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Abstract: Molecular imprinting is one of the most efficient methods for preparing 
synthetic receptors that possess user defined recognition properties. Despite general 
success of non-covalent imprinting for a large variety of templates, some groups of 
compounds remain difficult to tackle due to their structural complexity. In this study we 
investigate preparation of molecularly imprinted polymers that can bind sulfonamide 
compounds, which represent important drug candidates. Compared to the biological system 
that utilizes metal coordinated interaction, the imprinted polymer provided pronounced 
selectivity when hydrogen bond interaction was employed in an organic solvent. Computer 
simulation of the interaction between the sulfonamide template and functional monomers 
pointed out that although methacrylic acid had strong interaction energy with the template, 
it also possessed high non-specific interaction with the solvent molecules of 
tetrahydrofuran as well as being prone to self-complexation. On the other hand, 1-vinyl-
imidazole was suitable for imprinting sulfonamides as it did not cross-react with the 
solvent molecules or engage in self-complexation structures. 

Keywords: Molecular imprinting; Molecularly Imprinted polymer; Sulfonamide; 
Molecular modeling. 
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Introduction 

Molecular imprinting is one of the most efficient methods for preparing synthetic receptors that 
possess user-defined recognition properties [1-3]. Despite that many bioactive compounds have been 
used as templates to prepare highly selective polymers for applications in separation [4], catalysis [2], 
assay and sensing purposes [5], there are certain chemical entities that are difficult to tackle because of 
their intrinsic structural complexity. Frequently, these compounds are encountered in natural products 
and in the drug development process. It is therefore important to investigate molecular imprinting for 
these types of compounds, because the imprinted polymers are potentially useful as artificial receptors 
for screening of combinatorial product libraries [6-8] and for target-directed organic synthesis [9-11]. 

The molecular imprinting of sulfonamide compounds via bulk polymerization has previously been 
reported by Zheng et al. in a series of works on the antibiotics sulfamethazine and sulfamethoxazole 
[12-14]. In their studies methacrylic acid, 4-vinylpyridine, acrylamide and their mixtures were 
demonstrated to be good functional monomer(s) for these sulfonamide compounds. In a relevant study 
by Chen et al. [15], a uniformly-sized molecularly imprinted polymer against sulfamethazine was 
produced using the one-step swelling and polymerization method and was shown to give good binding 
performance. Drug delivery devices based on imprinted polymers against the colon prodrug, 
sulfasalazine, were successfully demonstrated by Puoci et al. [16]. 

Computational approaches based on quantum chemical techniques have been extensively utilized in 
recent years to explore and select optimal functional monomers for any given template molecule of 
interest. Among the first reported work utilizing molecular mechanics was that performed by Takeuchi 
et al. [17] and Yoshida et al. [18]. The research group of Piletsky and collaborators [19-28] pioneered 
and demonstrated in their series of work on the feasibility of using the molecular mechanics-based 
Leapfrog algorithm to screen from a virtual library of functional monomers followed by selecting the 
optimal functional monomer based on the best interaction energy. Moreover, we have previously 
proposed the use of charge-based descriptors with artificial neural networks as a novel approach in 
establishing quantitative structure-imprinting factor relationship models [29, 30]. The sulfonamide 
compounds investigated in this study (Figure 1) encompass important carbonic anhydrase inhibitors 
that are potentially useful as drug candidates.  

 
Figure 1. Chemical structure of the template molecule 1 and rebinding analogues 2 and 3. 
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In general, sulfonamide compounds have poor solubility in standard imprinting solvents, and are 
difficult to tackle due to their lack of functional groups that can be exploited. In this study we intended 
to prepare molecularly imprinted polymers using a “rational design” approach, where we utilize the 
hydrogen bond interactions between template and functional monomers. Unlike the biological system, 
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multiple hydrogen bond interactions are found to be responsible for the obtained imprinting effect in a 
polar organic solvent. The mechanism of interaction between template and functional monomers is 
essential toward the understanding of the binding performance of the imprinted polymers; therefore, 
molecular modeling was employed to study the binding conformation and interaction strength of 
template and functional monomer molecules in relation to the observed imprinting effect. 
 
Results and Discussion 
 
Molecular imprinting using MAA as functional monomer 

 
Methacrylic acid (MAA) has been used as a universal functional monomer to prepare imprinted 

polymers against both weakly acidic [31] and basic molecules [32] employing hydrogen bond 
interactions, because it can act as both a hydrogen bond donor and acceptor. When sulfonamide 1 was 
used as template, it could be dissolved in THF at a relatively low concentration in the presence of 
MAA. 

The imprinted polymer (MIP 1a) and non-imprinted polymer (NIP 1a) were prepared and 
subjected to solvent extraction to remove the template, and binding property of the polymers tested in 
THF. When 20 mg of polymer was incubated in 1 mL of 1 in THF at a concentration of 250 µg mL-1, 
the amount of template bound was found to be 9.6% for MIP 1a and 3.8% for NIP 1a, which showed 
a definite difference between the imprinted and the non-imprinted polymer. However, the total binding 
in THF was quite limited due to the rather weak interactions. This result is in line with a study carried 
out by Dirion et al. [33], where the weakly acidic estradiol template generated low imprinting effect 
when MAA was used as the functional monomer in THF. Under the specific condition, THF may 
interfere with the MAA-1 interaction by acting as a competing hydrogen bond acceptor, therefore a 
stronger hydrogen-accepting monomer (general base) is needed to increase the binding efficiency for 
the present sulfonamide template. 
 
Molecular imprinting using VIM as functional monomer 

 
Solubility of sulfonamide 1 in THF was greatly enhanced when 2 equivalents of 1-vinylimidazole 

(VIM) were added. To verify that VIM indeed formed stable complex with 1, we added increasing 
amount of VIM into a solution of 1 dissolved in THF, and followed the change in the proton NMR 
signals arising from the template. When the molar equivalents of VIM were increased from 2 to 4, the 
sulfonamide and the amide signal of 1 displayed a pronounced downfield shift of 0.32 ppm and 0.26 
ppm, respectively, which indicated formation of stable complex between the template and the 
functional monomer via the two distinct interacting points. Due to the difficulty of dissolving template 
at low VIM doses, quantification of the association constant and binding stoichiometry was not 
performed. Instead, a 1:4:4 molar ratio of template:VIM:TRIM was directly used to prepare an 
imprinted polymer (MIP 1b). Binding properties of the imprinted polymer were tested in THF using 
equilibrium binding analysis. When 20 mg of polymer was used, the percentage of 1 bound to MIP 1b 
was approximately 2 times that of NIP 1b, indicating that the template-functional monomer complex 
formed in the pre-polymerization solution facilitated generation of the specific binding sites in the 
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imprinted polymer. In the present system, VIM alone, as a hydrogen bond acceptor, was able to form 
hydrogen-bonded complex only with the sulfonamide template. No self-complexation structure from 
VIM (such as the MAA dimer formed in aprotic solvent) existed, therefore the non-imprinted polymer 
NIP 1b contained statistically distributed functional imidazole group. Hence, template binding to NIP 
1b should be a result of the sole contribution of non-specific adsorption. 

Using an increasing amount of template to titrate a fixed amount of polymer in THF, we established 
binding isotherms for both MIP 1b and NIP 1b (Figure 2). When NIP 1b was titrated, a linear 
isotherm was obtained, which represented typical non-specific adsorption of analyte associating to 
isolated functional groups. The non-specific binding constant (NS = 0.22) could be obtained by 
analyzing the binding data on the control polymer (NIP 1b) using a linear regression curve fit. The NS 
was then used to fit the binding data obtained on the imprinted polymer (MIP 1b) using a non-linear 
regression program, where the specific binding sites were assumed to be independent from one 
another. This generated an apparent dissociation constant of 1.1 mM, and binding site population of 15 
µmol g-1 for the imprinted polymer (MIP 1b).  

 
Figure 2. Binding isotherm of MIP 1b (■) and NIP 1b (□) obtained by titration of the 
polymers with the template sulfonamide, 1. The binding data for NIP 1b was fitted using 
linear regression to give the nonspecific constant (NS), which was subsequently fixed to 
calculate the apparent dissociation constant (KD) and the number of specific binding sites 
(Bmax) for MIP 1b using the following equation: B = F × Bmax / (F + KD) + NS × F. 
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In the present system we ended up with a relatively high non-specific binding, which was possibly 

caused by the lack of extra binding moiety in the target template besides the sulfonamide and the 
amide groups. Our attempt to utilize divinylbenzene as cross-linker to provide π–π interaction with the 
template in THF failed, as addition of this cross-linker caused template precipitation. The importance 
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of the sulfonamide group for selective binding is reflected by the binding results with compound 3, 
which is identical to the original template except for the lack of the sulfonamide group. Under the 
same condition, the amount of 3 bound to the imprinted (MIP 1b) and non-imprinted polymer (NIP 
1b) were almost identical (14%) and were much lower than that of the sulfonamide compound 1. The 
binding selectivity of MIP 1b can be further verified by comparing its analyte response using a test 
compound having different functionalities. Compared to 1, compound 2 was found to bind to MIP 1b 
and NIP 1b more efficiently, presumably due to the stronger hydrogen bond donor effect from the 
amine moiety (data not shown). However, no differential binding could be noticed between MIP 1b 
and NIP 1b (see the selectivity index calculated in Table 1), indicating that the polymer imprinted 
against 1 did not cross-react to 2. The cross recognition of homologous molecules by molecularly 
imprinted polymers has been reported in earlier literature [11, 34, 35]. These imprinted polymers are 
considered highly valuable as artificial receptors for library screening and separation of a group of 
interesting molecules. 
 

Table 1. Preparation and characterization of molecularly imprinted polymers using template 1. 

Polymer 
 

1 
(mmol) 

Functional 
monomer (mmol) 

TRIM 
(mmol) 

Selectivity index (SI)a 

MAA VIM 1 2 3 
MIP 1a 0.6 2.4 ― 24 2.7 n.d. b n.d. b 
NIP 1a ― 2.4 ― 24 ― ― ― 
MIP 1b 4.8 ― 19.2 19.2 1.8 1.1 1.0 
NIP 1b ― ― 19.2 19.2 ― ― ― 

a Selectivity index is the ratio of partition coefficient of an analyte on the imprinted polymer in 
relation to that on the non-imprinted polymer, and calculated according to equation: SI = (B/F)MIP / 
(B/F)NIP. B and F are concentration of the test compound that binds to the polymer and those that 
are free in solution, and are determined in equilibrium binding experiment using HPLC 
quantification. For SI evaluation, a fixed amount of polymer (20 mg) and test compound (250 µg) 
were incubated in 1 mL of THF; b n.d. : Not determined. 

 
Computer simulation 

 
Sampling of the possible modes of interaction for sulfonamide template 1 with functional 

monomers, MAA and VIM, are shown in Figures 3 and 4, respectively. It can be seen in Figure 3 that 
MAA can interact with template 1 in many possible ways. The four possible modes of interaction as 
shown in Figure 3 are only a few examples of 1-MAA complexation. On the contrary, it is shown in 
Figure 4 that VIM can interact with template 1 at a molar ratio of 3:1 with three hydrogen bond donors 
of the central amide and amino group of sulfonamide present on template 1. These observations 
suggest that the imprinted polymer of 1 is likely to have heterogeneous binding sites when interacting 
with MAA. This can be attributed to the fact that MAA can act as both hydrogen bond donor and 
acceptor and can therefore interact with the template at one or two points of interaction as well as form 
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MAA dimers.  On the other hand, interaction with VIM would give a more homogeneous binding site 
as illustrated by the fewer possible modes of interaction. 

 
Figure 3. Sampling of some of the possible modes of interaction of template 1 with MAA. 
Two MAA dimers with no interaction with template (A), one MAA dimer formation and 
two MAAs interacting with template (B), incomplete MAA dimer formation interacting 
with template with two MAA interacting with template (C), and four MAA interacting with 
template. Other possible conformations that may exist are not shown. Hydrogen bond 
interactions are represented by green dotted lines. 

 

 
 
To save computational cost, calculations of the interaction energy (Table 2) were derived from a 1:1 

template-monomer complex. It is observed that the interaction energy of 1:1 and 1:2 template-
monomer complexes, although of different magnitude, exhibited no difference in the general trend of 
interaction strength of 1-MAA or 1-VIM complexes. Keeping in mind the simplification of the 
interaction energies calculated from 1:1 template-monomer complex to represent those of 1:4 complex 
(as performed experimentally), both are expected to give similar trends as far as interaction energies 
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are concerned. This notion is supported by our previously reported theoretical calculations [36] as well 
as those of Diñeiro et al. [37, 38].  

 
Figure 4. Proposed mode of interaction of template 1 with VIM via two H-bondings, 
particularly the interaction of nucleophilic imidazole N-atom of VIM with amino group of 
sulfonamide and the H-bonding of imidazole N-atom of VIM with central amide NH. 

 
 

 
 

Table 2. Interaction energies of 1 with MAA or VIM. 

 E (a.u.) ΔE (a.u.)a ΔE (kJ/mol)b 

1 –1,275.2206   
MAA –306.4671   
VIM –303.6062   
THF –232.4475   
1-MAA 1c –1,581.7052 –0.0175 –45.8398 
1-MAA 2d –1,581.7227 –0.0350 –91.9364 
1-MAA 3e –1,581.7112 –0.0235 –61.7582 
1-MAA 4f –1,581.7038 –0.0160 –42.1389 
1-MAA 5g –1,581.7035 –0.0158 –41.4375 
1-VIM 1h –1,578.8458 –0.0190 –49.9639 
1-VIM 2i –1,578.8427 –0.0158 –41.5927 
MAA-MAA –612.9857 –0.0514 –135.0195 
THF-MAA –538.9426 –0.0279 –73.2438 
THF-VIM –536.0615 –0.0077 –20.1504 

aΔE is the interaction energy derived from equation 1; bΔE is converted from a.u. to kJ mol-1 by 
multiplying the energy value in a.u. by the conversion factor 2.626 x 103; c Figure 6A; d Figure 
5A; e Figure 6B; f Figure 5B; g Figure 6C; h Figure 7A; i Figure 7B 
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Based on our computer simulation with the ab initio quantum chemical techniques, it is found that 
MAA was able to interact with both hydrogen bond donors and acceptors of sulfonamide template 1. 
On the contrary, VIM can only interact with the hydrogen bond donor of template 1. This is to be 
expected since MAA can act as both hydrogen bond donor and acceptor while VIM can only behave as 
hydrogen bond acceptor. As a result, the inherent property of MAA allows it to engage in two points of 
interaction, particularly, with both hydrogen bond donor and acceptor of template 1 simultaneously as 
shown by our simulation (Figure 5). It was shown that two point interaction of MAA with template 1 
at the sulfonamide group (Figure 5A) gave higher interaction energy value than two point interaction 
at the sulfonamide and central amide group (Figure 5B) as illustrated by the interaction energy value of 
–91.9364 and –42.1389 kJ mol-1, respectively.  

Our calculations revealed that the interaction energy of template-monomer complexations is greater 
at the sulfonamide group of template 1 for MAA, as observed by the interaction energy values of           
–45.8398 (Figure 6A) and –61.7582 kJ mol-1 (Figure 6B). Likewise, strong interaction with the 
sulfonamide moiety gave interaction energies of –48.9565 and –49.9639 kJ mol-1 for VIM based 
complexes as illustrated in Figure 7A. On the other hand, low interaction energy values of –41.4375 
and –41.5927 kJ mol-1 were observed for MAA (Figure 6C) and VIM (Figure 7B) based complexes, 
respectively. 

 
Figure 5. Geometrically optimized structures of MAA and template 1 in a two point 
interaction through H-bonding with carboxylic acid of MAA with the S=O and NH 
sulfonamide moieties (A) and H-bonding with carboxylic acid of MAA with the sulfonyl 
O-atom and NH of central amide moieties (B). 

 

 
 
These results suggest that the functional monomers interact more strongly at the sulfonamide 

moiety than with the central amide of template 1. This is further supported by the experimental results 
with compound 3 which displayed no particular preference for imprinted polymers over non-imprinted 
polymers as its binding capacity were almost identical for both imprinted (MIP 1b) and non-imprinted 
(NIP 1b) polymers. On the other hand, there is pronounced imprinting effect for template 1, which 
could be attributed to the presence of the sulfonamide group. Compound 3 is identical to 1 except for 
the lack of the sulfonamide moiety, suggesting the importance of the sulfonamide group in molecular 
recognition with basic functional monomers [13, 14], particularly VIM, in our study. 
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Figure 6. Geometrically optimized structures of MAA and template 1 calculated at HF/3-
21G(d) level in a one point interaction via the H-bond of sulfonyl O-atom with OH of 
carboxylic acid (A), H-bonding of amino sulfonyl with carbonyl O-atom of MAA (B), H-
bond of carbonyl O-atom of amide with OH of carboxylic acid moieties. 

 

 
 

Figure 7. Geometrically optimized structures of VIM and template 1 calculated at HF/3-
21G(d) level in a one point interaction via the H-bond of imidazole N-atom of VIM with 
NH of sulfonamide (A) as well as the H-bond of imidazole N-atom of VIM with NH of 
central amide moieties (B). 

 

 
 

It was previously mentioned that the MAA system suffered from interference by solvent molecules 
of THF and the propensity toward MAA dimer formation, both of which may severely impede its 
binding performance. To investigate such effects, molecular models of each scenario were constructed 
and geometrically optimized at HF/3-21g(d) level followed by single point calculation at B3LYP/6-
31g(d) level. As presented in Table 2, results indicated that the interaction energy of MAA dimer was 
the strongest of all at –135.0195 kJ mol-1. The energy of interaction for THF with MAA was ranked 
third at –73.2438 kJ mol-1 while the corresponding value for THF with VIM were found to be the least 
of all at –20.1504 kJ mol-1. The former supports the notion that solvent molecules of THF hinder the 
binding performance of MAA-based polymers, while the latter pointed out that THF had minimal 
effect on VIM-based polymers. In an excellent review by Karim et al. on the selection criteria of 
functional monomers, it was suggested that the choice of monomer should not be confined only to the 
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interaction energy of template-monomer adducts and that attention should also be placed on other 
aspects such as solubility, stability, and reactivity of the monomer and its pre-polymerization mixture 
[39]. 
 
Conclusions 

 
This study reports the synthesis of sulfonamide imprinted polymers and the utilization of computer 

simulation in elucidating the mechanistic details governing the polymer’s recognition ability. 
Rebinding results indicated that MAA-based polymers possessed slightly higher selectivity than VIM-
based polymers. However, there are certain drawbacks which limit the potential application of MAA 
system: i) propensity of MAA to form self-complexation structure, ii) interference from THF as 
competing hydrogen bond acceptor, iii) template insolubility, and iv) the multitude of possible 
molecular interaction between sulfonamide template with MAAs contributes to binding site 
heterogeneity. Hence, VIM was the suitable functional monomer as they do not possess any of these 
deficiencies as well as accommodating higher amounts of sulfonamide templates owing to their better 
template solubility. The validity of these points was addressed in a series of computer simulations and 
their calculated interaction energy further supported those notions. In a future study, we will exploit 
the imidazole-amine interaction between VIM and sulfonamide templates that are similar to 2, and 
expect to obtain improved binding affinity and selectivity. A comparative study of other H-bond 
acceptors as potential functional monomers is also worthy to consider in forthcoming studies. 
 
Experimental  
 
General 

 
N-(4´-sulfamoylbenzoyl)benzylamine (1) [40] and 4-(benzylaminomethyl)-benzenesulfonamide (2) 

[41] were prepared following literature methods. 4-Carboxybenzenesulfonamide, benzylamine, N-
benzylbenzamide (3), Raney® 2800 nickel (hydrogenation catalyst slurry in water, Ni ≥89%, Al ≥6-
9%, pH >9.5), sodium borohydride, methacrylic acid (MAA), 1-vinylimidazole (VIM), ethylene glycol 
dimethacrylate (EDMA), trimethylolpropane trimethacrylate (TRIM) and azobis-isobutyronitrile 
(AIBN) were purchased from Aldrich. 4-Cyanobenzene-1- sulfonamide was obtained from Maybridge 
plc (Cornwall, England). NMR measurements were carried out on a 400 MHz Bruker NMR 
spectrometer. 
 
NMR titration 

 
N-(4´-sulfamoylbenzoyl)benzylamine (1, 133 mg, 0.458 mmol), was dissolved in a series of 

solutions containing VIM (83 mg, 0.916 mmol; 125 mg, 1.37 mmol; 166 mg, 1.83 mmol) in 750 µL of 
deuterated tetrahydrofuran (THF). NMR spectra for the samples were collected, from which the proton 
chemical shift of the sulfanomide and of the amide were calibrated against the solvent signal at δ 1.73 
ppm. 
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Molecularly imprinted polymers using 1 as template 
 
Molecularly imprinted polymers (MIP 1a and MIP 1b) were prepared in anhydrous THF using 1 as 

the template (Table 1). The template was dissolved in anhydrous THF (7.87 mL) containing the 
functional monomer (MAA or VIM). To the solution was then added the cross-linker, TRIM and 
AIBN (158 mg). The obtained solution was transferred into a 20 mL screw-caped borosilicate tube and 
purged with argon for 5 min. The tube was then submerged in a 60°C water bath for 12 h. The solid 
polymer was broken up and ground with a mechanical mortar. Particles with apparent diameter of 10-
25 µm were collected by repetitive sieving and sedimentation in acetone. To remove the template, 
methanol containing 10% acetic acid (v/v) was used for extraction. Quantitative removal of template 
was ensured by monitoring the amount of template remained in the extraction solvent by HPLC 
analysis. The non-imprinted control polymers (NIP 1a and NIP 1b) were prepared in the same way as 
used for the corresponding imprinted polymers, except that the template was omitted during 
polymerization. 
 
Binding analysis 

 
Equilibrium binding analysis was carried out by incubating fixed amount of polymers in a 1 mL 

volume of analyte solution at ambient temperature for 12 h. A rocking table was used to provide gentle 
mixing. After the incubation, samples were centrifuged at 12 000 rpm for 10 min, from which 0.75 mL 
supernatant was collected for determination of the free analyte by HPLC analysis. 
 
HPLC analysis 

 
Reverse phase HPLC analysis was carried out using a LaChrom L-7100 solvent delivery system, a 

L-7455 diode array detector and a D-7000 HPLC System Manager software package (Merck KgaA, 
Darmstadt, Germany). A Chromolith Performance column (RP-18 e) from Merck (Darmstadt, 
Germany) was used, applying a mobile phase of water: acetonitrile = 70: 30 (v/v, both containing 0.1% 
TFA) at a flow rate of 1.0 mL min-1. The analyte was monitored at 230 nm. For each analysis 10 µL of 
sample was injected. 
 
Computer simulation 

 
Sulfonamide templates and functional monomers were drawn using GaussView, version 3.09 [42]. 

The functional monomers were placed near the functional groups of the sulfonamide template 1. Next, 
template 1, functional monomers (MAA and VIM), and their complexations were subjected to full 
geometry optimization under Gaussian 03W [43] at the Hartree-Fock level of theory using the 3-
21G(d) basis set. This quantum chemical calculation provided insights on possible modes of 
interaction for the template-monomer complex. The aforementioned procedures were repeated for all 
putative points of interaction. The template-monomer interaction energy was calculated from the 
following equation: 

monomertemplatemonomertemplate EEEE −−=Δ −      (1) 
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where EΔ  is the interaction energy, Etemplate-monomer is the energy of template-monomer complex, 
Etemplate is the energy of template molecule, and Emonomer is the energy of functional monomer 
molecules. The energy values were derived from single point calculation at the Density Functional 
Theory (DFT) using Becke’s three-parameter Lee-Yang-Par (B3LYP) functional and 6-31G(d) basis 
set. 
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