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Abstract 
An irreversible cycle model of a Braysson heat engine operating between two heat 
reservoirs is used to investigate the thermoeconomic performance of the cycle affected 
by the finite-rate heat transfer between the working fluid and the heat reservoirs, heat 
leak loss from the heat source to the ambient and the irreversibility within the cycle. 
The thermoeconomic objective function, defined as the total cost per unit power output, 
is minimized with respect to the cycle temperatures along with t he isobaric temperature 
ratio for a given set of operating parameters. The objective function is found to be an 
increasing function of the internal irreversibility parameter, economic parameters and 
the isobaric temperature ratio. On the other hand, there exist the optimal values of the 
state point temperatures , power output and thermal efficiency at which the objective 
function attains its minimum for a typical set of operating parameters. Moreover, the 
objective function and the corresponding power output are also plotted against the state 
point temperature and thermal efficiency for a different set of operating parameters. 
The optimally operating regions of these important parameters in the cycle are also 
determined. The results obtained here may provide some useful criteria for the optimal 
design and performance improvements, from the point of view of economics as well as 
from the point of view of thermodynamics of an irreversible Braysson heat engine 
cycle and other similar cycles as well.  
Keywords: Braysson heat engine, thermoeconomic objective function, power output, 
multi-irreversibilities, thermal efficiency, optimal operating region, optimum criterion 

 
Nomenclature  
A = Area (m2) 
a’s = Cost parameters 
cp = Specific heat (kJ/kg-K) 
C’s = Cost parameters 
CT = Total cost (defined in Eq.10) 
F = Objective function (defined in Eq.12) 

NCU = National Currency Unit 
P = Power output (kW) 
P * =Dimensionless power output  
Q = Heat transfer rates (kW) 
R = Internal irreversibility parameter 
S = Entropy (kJ/K) 
T = Temperature (K) 
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U = Overall heat transfer coefficient (kW/m2-K) 
x = Isobaric temperature ratio 
1, 2, 3, 4 = State points 
Greeks 
η = Efficiency 
Subscripts 
a = Ambient 
c = Compressor 
H = Heat source/hot -side 

L = Sink/cold -side 
m=Related to the minimum objective 
function/maintenance 
max = Maximum 
min = Minimum 
opt = Optimum 
p = Related to power production cost 
q = Related to input energy rate cost 

 
Introduction 
 

The Braysson cycle is a hybrid power cycle based on a conventional Brayton cycle for 
the high tempe rature heat addition while adopting the Ericsson cycle for the low 
temperature heat rejection as proposed and investigated by Frost et al. [1] using the first 
law of thermodynamics. Very recently, some workers [2-3] have investigated the 
performance of an endoreversible Braysson cycle based on the analysis of the Brayton 
[4-23] and Ericsson [24-28] cycles using the concept of finite time thermodynamics [29-
33] for a typical set of operating conditions and obtained some significant results.  

In real thermodynamic cycles, there often exist other irreversibilities besides finite-rate 
heat transfer between the working fluid and the heat reservoirs. For example, the heat 
leak loss from the heat source to the ambient and the internal dissipation of the working 
fluid are also another main source of irreversibility. In the present paper, we will study 
the influence of multi-irreversibilities on the thermoeconomic performance of a Braysson 
heat engine cycle. 

 
An Irreversible Braysson Cycle  
 

An irreversible Braysson cycle working between a source and a sink of infinite heat 
capacities is shown on the T-S diagram of Fig.1. The external irreversibilities are due to 
the finite temperature difference between the heat engine and the external reservoirs and 
the direct heat leak loss from the source to the ambient while the internal irreversibilities 
are due to the nonisentropic processes in the expander and compressor devices as well as 
due to other entropy generations within the cycle. The working fluid enters the 
compressor at state point 4 and is compressed up to state point 1S/1 in an ideal/real 
compressor, and then it comes into contact with the heat source and is heated up to state 
point 2 at constant pressure. After that the working fluid enters the turbine at state point 2 
and expands up to state point 3S/3 in an ideal/real expander/turbine, it rejects the heat to 
the heat sink at constant temperature and enters the compressor at state point 4, thereby, 
completing the cycle. Thus, we will study the 4-1-2-3-4 closed cycle  of an irreversible 
Braysson heat engine coupled with the heat reservoirs of infinite heat capacities at 
temperature TH and T L respectively.  

Assuming the working fluid as an ideal/prefect gas, the heat transfer rates to and from 
the heat engine following Newton’s Law of heat transfer [1-3, 30-36] will be: 
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where JUA)(  ),( LHJ = are the overall heat transfer coefficient-area products on their 
respective side heat exchanger, iT  ( 3,2,1=i ) are the temperatures of the working fluid at 

state points 1, 2 and 3, and m&  and Pc  are, respectively, the mass flow rate and specific 
heat of the working fluid.  
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Fig.1: The T-S diagram of an irreversible Braysson heat engine cycle. 

 
According to Fig.1, It is reasonable to consider some heat leak loss directly from the 

source to the ambient, which may be expressed as [27]:  
)(00 aH TTkQ −=              (3) 

where 0k  is the heat leak coefficient and aT  is the ambient temperature and is usually the 
same as the sink temperature ( LT ). In addition, it is also very important to further 
consider the influence of irreversible adiabatic processes and other entropy generations 
within the cycle. Assuming the working fluid as an ideal gas, the entropy production for 
the process 1-2 at constant pressure is: 

VdPdHTdS −=  ⇒   )ln(21 xcmS p&=∆ −                                4(a) 

where 12 /TTx =  is the isobaric temperature ratio. Using the second law of 
thermodynamics for this cycle model, we have: 

0/)()ln( 33 <−− TTTAUxcm LLLP& ⇒  )()ln( 33 LLLP TTAUxTRcm −=&      4(b) 
where R is the internal irreversibility parameter which is greater than unity for a real 
cycle and defined as: 
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When the adiabatic processes are reversible and other entropy generations within the 
cycle are negligible, 1=R  and the cycle  becomes an endoreversible cycle, in which the 
irreversibility is only due to finite temperature differences between the heat engine and 
the external reservoirs and the heat leak loss directly from the heat source to the ambient.  
 
The Expressions of Several Parameters  
 

Using Eqs.(1) -(3) and (5), we can derive the expressions of the power output and 
thermal efficiency, which are, respectively, given by: 
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where xRUUa LH ln)/(= , )]/()ln[( 11 xTTTTb HH −−=  and LH AAA += is the total heat 
transfer area of the cycle. Using Eqs.(1-2) and (5), we can also derive the expressions of 
the ratios of the hot- and cold-side heat exchanger areas to the total heat exchanger area 
as: 
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The Thermoeconomic Objective Function 
 

Let TC  be the total cost of the heat engine system per unit time, which includes the 
costs of the hot- and cold-side heat exchangers )( 1C , the costs of the 
compression/expansion device )( 2C , the input energy cost )( 3C  and the maintenance 

cost )( 4C  of the system in such a way that these costs are proportional to the total 
conductance, the compression/expansion capacity, the amount of heat supplied by the 
heat source per cycle and the power output of the cycle respectively, viz. UAC ∝1 , 

PC ∝2 , )( 03 QQC H +∝  and .4 PC ∝  Thus, the total cost of the system can be 
expressed as:  

PaQQaPaUAaUAaCCCCC mHqPLLHHT +++++=+++= )()()( 04321            10(a) 

where Ha and La  are the proportional coefficients of the cost of the hot- and cold-side 
heat exchangers respectively, their units are NCU/(s-kW/K), Pa , qa  and ma is the 
proportional coefficients of the costs of the compression/expansion device, input energy 
and maintenance, and their dimensions are NCU/(s-kW), here NCU is the National 
Currency Unit. Using Eqs.(1-2 and 5) and substituting HL aak /1 = , HmP aaak /)(2 +=  

and Hq aak /3 =  into Eq.10(a), we have: 
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where 324 kkk += , )(35 LH TTukk −= and )/(0 AUku H= . Again using Eqs.(1-2 and 5) 
and the first law of thermodynamics, yields: 
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Using Eqs.10(b) and (11), the total cost of the system per unit work output may be 
expressed as PCF T /'= . For the sake of simplification, the objective function 'F can be 
changed as: 
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where LH UUkkk /516 +=  while  F is referred to as the thermoeconomic objective 
function of an irreversible Braysson heat engine. The objective function defined in 
Eq.(12) is more general than those used by the earlier workers [35, 36]. For example, if 

1== xR  and 00 ==== Qaaa mqP
 are chosen, then F/1 becomes the objective function 

used in Ref.[35]. When 1== xR , LH aa =  and 00 === Qaa mP are chosen, F becomes 
the objective function used in Ref. [36]. Again, if 1=x  and other parameters are same, 
this cycle model will reduce to an irreversible Carnot cycle.  

Using the above equations, one can analyze the optimal performance of an irreversible 
Braysson heat engine cycle. 

 
Optimal Performance Characteristics 
 

It is seen from Eq.(12) that the objective function is a function of two variables ( 1T , 3T ) 
for given values of the isobaric  temperature ratio x  and other parameters. Using Eq.(12) 
and its extremal condition 0/ 3 =∂∂ TF , it can be proven that when the objective function 

is in the optimal states, the temperature 3T  should satisfy the following equation: 
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where 1351 )1()1( Txkbka −++= . Using Eqs.(6, 12, 13), one can generate the graphs 
between the objective function and the state point temperature (T1), between the 
corresponding power output and the state point temperature (T 1), between the objective 
function and corresponding thermal efficiency, between the objective function and  
corresponding power output as well as between the corresponding power output and 
corresponding thermal efficiency for a typical set of parameters viz. ,1200 KTH =   

,300 KTT aL ==  0.1/ =LH UU , 5.0,6.0,1.1 321 === kkk  and 01.0=u , as shown 

in Figs. 2-5, where )/(*
LLmm ATUPP = , mP  is the power output corresponding to the  

minimum objective function,  and  
max)( mη  and 

max
* )( mP are, respectively, the maximum 

values of the  thermal efficiency and power output at the minimum objective function.  
 
Minimum Value of Objective Function  
 

The variations of the objective function and the corresponding dimensionless power 
output against the state point temperature (T1) are shown in Figs.2-3. It is seen from these 
figures that the objective function first decreases and then increases while the 
corresponding power output first increases and then decreases as T1 increases. It shows 
clearly that there are optimal values of T1 at which the objective function and the 
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corresponding power output attain the minimum and maximum values for a given set of 
operating parameters, respectively. Also the optimal values of T1 are different for 
different parameters at different operating condition.  
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                    2(b) 

Fig.2. The variation of  (a) the objective function and (b) the corresponding power output 
with respect to temperature 1T  for different values of the isobaric temperature ratio 
(x), where the parameters ,1200 KTH =  ,300 KTL = 1.1=R , 0.1/ =LH UU , 

5.0,6.0,1.1 321 === kkk  and 01.0=u  are chosen.  
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                   3(b) 
Fig.3 The variation of  (a) the objective function and (b) the corresponding power output 

with respect to temperature 1T  for different values of R, where 1.1=x  and the 
values of the parameters are the same as those used in Fig. 2. 

 
For example, the optimal value of T1 at the minimum objective function is greater than 

that of T1 at the corresponding maximum power output, i.e. 

max,1,1,1 )()( * TTT FoptPopt
m

≤≤           (14) 

where max,1T are the maximum obtainable temperatures for a given set of operating 

parameters. Figures 2 and 3 show that *)( ,1
mPoptT  and FoptT )( ,1  decreases with the increase 

of x  and increases with the increase of R . Again, it is also seen from these figures that 
the objective function is a monotonically increasing function of both x  and R while it is 
reverse in the case of the corresponding power output. This point is easily expounded 
from the theory of thermodynamics. Because the larger the internal irreversibility 
parameter R  and the isobaric temperature ratio x  are, the larger the total irreversibility in 
the cycle and consequently the smaller the corresponding power output and the larger 
will be the cost of the system and hence, the large value of the objective function.  
 
Effects of Economic Parameters  

The variation of the objective function with respect to the state point temperature (T1) 
for different thermoeconomic parameters (k1, k2 and k3) are shown in Figs.4(a-c). It is 
seen from these figures that the objective function first decreases and then increases as 
the state point temperature (T1) increases. Thus, there is an optimal value of the state 
point temperature (T1) at which the objective function attains its minimum for a giv en set 
of operating parameters and the optimum value of T1 and hence the minima of the 
objective function will change if any operating parameter of the cycle is changed. Again 
the objective function goes up as any one of the economic parameters increases but the 
effects of k 2 and k3 are more than those of k 1 on the objective function at the same set of 
operating condition.  

 
Objective Function, Corresponding Power Output and Thermal Efficiency 

Figures 5(a-c) show the *~ mPF , mF η~  and mmP η~*  curves, which may be used to 
further reveal the performance characteristics of an irreversible Braysson cycle. It is seen 
from these figures that the objective function is not a monotonic function of the power 
output and thermal efficiency and hence, there are optimal values of the power output 
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and thermal efficiency at which the objective function attains its minimum values. Also 
the optimum operating regions of the objective function are situated in the regions of the 

mF η~  and *~ mPF  curves with positive slopes.  

600 700 800 900 1000 1100

1.6

1.8

2.0

F

T1

 k
1
=0.5

 k
1
=1.0

 k
1
=1.5

 
         4(a) 

 

600 700 800 900 1000 1100

1.4

1.6

1.8

2.0

2.2

F

T
1

 k
2
=0.5

 k2=0.6

 k2=0.7

 
        4(b) 

600 700 800 900 1000 1100

1.4

1.6

1.8

2.0

2.2

2.4

F

T1

 k3=0.4

 k
3
=0.5

 k3=0.6

 
  4(c) 
Fig.4.  The variation of the objective function with res pect to temperature 1T  for different 

parameters (a) k1, (b) k2 and (c) k3, where 1.1== Rx  and the values of the 
parameters are the same as those used in Fig. 2. 
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Fig.5: The (a) mF η~ , (b) *~ mPF  and (c) mmP η~*  curves of a Braysson heat engine, 
where the values of the parameters are the same as those used in Fig. 2. 

 
Again, it is seen from Fig.5(c) that the corresponding power output is not a monotonic 

function of the corresponding thermal efficiency. When the power output is situated in 
the regions of the mmP η~*  curves with a positive slope, it will decrease as the thermal 
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efficiency is decreased. Obviously, these regions are not optimal. It is thus clear that the 
power output should be situated in the region of the mmP η~*  curves with a negative slope. 
When the power output is in the region, it will increase as the thermal efficiency is 
decreased, and vice-versa. Thus, the optimal operating region of the objective function, 
power output and thermal efficiency are given by: 

*)()(min
mm Poptopt FFF ≤≤ η            (15) 

mmFmm PPP η)()()( **
max

* ≥≥            (16) 

*)()()( max
mPmFmm ηηη ≥≥            (17) 

This shows that max
* )( mP , max)( mη , FmP )( * , Fm )(η , 

mmP η)( *  and *)(
mPmη are the important 

optimal performance parameters of the Braysson heat engine. Thus max
* )( mP and max)( mη  

give the upper bounds of the power output and thermal efficiency at the minimized 
objective function, while FmP )( *  and Fm )(η  determine the values of the power output and 

thermal efficiency at the point of minF .On the other hand, 
mmP η)( *  and *)(

mPmη   give the 

allowable values of the lower bounds of the power output and therma l efficiency at the 
minimized objective function. 

According to Eqs.(8-9), we can further determine the optimal regions of other 
performance parameters. For example, the optimal regions of the parameters AAH /  and 

AAL /  may be, respectively, determined by: 

mm
AAAAAA HFHPH η)/()/()/( * ≤≤          (18) 

mm
AAAAAA LFLPL η)/()/()/( * ≥≥          (19) 

where FH AA )/( , FL AA )/( , *)/(
mPH AA , *)/(

mPL AA  and 
m

AAH η)/( , 
m

AAL η)/( are, 

respectively, the values of the  AAH /  and AAL /  at the minimum objective function and 
the corresponding maximum specific power output and thermal efficiency.  

So far we have obtained some optimum criteria for the important performance 
parameters of the cycle and found that the point of the minimum objective function is just 
in the optimal operating region, which may provide some important theoretical guidance 
for the design and improvement of an irreversible Braysson cycle. 

 
A Special Case 
       

When 1=x , the present cycle model becomes a finite time Carnot cycle [29-30] with 
internal irreversibility [31] and consequently, the performance of the Carnot cycle can be 
directly obtained from the above results as follows:      
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where HL TT /=τ , )1/( 561 kRkb += , HTbkb /)1)(1( 2
152 ++= , )( 233 bkRb += and

)( 3
2

3234 τττ kRbbRkb −+=  
It is clear that the results obtained in Refs.[35, 36] may be directly derived from the 

above equations. 
From these results mentioned above, we can conclude that the parameters viz. the 

objective function as well as the corresponding power output of the Carnot cycle is, 
respectively, smaller and larger than those of the Braysson cycle for the same set of 
operating parameters. Since, the objective function defined in this paper should be as less 
as possible (but not zero) from the point of view of economics for a given set of 
operating parameters. Thus, the Carnot cycle can exhibit better performance than the 
Braysson cycle for the same set of operating parameters not only from the point of view 
of thermodynamics but also from the point of view of thermoeconomics.  

 
Conclusions 
 

An irreversible cycle model of a Braysson heat engine is established and used to 
investigate the influence of multi-irreversibilities on the thermoeconomic objective 
function of the heat engine. The objective function is optimized with respect to the cycle 
temperatures for a given set of operating parameters. The minimum objective function 
and the corresponding power output as well as some other important parameters are 
calculated for a typical set of operating conditions. The optimal regions of some 
important parameters such as the objective function, corresponding power output and 
thermal efficiency, state point temperatures of the working fluid, heat-transfer area ratios, 
and so on, are determined in detail. The influence of the isobaric temperature ratio (x) 
and internal irreversibility parameter (R) on the performance of the cycle is analyzed. 
The objective function is found to be an increasing function of the internal irreversibility 
parameter, economic parameters and the isobaric temperature ratio. On the other hand, 
there exist the optimal values of the state point temperatures , power output and thermal 
efficiency at which the objective function attains its minimum for a typical set of 
operating parameters. A special case of the cycle is also discussed which indicates that 
the optimal thermoeconomic performance of an irreversible Carnot heat engine may be 
directly derived from the results obtained in this paper. In other words, the analysis 
presented in this paper is general and will be useful to understand the relationships and 
difference between the Braysson cycle and other cycles and to further improve the 
optimal design and operation from the point of view of economics as well as from the 
point of view of thermodynamics of a Braysson heat engine for the different set of 
operating parameters and for given constraints.  
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