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          Abstract: This study presents the investigation of the local entropy generation in 

compressible flow through a suddenly expanding pipe. Air is used as fluid. The air enters 

into the pipe with a turbulent profile using 1/7 th power law. The simulations are extended to 

include different expansion ratios reduced gradually from 5 to 1. To determine the effects of 

the mass flux, ϕ′′ , the ambient heat transfer coefficient, hamb, and the inlet temperature, Tin, 

on the entropy generation rate, the compressible flow is examined for various cases of these 

parameters. The flow and temperature fields are computed numerically with the help of the 

Fluent computational fluid dynamics (CFD) code. In addition to this CFD code, a computer 

program has been developed to calculate numerically the entropy generation and other 

thermodynamic parameters by using the results of the calculations performed for the flow 

and temperature fields. The values of thermodynamic parameters in the sudden expansion  
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         (SE) case are normalized by dividing by their base quantities obtained from the calculations 

in the uniform cross-section (UC) case. The contraction of the radius of the throat (from 0.05 

to 0.01 m) increases significantly the maximum value of the volumetric entropy generation 

rate, (about 60%) and raises exponentially 11 times the total entropy generation rate with 

respect to the its base value. The normalized merit number decreases 73% and 40% with the 

contraction of the cross-section and with the increase of the ambient heat transfer coefficient 

(from 20 to 100 W/m2-K), respectively, whereas it rises 226% and 43% with the decrease of 

the maximum mass flux (from 5 to 1 kg/m2-s) and with the increase of the inlet temperature 

(from 400 to 1000 K), respectively. Consequently, the useful energy transfer rate to 

irreversibility rate improves as the mass flux decreases and as the inlet temperature 

increases. 

 

         Keywords:high-speed flow; sudden pipe expansion; local entropy generation; exergy; 

         computational fluid dynamics 

 

Nomenclature 

A area  

Be Bejan number  

Cµ coefficient in k-ε turbulence model 

C1ε coefficient in k-ε turbulence model  

C2ε  coefficient in k-ε turbulence model 

CFD computational fluid dynamics  

CP specific heat at constant pressure 

ER expansion ratio 

Gk the production of turbulent kinetic 

 energy 

h  heat transfer coefficient  

I&   irreversibility rate 

k turbulent kinetic energy 

L length of pipe  

M merit number 

P pressure 

"q  heat flux per unit area 

Q&  heat transfer rate 

aQ&  exergy transfer rate 

r radial distance 

R radius of pipe  

ℜ  ideal gas constant  

RNG renormalization group  

S  modulus of the mean rate-of-strain 

tensor 

Sij  mean strain rate 

SE sudden expansion 

'''
genS  volumetric entropy generation rate 

genS&   integrated entropy generation rate 

t  time 

T temperature 
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u velocity component in the axial 

direction  

UC uniform cross-section  

UDF user defined function  

v velocity component in the radial 

direction  

V volume 

x axial distance 

 

Greek symbols 

α inverse effective Prandtl number 

β model constant 

χ additional term in the ε equation 

ε turbulent energy dissipation rate 

φ  arbitrary variable 

η0 model constant 

ϕ′′  mass flux per unit area  

Φ viscous dissipation 

λ thermal conductivity 

µ dynamic viscosity 

ρ density 

ψ arbitrary field variable 

 

Superscript 

* normalized 

 

Subscripts 

0 base 

amb ambient 

awa area-weighted average 

eff effective 

fric friction 

heat heat transfer 

i part no 

i, j indices of tensor notation 

in inlet 

j cell number 

max  maximum 

op operation condition 

t turbulent 

T throat 

w wall
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Introduction 

 

    The viscous flow through pipes with axisymmetric sudden expansions in cross-sectional 

area has both fundamental scientific interest and numerous practical applications: such flows 

occur, for example, in pipe-flow systems in the chemical, pharmaceutical and petroleum 

industries, in air-conditioning ducts, around buildings, in dump combusters and in fluidic 

devices. Sudden expansion flows bring together geometric simplicity with a not to simple 

flow behavior. A number of analytical and experimental investigations on this type of flow 

have been reported in recent years, and some comprehensive studies have been carried out to 

explore the flow characteristics in the laminar and mainly in the turbulent flow regimes [1-8]. 

    Entropy analysis of the flow system provides useful information about the flow field. In 

this case, the local losses due to fluid friction and heat transfer can be identified easily. The 

entropy generation rates within a flow domain can be expressed as the sum of contributions 

due to viscous effects and thermal effects, and thus it depends functionally on the local values 

of velocity and temperature in the domain of interest. Energy conversion processes are 

accompanied by an irreversible increase in entropy, which leads to a decrease in exergy 

(available energy). Thus, even though the energy is conserved, the quality of the energy 

decreases because energy is converted into a different form of energy, from which less work 

can be obtained. Reduced entropy generation will result in more efficient designs of energy 

systems. Therefore, in recent years, entropy minimization has become a topic of great interest 

in the thermo-fluid area. The second-law analysis of heat transfer in swirling flow through a 

cylindrical duct was investigated by Mukherjee et al. [9]. They calculated the rate of entropy 

generation. They defined also a merit function and discussed influence of swirling on this 

merit function. Bejan [10] focused on the different reasons behind entropy generation in 

applied thermal engineering where the generation of entropy destroys the available work 

(exergy) of a system. Therefore, it makes good engineering sense to focus on the 

irreversibility of heat transfer and fluid flow processes, and to try to understand the function 

of associated entropy generation mechanisms. Bejan [11] also conducted an extensive review 

on entropy generation minimization. The review traced the development and adoption of the 

method in several sectors of mainstream thermal engineering and science. Furthermore, many 

researchers carried out studies on the entropy generation in various flow cases. Sahin et al. 

[12-17], Shuja et al. [18, 19], Yilbas et al. [20,21], Demirel et al. [22], Hyder et al. [23], 

Abbassi et al. [24] performed many studies on second law analysis and the entropy generation 

due to the heat transfer and fluid friction in duct flows under various conditions. Mahmud and 
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Fraser [25] also investigated the thermodynamic analysis of flow and heat transfer inside a 

channel with two parallel plates and [26] the second law analysis in fundamental convective 

heat transfer problems. Shuja et al. [27] analyzed the entropy generation in an impinging jet 

and [28-30] swirling jet impingement on an adiabatic wall for various flow conditions. The 

influence of fluid viscosity on the entropy generation due to turbulent pipe flow heated from 

the pipe wall at constant temperature is investigated by Al-Zaharnah and Yilbas [31]. 

Furthermore, Hijleh et al. [32] calculated for three radii and a wide range of Rayleigh 

numbers for an isothermal cylinder, Haddad et al. [33] studied on the entropy production due 

to laminar forced convection in the entrance region of a concentric cylindrical annulus, and 

Yapici et al. [34] investigated the local entropy generation in a methane-air burner and [35] in 

the pulsating turbulent and [36] laminar flow through an externally heated pipe. 

     The general theory of fluid motion is too difficult to enable the user to attack arbitrary 

geometric configurations. It is possible to apply merely numerical techniques to arbitrary 

geometries. CFD stands for computational fluid dynamics. It refers to a technique or actually 

techniques for approximately solving the equations of fluid dynamics. It turns out the methods 

are applicable to a number of systems of equations which fall under the category of 

conservation laws. Therefore, a suitable numerical method and/or computational fluid 

dynamics code is frequently used to solve the governing equations in this field. The CFD code 

is the program by which fluid flow can be predicted through arbitrary geometries, giving such 

information as flow speed, pressures, residence times, flow patterns, etc. The main advantage 

of this approach is in its potential for reducing the extent and number of experiments required 

to describe such types of flow. 

     In our previous studies [35, 36] , the transient local entropy generation rate due to the 

temperature and velocity gradients in pulsating fully developed turbulent and laminar flow 

through an externally heated pipe have been carried out. The present study considers the 

numerical solution of the local entropy generation in a suddenly expanding pipe with fully 

developed turbulent flow inlet conditions. In order to investigate the effects of the flow and 

boundary condition parameters (mass flux, throat radius, inlet temperature, and ambient heat 

transfer coefficient) on the entropy generation rate, the flow is examined for various values of 

these parameters by using Fluent CFD code [37]. 

 

 

 

 



Entropy 2005, 7 43

Mathematical Model 

Pipe geometry   

 

     In this study, the numerical solution of the local entropy generation in compressible flow 

through a suddenly expanding pipe is analyzed. The two-dimensional axisymmetric model of 

the considered pipe is shown in Figure 1. Air is used as fluid. In order to provide the high-

speed flow and simulate the sudden expansion (SE), the pipe is designed as two parts 

connected with each other: (1) the converging part with the varying cross-section and (2) the 

uniform part. The radius and lengths of the pipe parts are R and Li, respectively, (i denotes the 

part no). The radius of throat, RT, is expanded gradually from 0.2R to 1.0R. In other words, 

the expansion ratio, ER, which is the ratio of the pipe radius to the throat radius (R/RT), is 

reduced gradually from 5 to 1. ER = 1 means that the pipe cross-section is uniform along the 

whole pipe (the uniform cross-section, UC, case). The air enters into the pipe with a turbulent 

profile using 1/7 th power law. It is assumed that the wall of the converging part and the left 

wall of the uniform part are insulated and that the other wall of the uniform part is under the 

ambient conditions. The numerical calculation is performed individually for the each ER. The 

effects of the mass flux, ϕ′′ , the ambient heat transfer coefficient, hamb, and the inlet 

temperature, Tin, on the entropy generation rate are also investigated.  

    As is apparent from the above explanations, in this analysis, two phenomena are considered 

as follows: i) the heat transfer inside the pipe, ii) the local entropy generation in the fluid flow. 

The analysis is based on two-dimensional continuity, momentum, and energy equations. 

 

Mathematical model 

 

The assumptions made are as follows: 

-The air is assumed to behave as an ideal gas. 

-The thermo-physical properties of air vary with temperature. 

-The flow is steady, two-dimensional axisymmetric, turbulent and compressible.   

-The thickness of the pipe is neglected. 

-The gravity effect is negligible. 

-No-slip condition is assumed at the pipe wall. 
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The governing conservation equations 

 

    The governing equations for the steady-state turbulent compressible flow and heat transfer 

in the flow region (-L1≤ x ≤ L2 and 0 ≤ r ≤ R) can be written as follows: 
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Radial momentum:  
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Energy:  
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where λ eff is the effective conductivity and for the RNG k-ε model, effPeff C µ⋅⋅α=λ    (3b) 

where α, the inverse effective Prandtl number, is computed using the following formula 

derived analytically by the RNG theory: 
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where 
P

0 Cµ
λ

=α             (3d)  

and µ is viscosity, Cp is specific heat, and Φ is viscous dissipation term, which is 
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Two additional equations for the RNG k-ε turbulence model: The turbulence kinetic energy, 

k, and the dissipation rate, ε, are determined using the following transport equations, 

respectively: 
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where αk and αε are the inverse effective Prandtl numbers for k and ε, respectively, and are 

calculated from Eq. (3c) by using α0=1, 
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Cµ, C1ε and C2ε are the model constants, 
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where S is the modulus of the mean rate-of-strain tensor, defined as 
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Sij (the mean strain rate) is given by: 
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38.40 =η , and 012.0=β . 

 

Boundary conditions: 

 

At the pipe inlet,   

 

ρ
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where )r(ϕ ′′  is the mass flux per unit area and maxϕ  is its maximum value. 

 

At the isolated (adiabatic) walls, 0
x
T
=

∂
∂  and 0

r
T
=

∂
∂      (5d,e) 

At the pipe wall, v(x,R) = 0,               (5f) 

the convective heat transfer is assumed, i.e.: [ ]ambambw T)R,x(Th)x("q −−= ,       (5g) 

and the no-slip conditions are assumed, i.e.: u(x,R) = 0       (5h) 

 

    Since, the profiles of velocity and temperature are both symmetric with respect to the axis 

of the pipe, the relevant boundary conditions at the pipe axis (r = 0) are  

 

0
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where φ is any arbitrary variable. 
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At the inlet and outlet planes,  
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Entropy generation rate 

 

    In the fluid flow, irreversibility arises due to the heat transfer and the viscous effects of the 

fluid. The entropy generation rate can be expressed as the sum of contributions due to viscous 

effects and thermal effects, and thus it depends functionally on the local values of velocity 

and temperature in the domain of interest. In these systems, when both temperature and 

velocity fields are known, the volumetric entropy generation rate ( '''
genS ) at each point can be 

calculated as follows [10]: 
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where ( )
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genS  represent the entropy generation rates due to heat transfer and 

fluid friction, respectively, and they are defined as: 
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The total entropy generation rate over the volume ( genS& ) can be calculated as follows: 
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where V is the volume. 
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    The Bejan number, Be, which compares the magnitude of entropy generation due to heat 

transfer to the magnitude of the total entropy generation, is defined by: 
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    When Be >> 0.5, the irreversibility due to heat transfer dominates, while for Be <<0.5 the 

irreversibility due to viscous effects dominates. For 5.0Be ≅ , entropy generation due to heat 

transfer is almost of the same magnitude as that due to fluid friction. 

     The merit number (M) is defined as the ratio of exergy transferred to the sum of exergy 

transferred and exergy destroyed [9], i.e.: 
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where I&  is the rate of total irreversibility and it is defined as: 
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    The rate of exergy transfer ( aQ& ) accompanying energy transfer at the rate of Q&  is given as 

[9]: 
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where Q& is the heat transfer rate from the pipe wall to environment, which can be written as: 

 

( )awaww "qAQ =&              (6i) 

 

    At the same time, this heat transfer rate corresponds to the energy change between the inlet 

and outlet.  
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    The “awa” represents area-weighted average of relevant quantity, respectively. The area-

weighted average of a quantity is computed by dividing the summation of the product of the 

selected field variable (ψj) and facet area (Aj) by the total area of relevant surface, (A): 
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    To obtain the total entropy generation rate, firstly, it is necessary to solve the governing 

conservation equations, given in section 2.2.1. The volumetric local entropy generation rate 

can be calculated by using the local velocities and temperatures obtained from the calculations 

of the governing conservation equations, and the total entropy generation rate over the volume 

can be obtained using numerical integration. In order to evaluate more easily the relative 

variations of the thermodynamic parameters, defined with Eqs. (6d-i), in the SE case, with 

respect to those in the UC case, they are normalized by dividing by their base quantities 

obtained from the calculations in the UC case, i.e.: 

 

0

*
φ
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    where the superscript, *, and the subscript, 0, represent the normalized value and the base 

value, respectively.  

 

Computational Procedure 

Calculational Tools   

 

    The FLUENT 6.1 program was chosen as the CFD computer code for this work because of 

the ease with which the analysis model can be created, and because the software allows users 

to modify the code for special analysis conditions through the use of user subroutines. The 

FLUENT computer code uses a finite-volume procedure to solve the Navier-Stokes equations 

of fluid flow in primitive variables such as u-velocity, v-velocity, and pressure. A variety of 

turbulence models is offered by the FLUENT computer code. A detailed description of 

turbulence models and its application to turbulence can be found in Ref. [37]. In the case of 

the k-ε models, two additional transport equations, Eqs. (4a,b) with sub-Eqs. (4c-i), (for the 
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turbulent kinetic energy and the turbulence dissipation rate) are solved, and turbulent 

viscosity, µt, is computed as a function of k and ε. The RNG k-ε model belongs to the k-ε 

family of turbulence models; however, unlike the standard k-ε model, the RNG k-ε model was 

derived using a statistical technique called renormalization group methods. The model 

equations are similar to the standard k-ε model, but the statistical derivation results in 

different values for the various constants in the equations. A more comprehensive description 

of RNG theory and its application to turbulence can be found in Refs. [38, 39]. The RNG-k-ε  

model was used as a turbulence model in this study. The model constants for the RNG-k-ε 

model are Cµ=0.0845, C1ε=1.42, C2ε=1.68 and wall Prandtl number=0.85. The solution 

method for this study is axisymmetric.  

    In order to define the mass fluxes varying with the radial position in all cases, an UDF 

(User Defined Function) file was introduced to the prepared FLUENT case file. The UDF 

files provide the capability to customize boundary conditions, source terms, property 

definitions (except specific heat), surface and volume reaction rates, user defined scalar 

transport equations, discrete phase model (e.g. body force, drag, source terms), algebraic slip 

mixture model (slip velocity and particle size), solution initialization, wall heat fluxes and 

post processing using user defined scalars, and so they can significantly enhance the 

capability of FLUENT. Furthermore, a computer program has been developed to calculate 

numerically the volumetric entropy generation rate distributions in Eqs. (6a-d) and the other 

thermodynamic parameters in Eqs. (6e-i), by using the results of the calculations performed 

with the FLUENT code. This program, written in FORTRAN 77 language, calculates 

numerically the axial and radial derivations of the temperature (T) and the components (ux 

and ur) of velocity, which are functions of the axial and radial distances.  It uses the finite-

differences approach, and thus it calculates the volumetric entropy generation rate 

distributions and the other thermodynamic parameters as two dimensional.   

 

Simulation Values  

 

    R = 0.05 m, L1 = 2R, L2 = 10R and RT = 0.2R, 0.3R,.., 1.0R (or ER = 10/2, 10/3,..,1). 

φmax = 5.0 kg/m2-s, Tin = 400 K, Tamb = 300 K and hamb = 20  W/m2-K. 

 

For RT = 0.2R (ER=5), φmax = 1.0, 1.5,.., 5.0 kg/m2-s, Tin = 400, 500,.., 1000 K, and hamb = 20, 

30,.., 100  W/m2-K. 
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    The density of air, according to the ideal gas law for compressible flows, has the following 

form: 

 

T
PPop

ℜ

+
=ρ               (9a) 

 

    where opP  is the  operating pressure (Pop= 101325 Pa) and ℜ  is the ideal gas constant (287 

J/kg-K for air). 

    The other temperature-dependent thermo-physical properties of air at T = 270 to 1500 K 

and atmospheric pressure (101325 Pa) were obtained by curve-fitting to data, taken from 

Refs. [40-42] as follows: 

 
3724

P T1071508.3T1016841.8T35361.015.1049C −− ⋅−⋅+−=         (9b) 
2853 T1054631.1T1089143.71093145.3 −−− ⋅−⋅+⋅=λ                   (9c) 

21186 T1043383.1T103986.51059059.3 −−− ⋅−⋅+⋅=µ                   (9d) 

 

   Grid size: The grid independent tests were carried out to ensure grid independence of the 

calculated results; consequently, the grid size and the grid orientation giving the grid 

independent results were selected, and thus the total cell number of 100000 cells (1000x100) 

in the second part was adopted. 

 

Numerical Results  

Temperature and Velocity Distributions in the Uniform Section  

     

    The uniform section of the pipe is under the ambient conditions while the converging 

section is insulated, and the inlet temperature of the fluid is relatively hotter than the ambient 

temperature. Therefore, the temperature of the fluid entering into the uniform section will 

decrease gradually towards the pipe wall and outlet, and the temperature gradients in the 

radial and axial directions will occur, which in turn will increase the local entropy generation. 

The two-dimensional temperature distributions within the uniform section of the pipe in the 

case of Tin=400 K, φmax=5 kg/m2-s and hamb=20 W/m2-K are countered in Figure 2 for the 

different throat radiuses (RT=0.05, 0.03, 0.02 and 0.01 m).  One can see from this figure that 

the constant temperature contours extend further inside the fluid, and the relatively low 
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temperature contours to the inlet temperature are developed in the region close to the pipe 

wall as the pipe length extends. This is because of the convective heating of the fluid in the 

vicinity of the pipe wall. Furthermore, as the throat radius contracts (RT= 0.05 to 0.01 m, the 

heat transfer from the pipe wall to the environment increases from 216 to 238 W due to the 

increasing of the turbulence intensity, and as a result of this, the pipe wall temperature 

increases from 369 to 375 K. However, in the case of the large throat cross-sections, the 

centerline temperature does not change significantly (about 399 K) because the sufficient cool 

penetration does not reach this region.   

    As known, in a pipe flow, the cross-section contraction accelerates fluid, and the sudden 

expansion in the pipe produces the high velocity gradients which also increase the local 

entropy generation rate (see Eqs (3e), (6a) and (6c)). In order to see clearly these gradients, 

the variations of the axial and radial velocities at the various radial planes in the uniform 

section are plotted versus the axial distance in Figures 3 and 4 for the cases mentioned in the 

previous paragraph, respectively. The effect of the contraction of the throat cross-section on 

the velocity distribution can be determined in these figures. At the pipe wall, both velocities 

are zero along the pipe length (see Eqs.(5f,h)).  As the throat radius contracts from 0.03 to 

0.01m,  the region, in which the high velocity gradients occurs, expands up to a certain 

distance, in the range of x=0.1 to 0.3 m, at the axial direction. The both velocities remain 

quasi-constant along the pipe length after these distances.  

 

The Local Entropy Generation in the Uniform Section 

     

    The volumetric local entropy generation rate distributions within the uniform section of the 

pipe in the case of Tin=400 K, φmax=5 kg/m2-s and hamb=20 W/m2-K are countered in Figure 5 

as logarithmic values for the different throat radiuses (RT=0.05, 0.03, 0.02 and 0.01 m). These 

contours do not follow the temperature contours presented in Figures 2. This is because of the 

entropy generation is proportional to the temperature gradient and inverse proportional to the 

temperature. As the cool penetration takes place along the pipe length, the local entropy 

generation region widens but the peak value of volumetric local entropy generation rate 

decreases. In region near the wall, the volumetric local entropy generation rate profiles remain 

quasi-constant along the pipe length. However, it is very close to zero along the centerline due 

to the fact that the radial temperature gradient is zero and the velocity gradients are either very 

small or zero.  The contraction of the radius of the throat (RT=0.05 to 0.01 m) increases 
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significantly the entropy generation rate, i.e.: its maximum value rises from 2.83 to 4.63 

W/m3-K (as the logarithmic value) (about 60%).   

    Figures 6-10, including four each sub-graphics, show the variations of the Bejan number, 

the normalized total entropy generation (S*
gen), the normalized ratio of the heat transfer to the 

irreversibility generated (Q/I)*, the normalized exergy transfer rate (Q*
a) and the normalized 

merit number (M*), respectively, with the different parameters: (a) the throat radius (RT=0.05 

to 0.01 m), (b) the maximum mass flux (φmax=5 to 1 kg/m2-s), (c) the ambient heat transfer 

coefficient (hamb=20 to 100 W/m2-K) and (d) the inlet temperature (Tin=400 to 1000 K).  

    The values of the throat radius, maximum mass flux and  ambient heat transfer coefficient, 

(RT=0.014 m, φmax=2.78 kg/m2-s and h=46.5 W/m2-K), corresponding to Be=0.5, in which the 

heat transfer and fluid friction entropy generation rates are equal to the each other, are also 

indicated in the sub-graphics 6a,b,c. As the throat cross-section contracts, the Bejan number 

first declines slightly and then decreases sharply to 0.23 (after RT=0.03 m). This means that 

the cross-section contraction increases significantly the fluid friction entropy generation rate 

rather than the heat transfer entropy generation rate. However, the Bejan number rises 

exponentially from 0.23 to 0.94 as the maximum mass flux decreases linearly from 5 to 1 

kg/m2-s, and its rise continues slightly from 0.94 to 0.97 with the increase of the inlet 

temperature from 400 to 1000 K. Due to the fact that the increment in the ambient heat 

transfer coefficient increases the heat transfer from the fluid to the surrounding, which in turn 

raises significantly the heat transfer entropy generation, it also raises the Bejan number (from 

0.23 to 0.69).  

    As is apparent from Figure 7, the contraction in the throat cross-section increases the fluid 

friction entropy generation rate, which in turn increases exponentially 11 times the total 

entropy generation rate with respect to the its base value. However, this rate decreases 

exponentially to 1.07 (the normalized value) as the maximum mass flux decreases linearly. 

Furthermore, as expected, it rises quasi-linearly from 1.07 to 6.8 and from 11 to 28.8 with the 

increases of the inlet temperature and the ambient heat transfer coefficient, respectively, due 

to the fact that these increases raise the heat transfer entropy generation rate. Figure 8 shows 

the normalized ratio of the heat transfer to the irreversibility )I/Q( && , which is inverse 

proportional to the total entropy generation rate. As the throat cross-section contracts, it 

declines due to the increase of the fluid friction irreversibility. However, it rises from 0.1 to 

0.8 with the decrease of the maximum mass flux. This ratio is not very much affected from 

the ambient heat transfer coefficient whereas with the increase of the inlet temperature, it first 
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decreases until Tin=540 K and then increases quasi-linearly to 0.84. These results bring out 

that the cross-section contraction lowers the ratio of the heat transfer to the irreversibility in 

all investigated cases.   

    The exergy transfer rate and the merit number are one of the important parameters in the 

entropy generation analyses. Figures 9 and 10 exhibit their normalized variations. As the 

cross-section contracts, the exergy transfer rate increases slightly 1 to 1.2, and decreases from 

this level to 0.76 with the decrease of the maximum mass flux. This rate rises quasi-

logarithmically from 1.2 to 1.74 and quasi-linearly from 0.76 to 17.4 also with the increases 

of the ambient heat transfer coefficient and the inlet temperature, respectively, due to the fact 

that both increases (especially the inlet temperature increase) raise significantly the heat 

transfer. The normalized merit number profiles in the same cases except the temperature 

increase exhibit a contrary situation of the normalized exergy transfer rate, i.e.: they decrease 

73% (from 1 to 0.27) and 40% (from 0.27 to 0.16) with the contraction of the cross-section 

and with the increase of the ambient heat transfer coefficient, respectively, and rise 226% 

(from 0.27 to 0.88) and 43% (from 0.88 to 1.26) with the decrease of the maximum mass flux 

and with the increase of the inlet temperature, respectively. These values indicate that the 

useful energy transfer rate to irreversibility rate improves as the mass flux decreases and as 

the inlet temperature increases. 

 

Conclusions 

 

    The numerical solution of the local entropy generation in the compressible flow through the 

suddenly expanding pipe was analyzed for the different expansion ratios. The effects of the 

mass flux, the ambient heat transfer coefficient and the inlet temperature on the entropy 

generation rate were also investigated. The specific conclusions derived from this study can 

be listed briefly as follows: 

• In the case of Tin=400 K, φmax=5 kg/m2-s and hamb=20 W/m2-K, the heat transfer from 

the pipe wall to the environment increases from 216 to 238 W as the throat radius 

contracts from 0.05 to 0.01 m. 

• As the throat radius contracts from 0.03 to 0.01m,  the high velocity gradient region 

expands up to a certain distance, in the range of x=0.1 to 0.3 m, at the axial direction 

and the both axial and radial velocities remain quasi-constant along the pipe length 

after these distances. 
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• The contraction of the radius of the throat (from 0.05 to 0.01 m) increases significantly 

the maximum value of the volumetric entropy generation rate, (about 60%). 

• The contraction in the throat cross-section raises exponentially 11 times the total 

entropy generation rate with respect to the its base value. Furthermore, it rises quasi-

linearly from 1.07 to 6.8 and from 11 to 28.8 with the increases of the inlet 

temperature and the ambient heat transfer coefficient, respectively. 

• The normalized merit number decreases 73% and 40% with the contraction of the 

cross-section and with the increase of the ambient heat transfer coefficient (from 20 to 

100 W/m2-K), respectively, whereas it rises 226% and 43% with the decrease of the 

maximum mass flux (from 5 to 1 kg/m2-s) and with the increase of the inlet 

temperature (from 400 to 1000 K), respectively. Consequently, the useful energy 

transfer rate to irreversibility rate improves as the mass flux decreases and as the inlet 

temperature increases. 

 

 

 

 

 

 

                  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Coordinate system and two-dimensional axisymmetric 
model of the suddenly expanding pipe (the dimensions are not in 
scale) 
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Figure 2. Temperature contours within the uniform section of the pipe 
(Tin=400 K, φmax=5 kg/m2-s and hamb=20 W/m2-K) 
 



Entropy 2005, 7 57

0 0.1 0.2 0.3 0.4 0.5x [m]
-20

0

20

40

60

80

100

120

u
[m

/s
]

R
T
=0

.0
1

m

0 0.1 0.2 0.3 0.4 0.5x [m]
0

2

4

6

8

10

12

14

u
[m

/s
]

R
T
=0

.0
3

m

0 0.1 0.2 0.3 0.4 0.5x [m]
1

2

3

4

5

6

u
[m

/s
]

0.005
0.010
0.020
0.030
0.040 R

T
=0

.0
5

m
(U

C
ca

se
)

r [m]

0 0.1 0.2 0.3 0.4 0.5x [m]
-10

-5

0

5

10

15

20

25

30

35

u
[m

/s
]

R
T
=0

.0
2

m

 
 Figure 3. Variations of axial velocities at the various radial planes in the 

uniform section of the pipe (Tin =400 K, φmax=5 kg/m2-s and hamb=20 W/m2-K) 
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Figure 4. Variations of radial velocities at the various radial planes in the 
uniform section of the pipe (Tin =400 K, φmax=5 kg/m2-s and hamb=20 W/m2-K) 
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Figure 5. Logarithmic volumetric local entropy generation rate contours within the 
uniform section of the pipe (Tin =400 K, φmax=5 kg/m2-s and hamb=20 W/m2-K) 
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Figure 6. Variations of the Bejan number with (a) the throat radius, (b) the maximum 
mass flux, (c) the ambient heat transfer coefficient and (d) the inlet temperature 
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Figure 7. Variations of the normalized total entropy generation with (a) the throat radius, 
(b) the maximum mass flux, (c) the ambient heat transfer coefficient and (d) the inlet 
temperature 
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Figure 8. Variations of the normalized ratio of the heat transfer to the irreversibility 
generated in the system *)I/Q( &&  with (a) the throat radius, (b) the maximum mass flux, 
(c) the ambient heat transfer coefficient and (d) the inlet temperature 
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Figure 9. Variations of the normalized exergy transfer rate with (a) the throat radius, 
(b) the maximum mass flux, (c) the ambient heat transfer coefficient and (d) the inlet 
temperature 
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