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Abstract:



Notion of Effective size of support (Ess) of a random variable is introduced. A small set of natural requirements that a measure of Ess should satisfy is presented. The measure with prescribed properties is in a direct (exp-) relationship to the family of Rényi’s α-entropies which includes also Shannon’s entropy H. Considerations of choice of the value of α imply that exp(H) appears to be the most appropriate measure of Ess. Entropy and Ess can be viewed thanks to their log / exp relationship as two aspects of the same thing. In Probability and Statistics the Ess aspect could appear more basic than the entropic one.






Keywords:


Rényi’s entropy; Shannon’s entropy; support; interpretation; Probability; Statistics




MSC 2000 codes:


94A 17








1 Introduction


Interpretation of Shannon’s entropy H(p) is usually developed in context of an experiment where the entropy is described as a measure of uncertainty; cf. [6], [5], [7]. Motivated by a simple (and well-known) observation that exp(H(p)) is equal to the size of support of the underlying random variable for the uniform distribution, in this short note we introduce concept of Effective size of support (Ess). Measure of Ess should satisfy a small set of natural requirements. The class of Ess measures [image: there is no content] which satisfy the requirements is in a direct relationship to the family of Rényi’s α-entropies which includes as its special case also Shannon’s entropy. We address the issue of selecting the value of α such that the corresponding [image: there is no content] would be the most appropriate measure of Ess. Unlike to entropy, Ess has an obvious meaning. From the point of view of Probability or Statistics, Ess can be seen as a more natural concept than entropy.




2 Effective size of support


Let X be a discrete random variable which can take on values from a finite set [image: there is no content] of m elements, with probabilities specified by the probability mass function (pmf) p. The support of X is a set [image: there is no content]. Let |[image: there is no content](p(X))| denote the size of the support.



While pmf p = [0.5, 0.5] makes both outcomes equally likely, the following pmf q = [0.999, 0.001] characterizes a random variable that can take on almost exclusively only one of two values. However, both p and q have the same size of support. This motivates a need for a quantity that could measure size of support of the random variable in a different way, so that the random variable can be placed in the range [1,m] according to its pmf. We will call the new quantity/measure the effective support size (Ess), and denote it by [image: there is no content](p(X)); [image: there is no content](p) or [image: there is no content](X), for short. The example makes it obvious that [image: there is no content](·) should be such that [image: there is no content](q) will be close to 1, while to p it should assign value [image: there is no content](p) = 2.




3 Properties of Ess


Ess should have certain properties, dictated by common sense.



P1) [image: there is no content](p) should be continuous, symmetric function (i.e., invariant under exchange of pi, pj, i, j = 1,...,m).



P2) [image: there is no content](δm) = 1 ≤ [image: there is no content](pm) ≤ [image: there is no content](um) = m; where um denotes the uniform pmf on m-element support, δm denotes an m-element pmf with probability concentrated at one point, pm denotes a pmf1 with |[image: there is no content](p)| = m.



P3) [image: there is no content]([pm, 0]) = [image: there is no content](pm).



P4) [image: there is no content](p(X, Y)) = [image: there is no content](p(X))[image: there is no content](p(Y)), if X and Y are independent random variables.



The first two properties are obvious. The third one states that extending support by an impossible outcome should leave Ess unchanged. Only the fourth property needs, perhaps, some little discussion. Or, better, an example. Let p(X) = [1, 1, 1]/3 and p(Y ) = [1, 1]/2 and let X be independent of Y . Then p(X,Y ) = [1, 1, 1, 1, 1, 1]/6. According to P2), [image: there is no content](p(X)) = 3, [image: there is no content](p(Y)) = 2 and [image: there is no content](p(X,Y)) = 6 = [image: there is no content](p(X))[image: there is no content](p(Y)). It is reasonable to require the product relationship to hold for independent random variables with arbitrary distributions.



The properties P1-P4 are satisfied by [image: there is no content], where α is a positive real number, different than 1. Note that [image: there is no content](·) of this form is exp of Rényi’s entropy. For α → 1, [image: there is no content](p, α) also satisfies P1-P4 and takes the form of exp(H(p)), where [image: there is no content] is Shannon’s entropy2; cf. [1]. It is thus reasonable to define [image: there is no content](p, α) for α = 1 this way (with the convention 0 log 0 = 0), so that [image: there is no content](·) then becomes a continuous function of α.




4 Selecting α


The requirements P1-P4 define entire class of measures of effective support size. This opens a problem of selecting α.



It is instructive to begin addressing the problem with a consideration of behavior of [image: there is no content](p(X), α) at the limit values of α. It can be easily seen that as α → 0, [image: there is no content](p(X), α) →|[image: there is no content](p(X))|, i.e., the size of the support. Thus, the closer the α to zero, the more [image: there is no content](·, α) behaves like the standard support size |[image: there is no content](p(X))|.



For α →∞, [image: there is no content], where [image: there is no content]. Thus, the higher the α, the more [image: there is no content](·, α) judges a pmf solely by its component with the highest value of probability. At the limit, all pmf’s with the same [image: there is no content] are seen as entirely equivalent.



For the sake of illustration, in Table 1, [image: there is no content](p, α) is given for various two-element pmf’s, and α = 0.001, 0.1, 0.5, 0.9, 1.0, 1.5, 2.0, 10, ∞.



Table 1. [image: there is no content](p, α) for α = 0.001, 0.1, 0.5, 0.9, 1.0, 1.5, 2.0, 10, ∞ and different p’s.







	

	

	

	
[image: there is no content](p, α)

	

	

	




	
α

	
[0.5, 0.5]

	
[0.6, 0.4]

	
[0.7, 0.3]

	
[0.8, 0.2]

	
[0.9, 0.1]

	
[1.0, 0.0]




	
0.001

	
2.000000

	
1.999959

	
1.999826

	
1.999554

	
1.998979

	
1.000000




	
0.1

	
2.000000

	
1.995925

	
1.982696

	
1.956233

	
1.902332

	
1.000000




	
0.5

	
2.000000

	
1.979796

	
1.916515

	
1.800000

	
1.600000

	
1.000000




	
0.9

	
2.000000

	
1.964013

	
1.856116

	
1.675654

	
1.416403

	
1.000000




	
1.0

	
2.000000

	
1.960132

	
1.842023

	
1.649385

	
1.384145

	
1.000000




	
1.5

	
2.000000

	
1.941178

	
1.777878

	
1.543210

	
1.275510

	
1.000000




	
2.0

	
2.000000

	
1.923077

	
1.724138

	
1.470588

	
1.219512

	
1.000000




	
10.0

	
2.000000

	
1.760634

	
1.486289

	
1.281379

	
1.124195

	
1.000000




	
∞

	
2.000000

	
1.666666

	
1.428571

	
1.250000

	
1.111111

	
1.000000












Based on the table, in this simplest case of two-valued random variable we would opt for [image: there is no content](·,∞) as the good measure of Ess. However, for larger |[image: there is no content]| this choice becomes less attractive. As it was already noted, [image: there is no content] and all pmf’s with the same [image: there is no content] are seen to have the same Ess. For instance, p = [0.95, 0.05] and q = [0.95, x] where x stands for the other remaining 99 components with the value 0.05/99 = 0.0005, are by [image: there is no content](·,∞) judged to have the same Ess, equal to 1.053. Just for a comparison, [image: there is no content](p, 1) = 1.220, while [image: there is no content](q, 1) = 1.535. This undesirable feature of [image: there is no content](·,∞) manifests itself even more sharply in the case of continuous random variables.




5 Ess in the continuous case


The continuous-case analogue3 of [image: there is no content] is [image: there is no content], where f(x) denotes a density with respect to Lebesgue measure. The continuous-case [image: there is no content], though always positive, can – naturally – be smaller than one. And the discrete-case upper bound m is now replaced by ∞. It is worth stressing that [image: there is no content] behaves with respect to shift and scale transformations in the desired manner. Indeed, if Y = X + a, then [image: there is no content]; if Y = aX, then [image: there is no content].



For the Gaussian n(µ, σ2) distribution, [image: there is no content]; cf. [8]. This for α → ∞ converges to [image: there is no content] so that for σ2 = 1 it becomes [image: there is no content] = 2.5067. It is worth comparing with [image: there is no content] (cf. [9]), which reduces in the case of σ2 = 1 to 4.1327. This makes much more sense.



That [image: there is no content](·,∞) is not the appropriate measure of Ess can be even more clearly seen in the case of the Exponential distribution. For βe−βx with β = 1, [image: there is no content](·,∞) = 1 while S(·, 1) = e.




6 Adding another property


The above considerations suggest that [image: there is no content](·, 1) might be the most appropriate of the Ess measures which satisfy the requirements P1-P4. The question is whether there is some other requirement that is reasonable to add to the already employed properties, such that it could narrow down the set of [image: there is no content](·, α) to [image: there is no content](·, 1).



To this end, let us consider two random variables X, Y that, in general, might be dependent. It is natural, to extend requirement P4 to the more general setting, by requiring that4


[image: there is no content]








with the equality if and only if X and Y are independent.



For α ≠ 1, it might be in some cases that instead of ≥ the opposite relation < holds true. Indeed, consider for instance the following bivariate discrete random variable with pmf p(X,Y)





	0.2
	0.05
	0.05
	0.3



	0.3
	0.2
	0.2
	0.7



	0.5
	0.25
	0.25
	X\Y






Marginal pmf p(X) has [image: there is no content](X,∞) = 2, and [image: there is no content]. Hence, [image: there is no content] = 2.86 , which is smaller than [image: there is no content]. After a minor change in the joint pmf, such that the marginals remain unchanged, it is possible to satisfy P4∗. It is known (cf. [1]) that solely [image: there is no content](·,1) always satisfies the natural requirement P4∗.




7 Summary


Shannon’s entropy is a key concept of Communication Theory. In Probability and Statistics the entropy is usually interpreted as a measure of uncertainty about realization of a random variable, or as a measure of complexity or uniformness of a probability distribution. Though the entropy is within Probability and Statistics from time to time (and from area to area) blamed for failing to be measure of all the fancy and intangible things, it remains to be a valuable tool.



In this note we introduced5 concept of the Effective support size (Ess) of a random variable. There are a few requirements that the measure [image: there is no content](p(X)) of Ess of a probability distribution p(X) should satisfy. The requirements turn to be direct analogues of those placed on entropy; cf. [5], [1]. It thus should not be surprising that they are satisfied6 by [image: there is no content] which is the exponential of Rényi’s entropy.



Since [image: there is no content](·, α) is in fact a continuum of measures of Ess, it is necessary to find out which of them would be the most appropriate measure(s) of Ess. It seems that [image: there is no content](·, 1) = exp(H(·)), where H(·) is Shannon’s entropy, is the best choice; cf. Sect. 4 and Sect. 5. We also argued for expanding the key requirement P4 into a more general requirement P4∗. The enhanced set of requirements is satisfied solely by [image: there is no content](·, 1).



We maintain that from the point of view of Probability and Statistics, Ess is more basic concept than entropy. The two concepts are related together by the exp / log link. Without the link thus for instance knowing that Shannon’s entropy of the Gaussian variable is [image: there is no content] does not say much. Figuratively speaking, thanks to Ess entropy itself becomes more informative.



Ess adds also a new meaning to the Maximum Entropy method [4]. For instance the classic finding [6] that the Gaussian distribution has the maximal value of Shannon’s entropy among all distributions with prescribed second moment can be rephrased as stating that among all such distributions the one with the biggest effective support is the Gaussian distribution.
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1A note on notation: pm denotes a pmf with m-element support; pi is i-th component of the pmf.



	
2In this paper, log denotes the natural logarithm.



	
3The relationship between discrete and continuous [image: there is no content](·) is analogous to that of discrete and differential entropies; cf. [6], [2], [7].



	
4In an earlier version [3] of the paper we considered a different property which involved a notion of Ess for a mean of conditional distributions.



	
5It is unlikely that something like Ess has not been already spotted. Yet, we are aware only that Cover and Thomas [2] interpret exp of Shannon’s entropy of a random sequence as an effective volume of random variable, in the context of their discussion of the Asymptotic Equipartition Property.



	
6In the discrete case. For a discussion of the case of a continuous random variable see Section 5.
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