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Abstract: On the basis of a four-heat-reservoir endoreversible absorption refrigeration cycle 
model, another linear heat transfer law [i.e., the heat-flux )( 1−∆∝ TQ ] is adopted, the 
fundamental optimal relation between the coefficient of performance (COP) and the cooling 
load, as well as the maximum cooling load and the corresponding COP of the cycle coupled 
to constant-temperature heat reservoirs are derived by using finite-time thermodynamics or 
thermodynamic optimization. The optimal distribution of the heat-transfer surface areas is 
also obtained. Moreover, the effects of the cycle parameters on the COP and the cooling load 
of the cycle are studied by detailed numerical examples. The results obtained herein are of 
importance to the optimal design and performance improvement of an absorption 
refrigeration cycle. 
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Introduction 
 

The absorption refrigerators can be driven by ‘low-grade’ heat energy such as waste heat in 
industries, solar energy and geothermal energy, and have a large potential for reducing the heat 
pollution for the environment. Thus, absorption refrigerators for industrial and domestic use are 
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generating renewed interest throughout the world. In the last years, finite-time thermodynamics (or 
endoreversible thermodynamics, or entropy generation minimization, or thermodynamic optimization) 
[1-4] was applied to the performance study of absorption refrigerators, and a lot of results, which are 
different from those by using the classical thermodynamics, have been obtained. Yan et al. [6], 
Wijeysundera [7, 8], Goktun [9] and Chen et al. [10] analyzed the performance of the three-heat- 
reservoir endoreversible [6-8] and irreversible [9,10] absorption refrigeration cycles with Newton’s 
heat transfer law. Chen et al. [11-13] studied the performance of the three-heat-reservoir endoreversible 
[11, 12] and irreversible [13] absorption refrigeration cycles with another linear heat transfer law, i.e., 
linear phenomenological law, )( 1−∆∝ TQ . A three-heat-reservoir absorption refrigerator is a simplified 
model that the temperature of a condenser is equal to that of an absorber, but a real absorption 
refrigerator is not. Therefore, a four-heat-reservoir absorption refrigeration cycle model is closer to a 
real absorption refrigerator. The performance of the four-heat-reservoir absorption refrigeration cycle 
with Newton’s heat transfer law was studied by Chen [14], Shi et al. [15] and Zheng et al. [16]. Chen 
[14] deduced the maximum cooling load limit and the corresponding coefficient of performance (COP) 
of the endoreversible four-heat-reservoir absorption refrigeration cycle with the sole irreversibility of 
heat transfer, Shi et al. [15] deduced the fundamental optimal relation between the cooling load and the 
COP of the endoreversible four-heat-reservoir absorption refrigeration cycle with the sole 
irreversibility of heat transfer, and Zheng et al. [16] deduced the optimal heat transfer surface areas of 
the four heat exchangers the endoreversible four-heat-reservoir absorption refrigeration cycle with the 
sole irreversibility of heat transfer. On the basis of these research work, a four-heat-reservoir 
endoreversible absorption refrigeration cycle with linear phenomenological heat transfer law is 
established in this paper. The fundamental optimal relation between the COP and the cooling load, as 
well as the maximum cooling load and the corresponding COP of the cycle are derived. The results can 
provide the theoretical bases for the optimal design and operation of real absorption refrigerator 
operating between four temperature levels. The present work is different from a recent work of the 
authors [17]. In Ref. [17], an endoreversible four-heat-reservoir absorption heat-transformer with 
Newton’s heat transfer law was established, and the fundamental optimal relation between the COP 
and the heating load, as well as the maximum heating load and the corresponding COP of the cycle 
were derived. 

 
Physical Model 
 

A four-heat-reservoir endoreversible absorption refrigeration cycle that consists of a generator, an 
evaporator, an absorber and a condenser is shown in Fig. 1. The flow of the working fluid in the cycle 
system is stable and the different parts of the working fluid exchange heat with the heat reservoirs at 
temperature HT , LT , OT  and MT during the full time (cycle period) τ , whereas there are thermal 
resistances between the working fluid and the external heat reservoirs. Therefore, the corresponding 
working fluid temperatures are 1T , 2T , 3T  and 4T , respectively. Work input required by the solution 
pump in the system is negligible relative to the energy input to the generator and is often neglected for 
the purpose of analysis [6-17]. It is assumed that the heat transfers between the working fluid in the 
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heat exchangers and the external heat reservoirs are carried out under a finite temperature difference 
and obey linear phenomenological heat transfer law [i.e., the heat-flux )( 1−∆∝ TQ ], and these heat 
exchange processes are isothermal and the equations of heat transfer may be written as 
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where 1U , 2U , 3U  and 4U are, respectively, the overall heat-transfer coefficients of the generator, 
evaporator, condenser and absorber; and 1A , 2A , 3A  and 4A  are, respectively, the heat-transfer 
surface areas of the generator, evaporator, condenser and absorber. The overall heat-transfer surface 
area A  is  

4321 AAAAA +++=                                         (5) 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fundamental Optimal Relation 
From the first law of thermodynamics, one has 

04321 =−−+ QQQQ                                           (6) 
From the second law of thermodynamics and the endoreversible property of the cycle, one has 

 
Fig.1 A four-heat-reservoir endoreversible absorption cycle model 
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Defining the parameter a (the distribution of the total heat reject quantity between the condenser and 
the absorber) 

34 / QQa =                                                   (8) 
From equations (6) and (7), one can obtain the COP of an endoreversible absorption refrigerator  
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Using equations (1) - (9), the cooling load of the refrigerator can be written as 
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Using equation (10) and the extremal conditions 0)/( 1
1 =∂∂ −TR , 0)/( 1

3 =∂∂ −TR  and 0)/( 1
4 =∂∂ −TR , 

one can derive the temperatures of the working fluid in the generator, absorber, condenser and 
evaporator, which correspond the optimal cooling load for the given COP. Substituting them into 
equation (10) yields the fundamental optimal relation between the cooling load and the COP of the 
four-heat-reservoir endoreversible absorption refrigeration cycle with linear phenomenological heat 
transfer law as follows  
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Equation (11) is the major results of this paper. It can reveal the ε−R  characteristics of a 
four-heat-reservoir endoreversible absorption refrigeration cycle affected by thermal resistance, and 
some significant results and new bounds may be derived from it. 

Using equations (1)-(4), (11), and the temperatures of the working fluid in the generator, absorber, 
condenser and evaporator which are derived, one can obtain the optimal distribution relation of the 
heat-transfer surface areas as follows 
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From equations (5) and (12)-(14), one can find the relations between the heat-transfer surface 
areas of each heated exchanger and the total heat-transfer surface area A  as follows 
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Results and Discussion 
 

1. When 0=R , one can obtain the reversible COP rε of the four-heat-reservoir absorption 
refrigeration cycle  
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It can be seen that the optimal COP of the four-heat-reservoir endoreversible absorption refrigeration 
cycle can’t exceed the reversible COP rε . This shows that the real absorption refrigerators must 
decrease the COP level if one wants to obtain some cooling load. 
2. When rεε < , there exists a maximum cooling load. Using equation (11) and the extremal condition 

0)/( =∂∂ εR , one can obtain 
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where mR  is the maximum cooling load, and Rε  is the corresponding COP. mR  and Rε  are two 
important parameters of the four-heat-reservoir endoreversible absorption refrigeration cycle with 
linear phenomenological heat transfer law, because they determine the upper bound for the cooling 
load and the lower bound of the COP, and provide a finite-time thermodynamic criteria for the optimal 
design of real absorption refrigerators, i.e., the real absorption refrigerator design must match the 
condition Rr εεε ≥>  to make the refrigerator operates under the optimal conditions. 

When 1=a , OM TT =  and UiU i == )4,3,2,1( , the four-heat-reservoir endoreversible absorption 
refrigeration cycle with linear phenomenological heat transfer law becomes the three-heat-reservoir 
endoreversible absorption refrigeration cycle with linear phenomenological heat transfer law, and 
equations (20) and (21) become [11] 
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3. Defining the ratio LO TTx /=  of the temperatures of the condenser to the evaporator, and the ratio 
MH TTy /=  of the temperatures of the generator to the absorption, one can analyze the performance 

numerically. In the calculation, 21100mA = , KTM 305= , KTL 273= , 2
1 /167.458 mKkWU ⋅= , 

2
2 /223.682 mKkWU ⋅= , 2

3 /5.1622 mKkWU ⋅=  and 2
4 /167.458 mKkWU ⋅=  are set [5, 18]. 

   The influence of a  on the optimal cooling load R  versus the COP ε of the four-heat-reservoir 
endoreversible absorption refrigeration cycle with KTH 403=  and KTO 313= is shown in Fig. 2. The 
influence of x  on the optimal cooling load R  versus the COP ε  with KTH 403=  and 5.1=a is 
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shown in Fig. 3. The influence of y  on the optimal cooling load R  versus the COP ε  with 
KTO 313=  and 5.1=a is shown in Fig. 4. Figures 2-4 show that the optimal cooling load R  versus the 

COP ε  is a parabolic curve, and there exists a maximum cooling load mR  and the corresponding 
COP Rε . When mRR < , there exist two different ε  for a fixed R , one is larger than Rε , and another 
is smaller than Rε . When Rεε < , the COP decreases with the decrease of the cooling load, so the 
optimal operation range of the COP of the absorption refrigerators should be selected in Rr εεε ≥> . 

The influences of x  on the reversible COP rε , the maximum cooling load mR  and the 
corresponding COP Rε  versus a  with KTH 403=  and 35.1=y  are shown in Figs. 5-7. Figures 5-7 
show that for a fixed a , rε , mR  and Rε  decrease with the increase of x . When a  is larger than 
one in value, the influence of the rε , mR  and Rε  are less. There is a special point 1172.1=x  for the 
cycle. When 1172.1<x , 0747.2≥rε , 5092.0≥Rε , both rε  and Rε  decrease with the increase of a ; 
and when 1172.1>x , 0747.2<rε , 5092.0<Rε , both rε  and Rε  increase with the increase of a . These  

 
 

 
Fig.2  The influence of a  on the optimal cooling load R  versus the COP ε  
 

 
Fig.3  The influence of x  on the optimal cooling load R  versus the COP ε  
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Fig.4  The influence of y  on the optimal cooling load R  versus the COP ε  

 

 

Fig.5  The influence of x  on the COP rε  versus a  

 

Fig.6 The influence of x  on the maximum cooling load mR  versus a   
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Fig.7  The influence of x  on the COP Rε  versus a  

 
imply that rε  and Rε  will reach their asymptotic values, i.e., 0747.2→rε  and 5092.0→Rε  when a  
tends to infinity. mR  decreases with the increase of a , and when a  is larger than one in value, the 
influence of them are less significant.  

The influence of y  on the reversible COP rε , the maximum cooling load mR  and the 
corresponding COP Rε  versus a  with KTO 313=  and 14.1=x  are shown in Figs. 8-10. Figures 
8-10 show that for a fixed a , rε , mR  and Rε  increase with the increase of y . Here 1172.1>x  
holds, mR  decreases with the increase of a , rε  and Rε  increase with the increase of a . 

 
 
 

 

 Fig.8  The influence of y  on the COP rε  versus a  
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Fig.9 The influence of y  on the maximum cooling load mR  versus a  

 

Fig.10 The influence of y  on the COP Rε  versus a  
 
4 The performance optimization can be carried out by optimizing the distribution of the heat exchanger 
total inventory [19, 20]. Using 44332211 AUAUAUAUUA +++=  to replace equation (5), i.e. using the 
distribution of the heat conductances to replace the distribution of the heat-transfer surface areas, one 
can obtain the optimal distribution relation of the heat conductances as follows 
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From equations (24)-(26), one can obtain 
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The optimal relation between the cooling load and the COP in this case is as following 
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Using equation (31) and the extremal condition 0)/( =∂∂ εR  yields the maximum cooling load mR  and 
the corresponding COP Rε  as follows 
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Conclusion 
 

The performance of the four-heat-reservoir endoreversible absorption refrigeration cycle with 
linear phenomenological heat transfer law is analyzed and optimized by using finite-time 
thermodynamics in this paper. Moreover, the effects of the cycle parameters on the COP and the 
cooling load of the cycle are studied by detailed numerical examples. The selection range for the 
practice parameters of the four-heat-reservoir endoreversible absorption refrigeration cycle with 
another linear heat transfer law are derived. The results obtain herein have realistic significance and 
may provide some new theoretical guidance for the optimal design and performance improvement of 
real absorption refrigerators. 
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