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1. Introduction 

4-Hydroxycoumarins (2H-1-benzopyran-2-ones, Figure 1) have evoked a great deal of interest due 
to their biological properties and characteristic conjugated molecular architecture. Many of them 
display important pharmacological effects, including analgesic [1], anti-arthritis [2], anti-inflammatory 
[3], anti-pyretic [4], anti-bacterial [5], anti-viral [6], and anti-cancer [7] properties. 4-Hydroxy-
coumarin and its derivatives have been effectively used as anticoagulants for the treatment of disorders 
in which there is excessive or undesirable clotting, such as thrombophlebitis [8], pulmonary embolism 
[9], and certain cardiac conditions [10]. A number of comparative pharmacological investigations of 
the 4-hydroxycoumarin derivatives have shown good anticoagulant activity combined with low side 
effects and little toxicity [11].  
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Figure 1. Structures of the 4-hydroxycoumarin (1), 4-hydroxythiocoumarin (2), and derivatives 3-6. 
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Nowadays 4-hydroxycoumarin and its derivatives are widely used anticoagulant rodenticides as 
well as antithrombotic agents [12]. The 4-hydroxycoumarin anticoagulants are antagonists of vitamin 
K and their target is vitamin K 2,3-epoxide reductase in the liver microsomes. Finally, they are also 
useful key intermediates for many industrial products such as dyes [13] and liquid crystals [14]. 

The chemical synthesis, structural modification, and a wide variety of biological activities of 4-
hydroxycoumarins have been reported in many papers [15-17]. The goal of this review is to summarize  
recent synthetic approaches to 4-hydroxycoumarin derivatives and their biological activities. 

2. Results and Discussion 

The 2H-1-benzopyran-2-one and tetrahydronaphthalen-1-ols skeletons are essential structural 
features in the second generation rodenticide 4-hydroxycoumarin derivatives. They have traditionally 
been coupled in acidic media. Although several improved condensation reactions of 4-hydroxy-
coumarin (1) with compounds 8-9 using Bronsted-Lowry acids (HCl, H2SO4, p-TsOH) have been 
reported [18-21], these reactions led to preferential dehydrohalogenation, resulting in low yields. Thus, 
an efficient coupling condition was required to obtain better yield. Scheme 1 shows a representative 
retrosynthetic approach for this class of molecules. The tetrahydronaphthalen-1-ol 8 was coupled with 
4-hydroxycoumarin (1) or 4-hydroxythiocoumarin (2) to generate the target 2H-1-benzopyran-2-one or 
2H-1-benzothiopyran-2-one. 
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Scheme 1. Retrosynthetic analysis of the 4-hydroxycoumarin derivatives. 
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Our previous synthesis of flocoumafen (5) [18–19] is summarized in Scheme 2. Its main reactions 

were Friedel-Crafts acylation, Reformatsky reaction, and dehydration. Commercially available 
phenylacetyl chloride (10) was condensed with anisole (11) in the presence of AlCl3 to afford ketone 
12, which was treated with ethyl bromoacetate to give hydroxyl ethyl ester 13 in 86% yield over two 
steps. Subsequent dehydroxylation of ethyl ester 13 was accomplished with triethylsilane and boron 
trifluoride to give the corresponding ester, which was smoothly hydrolyzed under basic conditions and 
cyclized using polyphosphoric acid to yield tetralone 14 in three steps. Reduction of tetralone 14 with 
sodium borohydride afforded secondary alcohol 15, which was then coupled with 4-hydroxycoumarin 
in the presence of p-toluenesulfonic acid to give compound 16. Demethylation of compound 16 was 
performed with hyrobromic acid in acetic acid to give phenol 17. Phenol 17 was O-alkylated with 
freshly prepared 3-(trifluoromethyl)benzyl bromide in sodium hydride/THF to generate flocoumafen 
(5) in good yield (overall yield was 25% in eight steps). 

The Ferreira group [20] has developed to a new protocol for the synthesis of diphenacoum (29) and 
brodifacoum (30). The key step involves the stereospecific formation of one of the crucial bonds in the 
molecular backbone using asymmetric organocopper 1,4-addition to chiral imides. Wittig condensation 
of freshly prepared aldehydes 18, 19, and (carbethoxy)triphenylphosphonium chloride (20) in the 
presence of sodium methoxide in DMF gave the biphenyl esters 21, 22 in 92% and 87% yield, 
respectively. Organocopper methodology was then successfully applied to the synthesis of butanoate. 
1,4-Michael addition with compounds 21, 22 and BnCu-TMEDA complex in the presence of TMS-Cl 
generated 23, 24 in 84% and 81% yield, respectively, and then subsequent ring cyclization by using 
AlCl3 in toluene to give tetralones 25 and 26 in 88% and 86% yield, respectively. The coupling 
reaction between 4-hydroxycoumarin 1 and secondary alcohol 27 or brominated compound 28 under 
an HCl atmosphere at 160 °C 30 min provided approximately equal quantities of the cis and trans 
isomers of 4-hydroxycoumarin derivatives 29 and 30 in 78% and 74% yield, respectively (Scheme 3). 
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Scheme 2. Synthesis of flocoumafen (5). 
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reflux, 1 h; (c) (Et)3SiH, TFA, BF3EtO2, CH2Cl2, reflux, 8 h; KOH/H2O, reflux, 8 h; and then PPA, 
80 °C, 1 h; (d) NaBH4, MeOH, rt, 2 h; (e) 4-hydroxcoumarin, p-TsOH, 80 °C, 3 h; (f) HBr, AcOH, 
reflux, 6 h; (g) 3-(trifluoromethyl)benzyl bromide, sodium hydride, THF, 0 °C, 1 h 

Scheme 3. Synthesis of diphenacoum (29) and brodifacoum (30). 
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Reagents and conditions: (a) NaOMe, DMF; (b) BnCu-TMEDA, TMSCl, THF, –78 °C to 30 °C; 
(c) AlCl3, toluene, 90 °C; (d) NaBH4, EtOH/THF, rt, then PBr3, dichloromethane, 0 °C; (e) HCl(g), 
160 °C. 
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The Yang group [21] reported the synthesis of novel diphenacoum analogues using base-catalyzed 
aldol condensation, ring cyclization, and coupling reactions. 2-Hydroxyacetophenone (31) was treated 
with aldehydes 32 or 33 under base-catalyzed aldol reaction conditions to produce ketones 34, 35, 
which were readily cyclized by phosphoric acid in ethanol to give 2-biphenylchroman-4-ones 36 and 
37, respectively. Reduction of 36 and 37 with sodium borohydride in methanol gave quantitative yields 
of the corresponding alcohols 38 and 39, which were then condensed with 4-hydroxycoumarin (1) in 
1,2-dichloroethane in the presence of a catalytic amounts of p-toluenesulfonic acid, to yield the target 
compounds 40 and 41, respectively (Scheme 4).  

Scheme 4. Synthesis of novel diphenacoum analogues. 
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Reagents and conditions: (a) 40% KOH; (b) H3PO4, EtOH; (c) NaBH4, MeOH/THF; (d) 4-
hydroxycoumarin, p-TsOH, 1,2-DCE. 
 

The Danchev group [22] reported a synthesis of 4-hydroxcoumarin derivatives and their 
anticoagulant activities. Their method involves a condensation reaction of 4-hydroxcoumarin (1) with 
unsaturated ketone 42 or substituted aromatic aldehydes 32-33 (Scheme 5). Warfarin type compound 
43 showed similar anticoagulant effect as coumachlor or warfarin in vivo, while its acute toxicity was 
higher than that of woumachlor. Among their 4-hydroxcoumarin derivatives 3,3’-(4-
chlorophenylmethylene)-bis-(4-hydroxy-2H-1-benzopyran-2-one), with low toxicity, is a prospective 
lead compound.  

Scheme 5. Danchev synthesis of 4-hydroxcoumarin derivatives. 
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The Hamdi group [23] prepared benzopyranodicoumarins 46 and 49 and evaluated their 
antioxidative and antibacterial activities. Aromatic aldehydes 44 containing different groups in the 
ortho-, meta- or para- positions was condensed with 4-hydroxycoumarin (1) in ethanol and acetic acid 
to generate substituted 3,3’-arylidenebis-4-hydroxycoumarins 45 and tetrakis-4-hydroxycoumarin 
derivatives 48. Heating of compounds 45 and 48 in acetic anhydride transformed them into 
benzopyranodicoumarins 46 and 49 (Scheme 6). 

Scheme 6. Synthesis of benzopyranodicoumarins 46 and 49. 
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Reagents and conditions: (a) EtOH, AcOH, reflux; (b) (CH3CO)2CO, –2H2O. 

 
On the other hand, the Raghunathan group [24] successfully established a pyrano[3-2c]coumarin 

framework using microwave accelerated intramolecular domino Knoevenagel-hetero Diels-Alder 
reactions. 4-Hydroxycoumarin (1) was treated with 2-(3-methyl-2-butenyloxy)benzaldehyde under 
microwave irradiation in ethanol for 15 s to give a 97:3 ratio of pyrano[3-2c]coumarin 51 and 
pyrano[3-2c]chromene derivative 52 in good yield (Scheme 7). This methodology is very useful, 
providing an easy access to the pyrano[3-2c]coumarin skeleton found in many natural products. 

Scheme 7. Synthesis of pyrano[3-2c]coumarins. 
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The Trkovnik group [25] synthesized substituted 4-hydroxycoumarins 54 and 56 from compounds 
53 and 55 according to a modified Pauly and Lockemann method [26], respectively. They also 
prepared dicoumairn type moiety 59 in good yield (Scheme 8). 

Scheme 8. Synthesis of substituted 4-hydroxycoumarins 54 and 56 and dicoumairn 59. 
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Reagents and conditions: (a) sodium, paraffin, 220-240 °C; (b) sodium, paraffin, 220-230 °C; (c) 
POCl3, reflux. 

 
The Swenson group [27] recently published a unique procedure for preparation of 3-(p-azido, 

amino, and nitrobenzyl)-4-hydroxycoumarins 62-64 by the reaction of freshly prepared benzyl malonic 
acid 60 and phenol (61) in the presence of phosphorus trichloride and zinc chloride (Scheme 9). They 
also prepared various radiolabeled 3-substituted 4-hydroxycoumarin derivatives using commercially 
available [U-14C] phenol or [U-3H] in order to elucidate the binding photoaffinity. Compounds 62-64 
serve as effective competitive inhibitors of the dicoumarol sensitive NADPH quinone reductase from 
rat liver [28,29]. 

Scheme 9. Synthesis of 3-(p-azido, amino, and nitrobenzyl)-4-hydroxycoumarins 62-64. 
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Recently, stereoselective synthesis has been an important topic in the synthesis of biologically 
active substances. Efficient asymmetric syntheses of 4-hydroxycoumarin derivatives were 
demonstrated by two groups. The Ferreira group [30] firstly reported a highly stereo- and enantio- 
selective synthesis of diphenacoum (29) and brodifacoum (30). The key step involves a stereospecific 
1,4-Michael addition using a chiral auxiliary and intramolecular ring cyclization. The esters 21, 22 
were transformed into acid chlorides through hydrolysis and chlorination with KOH and SOCl2, and  
subsequently reacted with the lithium anion of the chiral auxiliary to afford the chiral imides 65-68 in 
72%, 74%, 73%, and 70% yield, respectively, for three steps. Asymmetric 1,4-Michael addition of 
imides 65-68 was accomplished with Bn-Cu-TMEDA complex in the presence of Bu2BOTf to give 
diastereoisomeric ketones 69-72, which were effectively cyclized using trifluoromethanesulfonic acid 
to generate chiral tetralones 73-76 with 99% optical purity in 85%, 84%, 79%, and 80% yield, 
respectively. Reduction of tetralones 73-76 with sodium borohydride afforded the corresponding cis 
benzyl alcohols, which were condensed with 4-hydroxcoumarin (1) to give cis/trans diphenacoum and 
brodifacoum, respectively (Scheme 10). The stereoisomeric mixtures were readily separated by flash 
column chromatography. The configuration was established using spectroscopic analysis. 

Scheme 10. Stereo- and enantioselective synthesis of diphenacoum (29) and brodifacoum 
(30).  
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Reagents and conditions: (a) KOH, EtOH, 40 °C; SOCl2, rt, (+)- or (–)-1,5-dimethyl-4-phenyl-2-
imidazolidinone, n-BuLi, Ph3CH, THF, 0 °C; (b) BnCu-TMEDA-n-Bu2BOTf, THF, –78 °C to  
30 °C; (c) CF3SO3H, benzene, reflux; (d) NaBH4, EtOH/THF (1:1, v/v), then 4-hydroxycoumarin, 
HCl(g), 160 °C. 
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The Jorgensen group [31] reported a highly economical organocatalytic asymmetric 1,4-Michael 
addition of 4-hydroxycoumarin and α,β–unsaturated ketones to generate the widely used 
anticoagulants warfarin (Coumadin) and some related important compounds (Scheme 11). They 
attempted enantioselective 1,4-Michael addition by using well known benzylideneacetophenone (85) 
and 4-hydroxycoumarin (1) in the presence of optically active imidazolidine catalysts 86-88 to afford 
enantiopure warfarin moieties with 47 to 82% ee values in 22 to 96% yields. This asymmetric one-step 
method could be useful for the formation of a number of biologically active compounds. 

Scheme 11. Organocatalytic asymmetric 1,4-Michael addition of 4-hydroxycoumarin and 
α,β–unsaturated ketones.  
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The Tagliapietra group [32] developed an asymmetric two-step synthesis of non-racemic coumarin 

anticoagulants such like warfarin, coumachlor, and acenocoumarol through one-pot-three-component 
tandem Knoevenagel-hetero Diels-Alder cycloaddition reactions between in situ generated  
3-arylidene-2,4-chromanediones 89 and isopropenyl ether 90 derived from (-)-menthol in 61% yield 
with 95% ee for (S)-warfarin, 56% yield with 93% ee for (S)-coumachlor, and 59% yield with 95% ee 
for (S)-acenocoumarol (Scheme 12). Knoevenagel adducts 91 were treated with 3N-HCl in the 
presence of SiO2 or TFA:H2O (19:1, v/v) as a reaction promotor to get the final asymmetric products 
92 in nearly quantitative yields. 

Scheme 12. Asymmetric two-step synthesis of non-racemic coumarin anticoagulants. 
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Reagents and conditions: (a) cat-ethylenediammonium diacetate (Tietze base), 5 A molecular 
sieves, dioxane, 90 °C, screw cap pressure tube; (b) 3N-HCl, SiO2, or TFA:H2O (19:1, v/v). 
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3. Biological Activity 

A large number of 4-hydroxycoumarins and their derivatives have been synthesized and evaluated 
for their ability to play a positive role in the prevention of human and animal diseases. Various 
pharmacological activities for the representative compounds have been described in the literature 
(Table 1). Most 4-hydroxycoumarin derivatives showed representative anticoagulant effects, while 
compounds 3, 5, 30, 40, 46, and 64 exhibit a wide variety of activities including antiarthritis, anti-
inflammatory, anticancer, antithrombosis, teratogenic, antibacterial, and photoaffinity effects.   

Table 1. Biological activities for 4-hydroxycoumarin derivatives. 

4-Hydroxycoumarin Biological activity References 

3 
arthritis, anti-inflammatory 
anti-cancer, anticoagulant 

antithrombosis 

[33–34] 
[35–36] 

[37] 
4 anticoagulant [38] 
5 anticoagulant, teratogenic [39–40] 
6 anticoagulant [41] 

29 anticoagulant [42] 
30 teratogenic [43] 

40 
vitamin K 2,3-epoxide reductase (VKOR) 

inhibitors 
[21] 

41 anticoagulant [44] 
43 anticoagulant [45] 
46 anti-bacterial [23] 
54 anticoagulant [25] 
56 anticoagulant [25] 
64 photoaffinity [46] 
92 anticoagulant [47] 

 
Anticoagulant is the most prominent among many intriguing pharmacological effects observed for 

many 4-hydroxycoumarin derivatives. In particular warfarin, as first generation anticoagulant, and  
compounds like brodifacoum, bromadiolone, chlorophacinone, difenacoum, coumatetralyl, 
flocoumafen, and difethialone are effective anticoagulant rodenticides. The second generation 
anticoagulant rodenticides, difenacoum (29) and brodifacoum (30) showed a plasma elimination half-
life of 91.7 days, while liver elimination half-lives varied from 15.8 days for coumatetralyl (4) to  
307.4 days for brodifacoum. In general, the elimination half-lives in plasma for first-generation 
rodenticides were shorter than those for second-generation rodenticides. These results revealed that the 
so-called superwarfarins such as difenacoum (29), brodifacoum (30), flocoumafen (5), and difethialone 
(6) showed higher anticoagulant effects than warfarin [48]. The biological activities of compounds 40 
and 41 indicate potent vitamin K 2,3-epoxide reductase (VKOR) inhibition effects with IC50 values of 
0.4 μM, comparable with warfarin. Compound 40 was shown to be 2.5-fold more potent than warfarin, 
while compound 41 exhibited 10 times less activity than warfarin. These biological results imply that 
the hydrogen bonding has a major effect on enzyme site binding [21]. 4-Hydroxycoumarin derivatives 
43 showed favorable anticoagulant effect compared with warfarin; especially a chlorine at the para-
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position in the aromatic ring resulted in potent anticoagulant activities compared to nitro or other 
halogen substituents at the para-position [22,49]. The dicoumarol related compounds 48-49 were 
evaluated for antimicrobial, antioxidant activities using MIC tests and radical scavenging activities. 
Also, compounds 48 and 49 showed favorable antimicrobial activity compared to warfarin and similar 
effects to each other for the antioxidant activity. In addition, the coumarol moiety showed more potent 
activity than a benzopyranocoumarol moiety due to the stable configuration and favorable binding 
activity through hydrogen bonding in the enzyme binding site [22]. 6-Bromo-4-hydroxycoumarin (54) 
and 4-hydroxy-6,7-benzocoumarin (56) exhibited significant anticoagulant effect with a rapid short 
duration. Especially 3,3’-alkylidene bis-6-bromo-4-hydroxycoumarin derivatives showed a potent 
anticoagulant activity in vitro [25]. 

A 4-hydroxycoumarin containing an azidobenzyl group at the 3-position − 3-(p-azidobenzyl)-4-
hydroxycoumarin (64)—showed an inhibition constant of 6.6 × 10-8 M, a value comparable to that 
observed for dicoumarol (1.7 × 10-9 M), but significantly lower than that for warfarin (3.5 × 10-5 M). 
This result implies that compound 64 can be an effective photoaffinity probe in the identification of 
other proteins associated with the vitamin K-dependent carboxylation system that are similarly 
inhibited by 4-hydroxycoumarin derivatives [46]. 

4. Conclusions 

The chemical syntheses and structural modifications of 4-hydroxycoumarin and its derivatives are 
of interest due to their biological activities and characteristic conjugated molecular architecture. This 
review summarized the recent synthetic approaches to 4-hydroxycoumarin derivatives and the current 
state of research into their biological activities. 
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