
Entropy 2005, 7[3], 190-198                                 190 

Entropy 
ISSN 1099-4300  

http://www.mdpi.org/entropy/ 

Full Paper 

Entropy, Fluctuation Magnified and 
Internal Interactions 
 

Yi-Fang Chang 
 
Department of Physics, Yunnan University, Kunming, 650091, China 
(e-mail: yifangchang1030@hotmail.com) 
 
Received: 22 November 2004/ Revised: 7 February 2005 / Accepted: 20 May 2005 / 
Published: 28 August 2005 
 
Abstract：Since fluctuations can be magnified due to internal interactions under a 
certain condition, the equal-probability does not hold. The entropy would be defined as 

∑−=
r

rr tPtPktS )(ln)()( . From this or Ω= lnkS  in an internal condensed process, 

possible decrease of entropy is calculated. Internal interactions, which bring about 
inapplicability of the statistical independence, cause possibly decreases of entropy in 
an isolated system. This possibility is researched for attractive process, internal energy, 
system entropy and nonlinear interactions, etc. An isolated system may form a 
self-organized structure probably. 
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INTRODUCTION 
Usual development of the second law of the thermodynamics was based on an 

open system, for example, the dissipative structure theory [1]. Weiss, et al., [2] 
discussed the extended thermodynamics, and proposed a new principle for stationary 
thermodynamic processes: Maximum of the local entropy production becomes 
minimal in the process [3]. Fort and Llebot [4] proved that the classical entropy does 
not increase monotonically for an isolated fluid, and considered that the generalized 
entropy of extended irreversible thermodynamics is more suitable for this fluid. 

The basis of thermodynamics is the statistics, in which a basic principle is 
statistical independence: The state of one subsystem does not affect the probabilities of 
various states of the other subsystems, because different subsystems may be regarded 
as weakly interacting [5]. It shows that various interactions among these subsystems 
should not be considered. But, if various internal complex mechanism and interactions 
cannot be neglected, perhaps a state with smaller entropy (for example, self-organized 
structure) will be able to appear. In this case, the statistics and the second law of 
thermodynamics are possibly different [6]. For instance, the entropy of an isolated 
fluid whose evolution depends on viscous pressure and the internal friction does not 
increase monotonically [4]. 
 
FLUCTUATION MAGNIFIED AND UNEQUAL PROBABILITY 

The second law of thermodynamics is a probability law. The transition probability 
from molecular chaotic motion to regular motion of a macroscopic body is very small. 
But, this result may not hold if interactions existed within a system. According to the 
Boltzmann and Einstein fluctuation theories, all possible microscopic states of a 
system are equal-probable in thermodynamic equilibrium, and the entropy tends to a 
maximum value finally. It is known from statistical mechanics that fluctuations of the 
entropy may occur [7], while fluctuations always bring the entropy to decrease [5,8]. 
Further, under a certain condition fluctuations can be magnified [7,9] due to internal 
interactions, etc. 

It is well known, the entropy of the system can be expressed using the probability 
of finding the system in state r as [10,11] 
        ∑−=

r
rr PPkS ln .                                            (1) 

The probability of the particular state r is 

        )(/1 rr EWP = .                                               (2) 

If the probabilities of all states are equal in the equilibrium, Eq. (1) will find a sum, and 
        WkS ln= .                                                  (3) 
It is namely the Boltzmann-Planck equation. Here S>0. But, if these probabilities are 
not equal always, only Eq. (1) will be appropriate. When the probability changes with 
time, the entropy changes also with time, and would be defined as 
 
       ∑−=

r
rr tPtPktS )(ln)()( .                                       (4) 
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From this we derive 
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It is known that the probability 01 >> rP . For these cases of the increasing 

probability 0>rdP , and 0ln11 >+> rP , so 

0)ln1( <+−= rrr dPPkdS .                                     (7) 

It implies that the entropy rS  decreases when the probability of a state r increases. It 

is consistent with the disorder decrease when the determinability increases. In this case, 

rS  is additive. 

Further, we discuss change of the total entropy. Assume that the initial 
probabilities of all states are equal, ∑ ==

r
rr PrP )1(/1 . According to Eq. (1), the total 

entropy is S=klnr. If there are various internal complex mechanisms in a system (for 
example, self-interactions exist), fluctuations will occur and be magnified, and a 
probability of one of these states will increase as 

        rfm PnP >= /1 .                                               (8) 

But, the probabilities of other r-1 states will be equal yet, 
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Therefore, the entropy of a final state will be 
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All equal-probabilities of these r-1 states will find a sum, 
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By the numeral calculation, we obtain: 
When r=50, 
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n= 10 5 3 2 
dS/k= -0.0843 -0.2982 -0.6810 -1.2729 

 
Let (n/r)=x<1, so [n(1-x)/(n-x)]=(r-n)/(r-1)<1. Then Eq. (11) shows that a Taylor series 
are converged, 
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Above results point quantitatively out that the entropy decreases with fluctuations, and 
with a state fixed continuously. While for n=1, i.e., a state is determined due to 

fluctuation magnified finally, if dSdSdS −== ,0 =-3.9120k. So the entropy decreases 

necessarily. 
 
ATTRACTIVE PROCESS 

According to 
Ω= lnkS ,                                                （14） 

in an isolated system there are the n-particles, which are in different states of energy 

respectively, so !1 n=Ω . Assume that internal attractive interaction exists in the 

system, the n-particles will cluster to m-particles. If they are in different states of 

energy still, then !2 m=Ω . Therefore, in this process 

)!/!ln()/ln( 1212 nmkkdSSS =ΩΩ==− .                      （15） 

So long as m<n for the condensed process, entropy decreases dS<0. Conversely, m>n 
for the dispersed process, entropy increases dS>0. In these cases it is independent that 
each cluster includes energy more or less. In an isolated system, cluster number is 
lesser, the degree of irregularity and entropy are smaller also. It is consistent with a 
process in which entropy decreases from gaseous state to liquid and solid states. 
Moreover, according to Eq.(1), so long as n-particles are equal-probable, 

nkSnPr ln,/1 1 == . These particles cluster to the equal-probable m-particles, 

)/ln(,ln2 nmkdSmkS == . The conclusion is the same. We have discussed the 

possibility on decrease of entropy, its mechanism and some examples [6]. Here from 
the definition of entropy a possibly developed direction is researched. 

The energy of a system is [12] 
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where sε  is the additive part of the particle energy in the state s, in most cases it and  

E are the kinetic energy; 'ssW  and 'ssU  are the absolute values of the attraction and 

repulsion energies of particles in the states s and s’, respectively. 
According to the basic equation of thermodynamics, i.e., Euler equation [8], 

∑−−=
i

ii

T
N

T
YX

T
US µ

.                                     (17) 

For an equal-temperature process, a simple result of Eq.(17) is [5]: 
        dS=(dU/T)+(PdV/T),                                       (18) 

where U is the internal energy of body. When internal interactions exist among 
different subsystems in an isolated system, the internal energy and the entropy will be 
not additive extensive quantities. They relate to different structures of a system. For 
example, the entropy of the coherent light is not an additive quantity. In this case, 
statistical independence and equal-probability in thermodynamic equilibrium are 
unavailable. The additivity of entropy is postulated in statistical physics [5], but 
interactions among subsystems are neglected. As Riedi pointed out [10]: A strongly 
interacting system must be treated as a whole. The total energy U cannot be broken up 
into individual particle energies, here the potential energy of a given molecule depends 
upon the position of all the other molecules. Only when the potential energy term is 
zero, the total energy of the system is separable into a sum of single-particle energies. 

In this case, the total entropy should be extended to 

        ia dSdSdS += ,                                             (19) 

where adS  is an additive part of entropy, and idS  is an interacting part of entropy. 

Eq.(19) is similar to a well known formula: 

        SdSddS ei += ,                                             (20) 

in the theory of dissipative structure proposed by Prigogine. Two formulae are 
applicable for internal or external interactions, respectively. 

Only the first term of right of Eq.(17) is considered, 

    
T
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T
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Further, we discuss concretely a particular case with attract interactions in a 

system. The attractive force 2/ rAF −=  may be gravitational or electromagnetic 

force. The potential energy is 
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r
AU i −=                                                  (23) 

 
In an attractive process the distance and energy all decrease 

        0)( 12
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rr
AUUdU iii .                              (24) 

According to Eq. (22), 1. If the temperature T is changeless, dS=dU/T<0, the 
entropy will decrease. 2. The total energy of an isolated system should be conservative, 
dU=0. Then the potential energy transforms the kinetic energy, and temperature will 
increase, dT>0, 

        0)( 21
2112

12 <−=−=−= TT
TT

U
T
U

T
USSdS .                       (25) 

3. For an equal-temperature process, since the total energy is conservative dU=0, the 
volume decreases in an attractive process dV<0, and so is entropy dS<0 based on 
Eq.(18). Three cases all show that the entropy decreases. In a word, the entropy 
decreases for an attractive process. 
 
SYSTEM ENTROPY AND NONLINEARIRY 

Our conclusions are consistent with the system theory and with the nonlinear 
theory. In a system composed of two subsystems, which are not independent, the 
subadditivity states that 

        )()()( 21 ρρρ SSS +≤ ,                                       (26) 

where 2211 ρλρλρ +=  [13]. This shows that the entropy decreases with the internal 

interaction. Not only is this conclusion the same with the conditioned entropy on 1ρ  

and 2ρ , but also it is consistent with the systems theory in which the total may not 

equal the sum of parts. 
Weinberg has proposed a generalized theory of nonrelativistic nonlinear quantum 

mechanics as a framework for the development and analysis of experimental tests of 
the linearity of quantum mechanics [14]. The nonlinear quantum theory is a notable 
development [15,16]. However, Peres has proven that nonlinear variants of the 
Schrodinger equation violate the second law of thermodynamics [17]. We are sure that 
a nonlinear development of various theories is a necessary direction. The above 
contradiction implies that the second law of thermodynamics seems to exclude the 
nonlinearity, which must include certain interactions. 

In a general case, in systems with nonlinear interaction the computer experiments 
show that the coupling together of complex systems often increases rather than 
decreases the degree of order in the composite system [18]. It corresponds to an order 
parameter occurring for a lower symmetrical state in simple systems. 
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In more general situations, when internal interactions exist in an isolated system, 
if a mechanism produces a process (e.g., repulsive force, fall of temperature, 
diamagnetic body, etc.) to increase the entropy, a reverse mechanism will produce a 
process (e.g., attractive force, rise of temperature, paramagnetic body, etc.) to decrease 
the entropy. For example, if 

         
T
VS

∂
∂

−= ,                                                 (27) 

12 SS >  when )/()/( 1122 TVTV ∂∂<∂∂ ; conversely, 12 SS <  when 

)/()/( 1122 TVTV ∂∂>∂∂ . 

For an ideal gas, 

VRTcSS Vi lnln0 ν++= .                                     (28) 

When temperature or volume of an isolated system decreases, for example, attractive 
force exists, or star is formed from nebula, or the quantity of heat is released in 
chemical reaction, the entropy should decrease for these processes. 

In a theory of the phase transition on hadronic matter expounded by Weinberg 
[19], the Lagrangian density is 

        )(
2
1

φφφ µ
µ PL ii −∂∂−= ,                                      (29) 

where )(φP  corresponds to the potential energy. Such the entropy density is 

       ]')1(3)2[(
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2
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Here S is direct proportion to θ− . If various quantities all are positive, 12 θθ >  for 

the attraction cases, then 12 SS < , and the entropy will decrease. 

 
DISCUSSION 

In a biological self-organizing process some isolated systems may tend to the 
order states spontaneously. Ashby pointed out [20]: Ammonia and hydrogen are two 
gases, but they mix to form a solid. There are about 20 types of amino acid in germ, 
they gather together, and possess a new reproductive property. It is a usual viewpoint 
that solid is more order than gas, and corresponding solid entropy should be smaller 
than gaseous entropy. Germ should be more order than amino acid yet. Prigogine and 
Stengers [9] discussed a case: When a circumstance of Dictyostelium discoideum 
becomes lack of nutrition, they as some solitary cells will unite to form a big cluster 
spontaneously. In this case these cells and nutrition-liquid may be regarded as an 
isolated system. Jantsch [21] pointed out: When different types of sponge and water 
are mixed up in a uniform suspension, they rest after few hours, and then separate 
different types automatically.  

It is more interesting, a small hydra is cut into single cell, then these cells will 
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spontaneously evolve, firstly form some cell-clusters, next form some 
malformations, finally will become a normal hydra. 

In chemistry the Belousov-Zhabotinski reaction shows a period change 
automatically, at least a certain time. In microscopic region, the Pauli exclusion 
principle may keep an order state spontaneously. 

In fact the auto-control mechanism in an isolated system may produce a degree of 
order. If it does not need the input energy, at least in a given time interval, the 
auto-control will act like a type of Maxwell demon, which is just a type of internal 
interactions. The demon may be a permeable membrane. For the isolated system, it is 
possible that the catalyst and other substance are mixed to produce new order 
substance with smaller entropy. Ordering is the formation of structure through the 
self-organization from a disordered state. 

In a word, thermodynamics and its second law are based on certain prerequisites, 
such as statistical independence, etc. Then the entropy increase principle is extended to 
any case. We think that the applicability of the principle should be tested again. When 
there are interactions among the subsystems in an isolated system: 1. All of generalized 
second law of thermodynamics may not be applicable. 2.The entropy increase principle 
in a nonequilibrium process may not hold always. 3. It should be discussed that all 
middle change process from begin to end is always entropy increase. There are rise and 
fall for the relation between time and entropy, namely, the entropy of this system can 
increase or decrease for different time intervals. The possible mechanism behind 
conclusions is fluctuation and self-interaction, from which self-organization may form 
a lower entropy state. 

Perhaps, the second law of thermodynamics should be developed for a system 
with complex relations. Haken has pointed out [7] that for thermodynamics, in closed 
systems the entropy never decreases. The proof of this theorem is left to statistical 
mechanics. To be quite frank, in spite of many efforts this problem is not completely 
solved. When the internal interactions exist among subsystems, the statistical 
independence and equal-probability are unavailable. If fluctuations are magnified, and 
the order parameter comes to a threshold value, phase transition will occur. In this case, 
the entropy may decreases in an isolated system, at least within a certain time. A 
self-organized structure whose entropy is smaller will be formed. 
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