow through pipes finds wide applications in industry. The flow and heat transfer 
characteristics can be further improved through studying irreversibilities associated in the flow 
system. The flow through pipes in thermal environment suffers from frictional and heat transfer 
losses; in which case, friction reduces the pressure; while heat transfer lowers the thermal 
efficiency of the piping system. 
 
 From the industrial application point of view, flow through piping system is turbulent 
which requires appropriate modeling to predict the flow properties. Considerably research 
studies were carried out to investigate the flow and heat transfer characteristics of pipe flow. 
Numerical simulation of transitional flow and heat transfer in smooth pipe was carried out by 
Huiren and Songling [1]. They indicated that in the fully developed region, flow and heat 
transfer were not affected by inlet turbulence intensities, and the agreement between the 
predictions and data for the friction coefficient was good. The behavior of friction and heat 
transfer coefficients of water flowing turbulently in a relatively long pipe was investigated by 
Choi and Cho [2]. They proposed a new turbulent heat transfer correlation for the local Nusselt 
number. Pressure drop and heat transfer in turbulent duct flow were studied by Ghariban et al [3] 
using a two parameter variational method. They showed that the analysis lead to development of 
a Green’s function; which was useful in solving a variety of conjugate heat transfer problems. An  
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experimental study of turbulent water flow through abrupt contractions was carried out by Bullen 
et al [4]. They showed that the pressure loss coefficient was Reynolds number dependent, which 
increased with decreasing Reynolds number. Heat transfer in turbulent flow was investigated by 
Thakre and Joshi [5]. They introduced different versions of low Reynolds number k-ε turbulence 
models. They indicated that the k-ε models performed relatively better than the Reynolds stress 
models for predicting the mean axial temperature and the Nusselt number. The extensive study 
for turbulent pipe and channel flows was out by Wosnik et al [6]. They indicated that for pipe 
and channel flows the influence of boundary layer was important; however, the Reynolds 
number had less influence on the frictional losses as Reynolds number increased further.  

 
Irreversibility associated with pressure drop and heat transfer gives insight into the 

energy destructed in the thermal systems. Considerable research studies were carried out to 
investigate the entropy generation in the flow and thermal systems. Bejan [7] applied second law 
analysis to the thermal energy storage system. His approach was based on minimizing the 
destruction of thermodynamic availability as apposed to maximizing the total amount of thermal 
energy storage. The irreversible extension of the Carnot cycle of maximum mechanical work 
delivered from a system of finite resources was investigated by Sieniutycz [8]. He showed that 
bounds of the classical availability should be replaced by stronger bounds for finite time process. 
Demirel and Sandler [9] studied linear-nonequilibrium thermodynamic model for coupled heat 
and mass transfer process. They presented the phenomenological equations with resistance 
coefficients, which were capable of reflecting the extend of the interactions between heat and 
mass flows. Entropy generation during laser heating process was investigated by Yilbas [10]. He 
indicated that the entropy generation number was influenced by the laser pulse length. Entropy 
generation in pipe flow with internal resistance was investigated by Yilbas et al [11]. They 
showed that entropy generation due to heat transfer dominates over its counterpart corresponding 
to fluid friction.  
 
 Since the entropy analysis provides insight into the irreversibility associated in a thermal 
system, the present study in conducted to investigate the entropy generation in the pipe flow. 
Moreover, in a previous study [12], the Reynolds number was kept constant as well as pipe wall 
heating flux was fixed. Consequently, investigation into influence of the Reynolds number and 
pipe wall temperature on the entropy generation is necessary. In the analysis, different pipe wall 
temperatures and flow Reynolds numbers are considered to examine comprehensively the 
affecting parameters for the entropy generation. 
 
Mathematical Modeling 
 

The flow situation in the present study is involved with an incompressible flow through a 
pipe, which is externally heated at different temperatures. The pipe is shown schematically in 
Figure 1. The flow field is assumed to be axisymmetric and a uniform outer wall temperature is 
assumed along the pipe length. 
 

The equations governing the flow field are simplified after the consideration of 
Boussinesque approximations, in which case k-ε turbulence model can be used to account for the 
turbulence characteristics. In cylindrical polar coordinates the conservation equations are written 
as: 
 
Continuity: 
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where  Pr and Prt are laminar and turbulent Prandtl numbers respectively. 
 

 In order to determine the turbulent viscosity and the Prandtl number, the k-ε turbulence 
model is used. The constitutive equations for the turbulent viscosity are as follows: 
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where k and ε are the turbulent kinetic energy generation and the dissipation variables 
respectively. The transport equation for k is: 
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The transport equation for ε is:   
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The generation of turbulence kinetic energy, ε and its dissipation at the inner wall of the 

pipe (r = ri) is zero. The Prandtl numbers in transport equations of kinetic energy generation and 
dissipation are Prk and Prε, respectively. The Prandtl number varies with Reynolds number [13]. 
The values in Table 1 are employed during the simulations, since each simulation is carried out 
for a fixed Reynolds number. 
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 In order to minimize computer storage and run times, the dependent variables at the walls 
were linked to those at the first grid from the wall by equations, which are consistent with the 
logarithmic law of the wall. Consequently, the resultant velocity parallel to the wall in question 
and at a distance y1 (where y+≤30) from it corresponding to the first grid node was assumed to be 
represented by the law of the wall equations [14], i.e.: 
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where,  κ is a universal von-Karman constant and e is a universal turbulence parameters and their 
values are κ = 0.417 and e = 9.37, from which the wall shear stresses were obtained in solving 
the momentum equations.  The constants used in the transport equations are [14]: 

 
 
 
 

 
A radial step length of approximately two viscous sub-layer thickness (y+ = 5), where y+ = 

y [(τw/ρ) 1/2/(µ/ρ)] is employed. In the axial and radial directions, the grid contains 64×300 nodes 
in the fluid region and 64×100 nodes in the solid region, employed to obtain the grid independent 
solution. The grid nodes are distributed to give a high concentration lines near the wall provided 
that the wall adjacent nodes are positioned at y+ ≈ 5. The grid independency tests were carried 
out by using the different grid nodes and the grid distribution tests were also conducted and 
based on the findings, the grids giving optimum solution is ensured as consistent with the early 
work  [13].  The Nusselt number (Nu) predicted from the present study and the results of the 
previous study [13] are shown with Reynolds number in table 1. It can be observed from the 
table that the present predictions for Nu agree well with the previous results. However, small 
discrepancies are observed between both results at high Reynolds numbers. This may be due to 
slightly over predicting the turbulent kinetic energy generation at high Reynolds number by the 
turbulent model (k-ε model) introduced in the present study.  However, this difference is small.  
 

Since the fluid flow in the pipe and the external heating of the pipe take place at steady-
state, the conduction in the solid is: 
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The boundary conditions: 
 
The relevant boundary conditions for the conservative equations of flow and solid are: 
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3) At pipe inlet (x=0): 
Uniform flow and uniform temperature were assumed. 
 
4) At pipe outlet (x=L):  
All the gradients of the variables were set to zero, i.e.:  0η=∂∂ϕ  
where φ is the fluid property and η is any arbitrary direction.  
 
5) At outer surface of the pipe (r = r0): 
Uniform surface temperature is assumed, i.e.:  T = T0  (K) 
 
6) At solid-fluid interface (r = ri), i.e.: 
 r  =  ri                    and             0≤ x  ≤ L  

r
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Entropy Analysis 
 
The irreversibility involved in the thermal system due to momentum and energy transport, results 
in continuous entropy production in the system. The local entropy generation per unit volume for 
an incompressible Newtonian flow system is [15]: 
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where the first term represents the entropy generation due to heat transfer while the second term 
is the entropy generated due to viscous dissipation in the flow system. In polar coordinates the 
viscous dissipation (Φ) can be written as: 
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where u is the axial velocity and v is the radial velocity. 
 
Total entropy generation rate over the volume is: 
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and the rate or irreversibility is: 
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Eq. (10) is used to determine the volumetric entropy generation rate while Eq.(13) is used for the 
irreversibility rate. 
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Results and Discussion 
 
 Flow through a heated pipe and entropy generation in the flow system is presented for 
three outer wall temperatures (500 K, 750 K and 1000K) and three Reynolds numbers (10000, 
30000 and 50000).  The pipe used in the study is 4 meter long. For computer storage reasons, it 
is difficult to use longer pipes. To generate enough entropy in the pipe and to study the influence 
of temperature distribution in the pipe on entropy distribution, large values of pipe outer wall 
temperatures (in the range form 500 K to 1000 K) are used in the study.  It should also be noted 
that the water temperature selected was excessive, which required pressurized water.  The pipe 
diameter is taken as 0.08 meter and the pipe thickness as 0.024 meter. In this study, the 
temperature distribution in the pipe is presented in a non-dimensional form (T*), which is 
calculated as: 

  ( )14
 T - T

T - T
 T

mean

inlet* =  

 
where Tinlet is the pipe inlet temperature and Tmean is the mean temperature of all grid points. 
 

Figure 2 shows dimensionless temperature (T*) contours in the fluid for two pipe wall 
temperatures and Reynolds number of 10000. Dimensionless temperature (T*) contours show 
similar behavior for all the pipe wall temperatures employed (500 K and 1000 K). In general, at 
pipe inlet where x/L is less, dimensionless temperature attains low values. In this case, the fluid 
entering into the pipe does not have enough duration to gain thermal energy from the pipe wall. 
Consequently, constant temperature contour extends further inside the fluid in this region. As the 
pipe length extends, high temperature contours are developed in the region close to the pipe wall. 
This is because of the convective heating of the fluid in the vicinity of the pipe wall. In the case 
of entropy production, as seen from Figure 3, entropy contours do not follow the temperature 
contours. This is because of the entropy is proportional to the temperature gradient rather than 
temperature. When comparing the entropy contours obtained for 500 K and 1000K, the contours 
differ significantly in the two cases. This is more pronounced in the region close to the pipe wall. 
This is because of the losses due to fluid friction in the wall region as well as high fluid 
temperature gradient due to elevated wall temperature, which enhances heat transfer rates from 
the wall to fluid. 
 
 Figure 4 shows dimensionless temperature (T*) contours for three pipe wall temperatures 
and Reynolds number of 30000, while Figure 5 shows corresponding entropy contours. 
Temperature contours behave similar to those obtained for Reynolds number 10000, provided 
that the magnitude of temperature contours in the surface region increases. This occurs because 
of the high convective heat transfer rates, which enhances with increasing Reynolds number. 
Entropy contours change for the Reynolds number 30000 as compared to their corresponding to 
10000. This is more pronounced for pipe wall temperature 1000 K. It should be noted that the 
frictional losses due to viscous dissipation reduces as Reynolds number increases for the 
turbulent flow. Despite this fact, entropy contours attain high values for Reynolds number of 
30000. This is because of the entropy generation due to heat transfer rates, which improve 
considerably at high Reynolds number. 
 
 Figure 6 shows dimensionless temperature (T*) contours for three outer wall temperatures 
and Reynolds numbers of 50000, while Figure 7 shows corresponding entropy contours.  
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Temperature contours in the vicinity of the pipe wall increases further as compared to those 
shown in Figure 4 because of the high convective heat transfer rates from the pipe wall to fluid. 
Entropy contours differ significantly from those presented in Figures 3 and 5, particularly for 
temperature 1000 K. Consequently, increasing Reynolds number and pipe wall temperature 
enhances the heat transfer rates, which in turn results in high rate of entropy production. 
 
 Figure 8 shows total entropy rate produced in the fluid system with wall temperature as 
Reynolds number is variable. Entropy production rate increases considerably with increasing 
pipe wall temperature and Reynolds number. This situation indicates that entropy generation due 
to heat transfer dominates over its counterpart corresponding to fluid friction. This is because of 
increasing Reynolds number in turbulent flow lowers the frictional losses; therefore, the entropy 
production rate is lowered. Consequently, increasing entropy production rate at high Reynolds 
number is because of heat transfer process only.  It can be observed from Figure 8 that entropy 
generation can be minimized by reducing the pipe wall temperature, while increasing the 
Reynolds number. 
 
Conclusions 
 
 Heat transfer and entropy analysis for flow through pipe system are carried out. A 
numerical method using a control volume approach is employed in the computations. Steel pipe 
is selected as pipe material, while water is considered as fluid. The simulations are repeated for 
three Reynolds numbers and three pipe wall temperatures. It is found that entropy contours do 
not follow the temperature profiles. Entropy production rate is low at the pipe inlet and as the 
pipe length increases it signifies. Moreover, entropy production rate is high in the region close to 
the pipe wall, which is more pronounced for high wall temperature. This is because of high 
temperature gradient in this region. Increasing Reynolds number enhances the entropy 
production rate. This is because of the enhanced heat transfer rates, i.e. convective heating of the 
fluid enhances at high Reynolds number. This indicates that entropy production due to heat 
transfer dominates over the entropy production due to fluid friction, since frictional losses reduce 
with increasing Reynolds number in the pipe flow.  
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Nomenclature 
 
L      length of the pipe 
P       pressure 
r       radial coordinate  
T       temperature at a grid point 
u         fluid axial velocity 
v         radial velocity 
V         resultant radial velocity 
x         axial coordinate 
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Pr        Prantl number 
Re       Reynolds number 
T         temperature  
k          thermal conductivity  
 
Greek Symbols 
 
e         constant in law of wall 
κ         constant in law of wall 
τ         shear stress 
µ   fluid dynamic viscosity 
ρ         fluid density 
φ         any arbitrary variable 
ε         turbulent dissipation variable 
 
Subscripts  
 
f      fluid 
s solid 
i inner 
o outer 
w wall 
t           turbulent  
 
Sperscripts 
  
* dimensionless 

 
 

Turbulent 
Prandtl Numbers 

Nusselt 
Number (Nu) 

Laminar 
Reynolds 
Number 

(Re) Prt (k) Prt (ε) Reference No. (13) Present Study 

Abs. 
% 

Diff. 

10000 0.097 0.097 80 77.5 3.1 
30000 0.117 0.117 215 206 4.3 
50000 0.128 0.128 338 341 0.9 

Table 1. The turbulent Prandtl numbers and the resulting Nusselt numbers for the   validation and 
the present study cases. 
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Figure 1. Schematic diagram of the pipe and coordinates 
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Figure 2. Dimensionless temperature contours for the cases of Reynolds number=10000, for 
outer wall temperatures (a) 500 K and (b) 1000 K. 
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Figure 3. Entropy contours for the cases of Reynolds number=10000, outer wall temperatures (a) 

500 K and (b) 1000 K 
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             (a)                                                               (b) 
Figure 4. Dimensionless temperature contours for the cases of Reynolds number=30000, wall 

temperatures (a) 500 K and (b) 1000 K. 
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   (a)                                                               (b) 
Figure 5. Entropy contours for the cases of Reynolds number=30000 for outer wall temperatures 

(a) 500 K and (b) 1000 K. 
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(a) (b) 
Figure 6. Dimensionless temperature contours for the cases of Reynolds number=50000 for outer 

wall temperatures (a) 500 K and (b) 1000 K. 
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(a) (b) 
Figure 7. Entropy contours for the cases of Reynolds number =50000 for outer wall temperatures 

(a) 500 K and (b) 1000 K. 
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Figure 8. The total entropy generation for different outer wall temperatures and Reynolds 

numbers. 
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