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Abstract: 

The present research investigates second law analysis of laminar flow over a backward facing step 

(BFS). Entropy generation due to separation, reattachment, recirculation and heat transfer is studied 

numerically. Local entropy generation distributions were obtained by solving momentum, energy, and 

entropy generation equations. The effect of dimensionless temperature difference number (τ) and 

Brinkman number (Br) on the total entropy generation number (Ns) was investigated. Moreover, the 

effect of Reynolds number (Re) on the value of Ns was reported. It was found that as Re increased the 

value of Ns increased. Also, as Br increased the value of Ns increased. However, it was found that as τ 
increased the value of Ns decreased. For the bottom wall of the channel, the maximum value of Ns 

occurs inside the recirculation zone and reduces to a minimum value at the point of reattachment point. 

Also, for Re ≥ 500, a second peak of entropy generation appears after the reattachment point. For the 

top wall of the channel, the value of Ns has a maximum value directly above the step and its value 

reduced downstream the step. The contribution of the top wall to Ns downstream the point of 

reattachment was relatively small. 
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Nomenclature 

A Constant in the grid stretching equation 

a Upstream channel height 

Br Brinkman number 

D Location of grid clustering 

H Downstream channel height 

h local convection heat transfer coefficient 

k Thermal conductivity 

L Length of the channel 

M Number of points in horizontal direction 

N Number of points in vertical direction 

Nu Nusselt number 

Ns Total entropy generation number 

p Pressure 

Pr Prandtl number 

Re Reynolds number 

U Bulk velocity at inlet 

u x component of velocity 

v y component of velocity 

q”
w Heat flux at the top and bottom wall 

S Step height 

S”
gen Volume rate of entropy generation 

T Temperature 

Tw Wall temperature 

Tb Bulk temperature 

X2 Beginning of the secondary recirculation bubble 

X3 End of the secondary recirculation bubble 

Xr Reattachment length 

Greek Letters 

α Thermal diffusivity 

β Clustering parameter 



 
236Entropy 2005, 7[4], 234-252 

θ Dimensionless temperature 

µ Dynamic viscosity 

ν Kinematic viscosity 

ρ Density 

τ Dimensionless temperature parameter 

Subscripts 

b Bulk value 

cl Centre line at inlet section 

cond Conduction 

LW Bottom wall 

tot Total 

UW Top wall 

vis Viscous 

w Wall 

Superscripts 

*  Dimensional quantities 

 

Introduction 

Heat Transfer and fluid flow processes are inherently irreversible, which leads to an increase in 
entropy generation and thus destruction of useful energy. The optimal second law design criteria 
depend on the minimization of entropy generation encountered in fluid and heat transfer processes.   

In the last three decades several studies have focused on second law analysis of heat and fluid flow. 

Bejan [1, 2] showed that entropy generation in convective fluid flow is due to heat transfer and viscous 

shear stresses. Arpaci and Selamet [3] studied entropy generation in boundary layers. They showed 

that the entropy generation in boundary layers is due to temperature gradient and viscosity effects. San 

and Lavan [4] investigated the entropy generation for combined heat and mass transfer in a two 

dimensional channel. Also, numerical studies on the entropy generation in convective heat transfer 

problems were carried out by different researchers. Drost and White [5] developed a numerical 

solution procedure for predicting local entropy generation due to fluid impinging on a heated wall. 

Abu-Hijleh et al. [6, 7, and 8], studied entropy generation due to natural convection around a 

horizontal cylinder. Haddad et al. [9] considered the local entropy generation of steady two-

dimensional symmetric flow past a parabolic cylinder in a uniform flow stream. However, very little 

work found in literature dealing with entropy generation in separated flows. 

Separated flows, accompanied with heat transfer, are frequently encountered in various engineering 
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applications, such as heat exchangers and ducts used in industrial applications. These separated flows 

are intrinsically irreversible because of viscous dissipation, separation, reattachment and recirculation 

that generate entropy. The flow over a backward facing step (BFS) was studied extensively to 

understand the physics of such separated flows. The BFS has the most features of separated flows, 

such as separation, reattachment, recirculation, and development of shear layers. However, most of the 

published work on BFS has been extensively investigated, from a fluid mechanics perspective or from 

a heat transfer perspective. For example, Armaly et al. [10] studied laminar, transition, and turbulent 

isothermal flow over a BFS experimentally. Also, numerical studies in the laminar regime for 

isothermal flow were conducted by Armaly et al. [10] and by Durst and Periera [11]. Additional 

numerical work for a two-dimensional isothermal flow over a BFS was conducted by Gartling [12], 

Kim and Moin [13], and Sohn [14]. Flow over a BFS with heat transfer was conducted by Vradis et al. 

[15], Pepper et al. [16], and Lin et al. [17]. Also, studies on three-dimensional effects on flow 

characteristics, over a BFS, were also carried out [18, 19, 20, and 21].   

Review of existing literature reveals no work analyzing flow over BFS with heat transfer from a 

second law point of view. This problem needs to be analyzed from a second law perspective to 

evaluate the performance of flows experiencing separation, reattachment, and vortices in conserving 

useful energy. Thus, the present work was carried out to gain deeper understanding of the destruction 

of the useful energy encountered in a separated flow accompanied with heat transfer. The present 

research investigates, numerically, entropy generation due to heat transfer fluid flow over a BFS. 

 
Governing Equations 

The dimensionless continuity, momentum, energy, and entropy generation equations in Cartesian 

coordinates are given as [22, 23]:  
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where x, y are the non dimensional coordinates, with respect to the channel height H, The other 

dimensionless quantities are defined as: 

U
uu
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= ,
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pp
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w

TT
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where U is the average velocity of the incoming flow at the step, Tw is the temperature of the wall 

directly at step, and Tcl is the temperature of the incoming flow. The non-dimensional numbers are 

given as: Reynolds number
ν

=
)2(Re aU

, Prandtl number 
α
ν

=Pr , entropy generation 

number
k
HS

Ns gen
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Equation 4 was derived by assuming that the temperature difference (Tcl-Tw) is not relatively high such 

that constant fluid physical properties assumption applies. 

 
Problem Description and Boundary Conditions 

The basic flow configuration, under study, is shown in Fig. 1. The expansion ratio (S/H) is set to 1/2. 

The channel length (L) is set to 30H. The flow is considered to be two-dimensional, laminar, steady, 

constant fluid properties, and incompressible. 

 

L 

q=qw=constant; u=v=0 

 

Fig. 1. Problem geometry and boundary conditions. 

 

The flow at the inlet, at x=0, is assumed hydro-dynamically fully developed, where the dimensionless 

parabolic velocity distribution is given as: 

( ) ( ) ( yyyu 42 4
2
3

−= )            (6) 

A no-slip velocity boundary condition is applied along the top wall, bottom wall, and the vertical wall 

of the step, see Fig. 1. A fully developed outlet velocity boundary condition is assumed: 

Xr 

H 

a    
x 

u(y)  T(y)    
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u=v=0 

q=qw=constant; u=v=0 

qw=0  S 
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Also, the temperature profile at the inlet is assumed to be fully developed and is given as: 
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An adiabatic boundary condition is imposed on the vertical wall of the step, i.e. x= 0. However, a 
constant heat flux, , is enforced along the top and the bottom channel walls downstream the step. 

The value of the heat flux is set equal to: 
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H
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5
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           (9) 

Equation 9 can be expressed in terms of non-dimensional temperature as: 
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The length of the computational domain is chosen to be 60 times the step height to ensure the fully 

developed outlet boundary conditions [12, 15, and 16]. 

 
Numerical Implementation 

Equations 1, 2, 3, and 4, with the corresponding boundary conditions, are solved using the finite 

volume approach. The computational flow domain is decomposed into a set of non overlapping control 

volumes surrounding a grid node, as shown by the dotted lines in Fig. 2.  

 

N 

n 

P w 

Fig. 2. Control Volume. 

The governing equations are integrated over each control volume and are discritized in terms of the 

values at a set of nodes defining the computational mesh (E, W, N, and S in Fig. 2). The SIMPLE 

algorithm [25] is used as the computational algorithm. For full details of the method see references 

[25, 26]. The diffusion term, in Eqs. 2, 3, and 4, is approximated by second-order central difference 

which gives very stable solution. However a hybrid differencing scheme is adopted for the convective 

terms, which makes the coefficients of the resulting finite volume equations always positive that 

satisfies the diagonally dominant condition [25, 26]. This scheme utilizes the favorable properties of 

the upwinding differencing scheme and central differencing scheme [25, 26]. This scheme is highly 
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used in CFD packages and proved to be very useful for predicting physical problems [26].  

A fine grid is used in the regions near the point of reattachment to resolve the steep velocity gradients 

while a coarser grid is used far the downstream. This is done using a grid stretching technique that 

results in considerable savings in terms of the grid size and thus in computational time. The grid 

stretching method is done by transforming the uniform spacing grid points, in the x direction, into a 

non uniform grid, by using the following transformation [24] 
( )[ ]
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where x is the location of non uniform stretched grid points, X is the location of the non-stretched grid 

points and A is a constant given by [24]: 
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The parameter β is a stretching constant, D is the locations of grid clustering, and L is the channel 

length. The grid stretching is used in x direction; however, a uniform grid is used in y direction. In the 

y direction steep velocity gradients take place next to the top and bottom walls. So, sufficient grid 

points need to be used nearby. Besides, at the point of separation a fine grid need to be used. 

Moreover, inside the primary recirculation zone and secondary recirculation zone a fine grid need to be 

used to resolve the velocity gradients inside these zones. So, it is clearly evident that the flow all over 

the y direction experience steep velocity gradients. For that reason a uniform grid is used to distribute 

the grid points evenly in the y direction between these areas that experience steep velocity gradients. 

The grid independence study gives very accurate solution by using such uniform grid in the y 

direction, as will be shown in the next section. 

The final discretized algebraic finite volume equations are written into the following form: 

SSNNPPWWEE aaaaa φφφφφ +=+−−         (13) 

 where P, W, E, N, S denotes cell location, west face of the control volume, east face of the control 

volume, north face of the control volume and south face of the control volume, respectively.  The 
symbol  in Eq. 13 holds for u, v, or T. The resulted algebraic equations are solved with tri-diagonal 

matrix algorithm (Thomas algorithm) with the line-by-line relaxation technique. The convergence 

criteria were defined by the following expression: 
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where resid is the residual; M and N are the number of grid points both in both the axial and the 

vertical directions, in the computational plane, respectively.  

After the temperature and velocity fields are obtained, by solving Eq. 13, Eq. 5 is used to solve for the 

entropy generation number at each grid point in the flow domain. These point entropy generation 

numbers are used to generate further useful total entropy generations in the flow domain. For example, 

the total entropy generation number along the top and the bottom wall can be found by using the 
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following two equations respectively: 
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Because of the non-uniformity of the grid in the stream wise direction, the integrations, in Eq. 15 and 

Eq. 16, were carried out using a cubic spline interpolation technique. Then, the Simpson’s rule of 

integration was employed.  

The rate of entropy generation number at each cross section, Ns (x), is calculated by using the 

following equation: 
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The Simpson’s rule of integration was employed in the y-direction without using cubic splines since 

the grid is uniform in the y direction.  

The total entropy generation over the entire flow domain is calculated using the following equation: 
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The magnitude of the Nusselt number can be expressed as: 

k
HhNu )2(
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where h is the convective heat transfer coefficient given by 

)( bw

w

TT
q

h
−
′′

=             (20) 

Equation 20 can be expressed in terms of non-dimensional temperature as: 
))(( wclbww TThq −θ−θ=′′           (21) 

By Equating Eq. 10 and Eq. 21, and noting that )( wcl θ−θ =1, then the Nusselt number can be 

expressed as: 

bw
Nu

θθ −
=

8.12
            (22) 

 

Grid testing  

Extensive mesh testing was performed to guarantee grid independence solution. Eight different meshes 

were used for the grid independence study as shown in Table 1. According to the experiment of 

Armaly et al. [10], and previous published numerical work [12, 13, 15, 16], two recirculation flow 

zones are encountered for Re = 800; See Fig 3. The primary recirculation zone occurs directly 

downstream the step at the bottom wall of the channel, whereas the other secondary recirculation zone 
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exists along the top wall. However, for lower Reynolds numbers, such as Re=400, only the bottom 

recirculation zone appears. The Re = 800 was used, in the present work, to perform grid independence 

because it has been accepted as a benchmark problem by the “Benchmark Solutions to Heat Transfer 

Problems” organized by the K-12 committee of the ASME [15,16]. The BFS problem under study was 

tested for calculating reattachment length (Xr), X2, and X3. Moreover, the Nusslet number over the top 

wall at the outflow of the channel was calculated.  

 
Fig. 3. Flow geometry showing primary and secondary recirculation zones. 

Table 1 shows the results obtained for the grid independence study for the case of Re = 800. As shown 

in Table 1, a grid size of 125×250 (125 grid points in y and 250 grid points in x) gives a grid 

independent solution.  

Table 1: Grid independence study, Re = 800. 

Grid Size Xr X2 X3 Nusselt number 

13×24 6.50 Not predicted Not predicted 8.50 

25×50 4.00 2.50 5.20 8.40 

37×75 3.35 2.35 5.47 8.38 

49×100 5.77 4.65 9.45 8.30 

75×150 5.90 4.81 9.76 8.25 

101×199 6.00 4.81 10.10 8.24 

125×250 6.03 4.81 10.14 8.236 

151×299 6.03 4.81 10.15 8.234 

 
Code Validation 

The present numerical solution is validated by comparing present results, for Re = 800, with the 

experiment of Armaly et al. [10] and with other numerical published work [12, 13, 15, and 16].  As 

shown in Table 2, the present work predictions are very close to the other numerical published work 

results. However, all of the numerical published work, including present work, under estimates the 

reattachment length. According to Armaly et al. [10], the flow at Re=800 has three dimensional 

features. So, the under estimation of Xr, by all numerical published work are due to two-dimensional 

Xr 

L 

H 

   X2 

X3 

S 
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flow assumption embedded in the numerical solutions [15].  More specifically, it is due to the side wall 

induced three dimensional effects [18, 19, and 20]. According to the work of Williams and Baker [19], 

the interaction of a wall jet at the step near to the side walls with the mainstream flow causes a 

formation of three-dimensional flow structure in a region of essentially two-dimensional flow near the 

mid plane of the channel. Thus, the under estimation of the reattachment length at high values of 

Reynolds number is due to the influence of the side wall three dimensional effects [18,19]. In 

particular, Barkely et al. [20] have shown that in the absence of sidewalls the transition to three 

dimensional flow structures appears at a higher value of Reynolds number around 1000.  

 
Table 2. Validation of present numerical solution, Re =800 

Authors Type of Work Xr X2 X3 

Armaly et al. [10] Experimental 7.20 5.30 9.40 

Vradis et al. [15] Numerical 6.13 4.95 8.82 

Kim and Moin [13] Numerical 6.00 No data No data 

Gartling [12] Numerical 6.10 4.85 10.48 

Pepper et al. [16] Numerical 5.88 4.75 9.80 

Present Work Numerical 6.03 4.81 10.15 

On the other hand, further comparison between present results and previously published work for the 

whole range of Reynolds number is given in Fig. 4. The figure shows an excellent agreement between 

our results and the experiment of Armaly et al. [10] for Re ≤600. Also, it shows an excellent agreement 

with all numerical published work for the entire range of Reynolds number. 
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Oswald et al. [27] Armaly et al. [10]
Kim and Moin [13] Kaiktsis et al. [21]
Gartling [12] Present Work

 
Fig. 4. Variation of the reattachment length with the Reynolds number for present and previous 

work. 



 
244Entropy 2005, 7[4], 234-252 

Figure 5 compares x component of velocity with the work of Gartling [12] and Vradis et al. [15]. Also, 

Fig. 6 compares temperatures profiles with the work of Gartling [12] and Vradis et al. [15]. As shown 

in Fig. 5 and Fig. 6, there is a good agreement between present work and the previous published work.   
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Fig. 5. u-component of velocity versus y-coordinate for present and previous numerical work 

 (a) x = 3, 7 (b) x=15, 30. 
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Fig. 6. Temperature versus y-coordinate for present and previous work for x = 3, 5, 15, and 30. 
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Results and Discussion 

The present research results are presented for a Reynolds number range between 100 and 800. The 

Prandtl number is kept constant at 0.71 to guarantee constant fluid physical properties for moderate 

and small values of temperature difference (Tcl-Tw). The variation of cross-sectional entropy 

generation number, Ns(x) given in Eq. 17, along the channel length is shown in Fig. 7. For all 

Reynolds numbers, the maximum Ns(x) occurs directly at the step location (x=0) and the value of 

Ns(x) decreases down stream the step. The reason for having maximum values of Ns(x) at x =0 is due 

to two factors. First is the separation that occurs at x = 0, which produces large velocity gradients. 

These velocity gradients increase the viscous contribution to Ns(x). Second is the adiabatic vertical 

step wall which generates high temperature spots. These spots increase the conduction contribution to 

Ns(x). The dependence of Ns(x) on Reynolds number is illustrated in the same figure. There is an 

increase in Ns(x) with Reynolds number due to the increase in velocity gradients. Moreover, the figure 

shows that above x=10 the value of Ns(x) does not change significantly, because the flow is 

progressing toward the fully developed condition. By reaching this condition the viscous and 

conduction contributions become, approximately, constant. Figure 7 presents results for Br = 1 and τ = 

2, however, similar behaviors are obtained for different combinations for Br and τ. 
Figure 8 shows the axial variation of Ns along the bottom wall of the channel for Re=400 and for 

various Brinkman numbers. The minimum value of Ns occurs at x = 0, at the bottom left corner, since 

at this point there is no motion and no heat transfer is taking place. Also, Fig. 8 shows that the 

maximum value of Ns occurs inside the recirculation zone and then it drops sharply to a very low 

value at the point of reattachment. This behavior can be explained by noting that the vortices increase 

dramatically inside the recirculation zone, which tends to maximize the viscous contribution to Ns in 

this zone. However, at the point of reattachment no shear stresses are taking place, which diminish the 

viscous contribution and leave only the conduction contribution to Ns. 
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Fig. 7. Axial distribution of  Ns(x) for different values of Reynolds number, Br =1, τ=2 
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Figure 8 shows that at the point of reattachment the value of Ns is independent of the Brinkman 

number because there is no viscous contribution. Similar behaviors are also shown in Fig. 9, 10 for Re 

= 600 and 800 respectively. However, Figs. 9 and 10 reveal new behavior that is not found in Fig. 8. 

This behavior is the appearance of a second peak zone after the point of reattachment. The beginning 

of the second peak zone occurs when the secondary recirculation bubble, on the top wall of the 

channel, appears. Also, the end of the second peak zone occurs when the top recirculation bubble 

disappears. 
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Fig. 8. Axial distribution of Ns on the bottom wall for Re = 400, τ=2 
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Fig. 9. Axial distribution of Ns on the bottom wall for Re = 600, τ=2. 
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Fig. 10. Axial distribution of Ns on the bottom wall for Re = 800, τ=2. 

Note that Fig. 10 shows that the end of the second peaks zone is around 10 which is approximately the 

value of X3, see Table 2. Thus, it is very clearly that this second peak zone is related to secondary 

recirculation bubble. This recirculation bubble does not influence the value of Ns on the top wall of the 

channel; See Fig. 11. However, its main effect is on narrowing down the flow passage between the top 

secondary bubble and the bottom wall of the channel; See Fig 12. This would increase velocity 

gradients between the top secondary recirculation bubble and the bottom wall especially at the bottom 

wall due to the additional effect of the no-slip boundary condition. These high values of velocity 

gradients at the wall are responsible for high rates of entropy generation numbers that cause emerge of 

the second peak zone. Thus, it can be concluded that the effect of the top recirculation zone is very 

crucial in increasing local rates of entropy generation on the bottom wall of the channel and 

accordingly the total rates of entropy generation over the entire flow domain. Thus, any second law 

analysis improvement of the problem in hand must take into account the secondary recirculation zone. 

Note that the second peak zone only appears for Re ≥ 500. 

Figure 11 shows the Ns variation along the top wall of the channel, where a maximum value is 

detected at x = 0. The reason for having maximum values of Ns at the beginning of the top wall is the 

development of the viscous boundary layer. Also, the high values of heat transfer rate, where the 

highest local Nusselt number is recorded at the beginning of the top wall, see Fig. 13. Also, the figure 

shows that after the point of reattachment the value of Ns drops to very low values.  
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Fig. 11. Axial distribution of Ns on the top wall for Re = 800, τ=2. 

 
Fig. 12. x-component velocity contour plots for Re = 800, 0<x<12. 
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Fig. 13. Nusselt number distribution along the top and bottom walls. 
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Figure 14 shows the effect of Reynolds number on the total entropy generation number (Ns). The value 

of Ns increases with Reynolds number for the whole range of Brinkman numbers. The increase in 

Reynolds number leads to an increase in viscous and conduction contribution to Ns. Also, Fig. 15 

shows the variation of Ns with Reynolds number for different values of τ. The value of Ns increases 

with Reynolds number for the whole range of τ. However, the Ns is decreased as the values of τ are 

increased, because the temperature difference between the heated wall and the incoming flow stream 

decreases. 
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Fig. 14. Variation of Ns with Re for different values of Br for τ=2 

It can be concluded from the present results that the bad regions that have high values of Ns are the 

insulated step wall, separation point and the recirculation zones. The high production of Ns in these 

regions needs to be controlled to reduce entropy generation and thus conserving useful energy. 

Possible control methods are using suction/blowing at the top and at the bottom walls or imposing 

magnetic fields at the top and at the bottom walls. 
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Fig. 15. Variation of Ns with Re for different values of τ, Br = 1. 
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Conclusion 

Entropy generation in flow over a backward facing step (BFS) was calculated numerically. The results 

show that as Re increased the value of Ns increased. Also, as Br increased the value of Ns increased. 

The value of Ns decreased as τ increased.  The value of the Ns(x) has a maximum value at the section 

where the flow separated and its value reduced as we moved downstream the step. It was found that for 

the lower wall the maximum value of Ns occurs inside the recirculation zone.  On the top wall, the 

value of Ns, has a maximum value at the section, where the flow separated, and its value reduced as 

we moved downstream the step. The contribution of the top wall to Ns downstream the point of 

reattachment was relatively small.  The results show that the top secondary recirculation zone increase 

entropy generation on the bottom wall of the channel when the top secondary bubble arises and has a 

negligible effect on the entropy generation on the top wall of the channel. The results obtained are an 

important step to devise methods for reduction of entropy generation to have a second law efficient 

separated flow. 
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