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Abstract: Structurally diverse thiazoles with electron-donating and electron-withdrawing 
groups were conveniently synthesized through manganese dioxide (MnO2) oxidation of the 
corresponding thiazolines. The effect of substitution at the 2- and 4-positions was 
investigated. The desired thiazoles with aryl or vinyl substitutions at the 2- or 4-position 
can be obtained in good to excellent yields. 
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1. Introduction  

The thiazole ring is an interesting building block in a variety of natural products and bioactive 
compounds useful as pharmaceuticals or agrochemical agents [1–5], and to date many methods have 
been developed for the construction of thiazole ring systems. One classical and widely used method is 
the condensation of α-haloketones with thioamide derivatives, which is known as the Hantzsch  
reaction [6–8]. Another efficient method is the introduction of substitutions onto a thiazole core 
structure through Stille coupling [9], which involves the use of organostannane intermediates. In recent 
years, a new and frequently encountered method for thiazole synthesis is the conversion of thiazoline 
derivatives through the use of dehydrogenating reagents such as sulfur [10], KMnO4 [11], 
Cu(I)/Cu(II)/peroxide oxidation [12], MnO2 [13–16], NaH/DBU [17], and so on. Among these 
dehydrogenating reagents, activated MnO2 is a very simple and convenient reagent for the synthesis of 
thiazoles from thiazolines. However, all cases of MnO2 oxidation of thiazolines reported in the 
literature are restricted to thiazoles bearing electron-withdrawing substituents such as carboxylates, 
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and to the best of our knowledge, no report involving the use of MnO2 for the synthesis of thiazoles 
without carboxylate substitution has appeared. To investigate the generality and scope of this method 
as a continuation of our research interest in thiazoline chemistry [18–20], we would like to report the 
synthesis of 2,4-disubstituted thiazoles with electron-donating and electron-withdrawing groups from 
the corresponding thiazolines via activated MnO2 oxidation. 

2. Results and Discussion 

The starting thiazolines 2 were easily prepared in one-pot reactions from the corresponding 
carboxylic acids 3 or their derivatives [19,20], and commercially available amino alcohols which 
provide R2 in the product (Scheme 1).  

Scheme 1. The synthesis of 2,4-disubstituted thiazoles. 
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With all kinds of thiazoline derivatives in hand, we first set out to optimize the reaction conditions. 

The suspension of thiazoline 2a and excess activated MnO2 (10 equiv.) in dichloromethane (DCM) 
was stirred for 24 h at room temperature [15,16]. No desired product was yielded even the reaction 
temperature was elevated to the boiling point for 48 hours. Through extensive screening of solvents, 
we observed that the reaction proceeded well under reflux in solvents with different polarity but 
similar boiling points. The results indicated the strong correlation between the yield and the reaction 
temperature. In DCE, CH3CN, or benzene, full conversion and up to 95% isolated yields can be 
achieved within 12 hours. In the case of toluene, the starting material disappeared within 6 h and the 
thiazole product was afforded in 80% yield. Lowering the ratio of oxidant to thiazoline led to the 
significant decrease of the reaction rate. With the optimized condition in hand (DCE as solvent, 1:10 
molar ratio of thiazoline to MnO2), thiazoles with different substitutions at the 2- and 4-positions were 
synthesized (Table 1). In most cases, the reaction proceeded well under reflux (entries 6–16). When 
one of 2- and 4-position of thiazoline is an aryl or vinyl group, the thiazole products are produced in 
good to excellent yields (entries 6, 7, 9, 10, 11, 14 and 16). When both the 2- and 4-position of 
thiazoline are aryl groups, the yields were improved to 95%–99 % (entries 8, 12 and 13), which can be 
ascribed to the stronger conjugation effect between aryl groups and thiazoles. In contrast, when both  
2- and 4-positions of thiazoline are alkyl groups, none of the desired thiazole products was obtained 
(entry 17). The scope of this method was further exploited to the preparation of bis-thiazoles (Scheme 2). 
The desired products were also obtained in high yield from corresponding bis-thiazolines, as illustrated 
in Table 2 (entries 1–4).  
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Table 1. The conversion of thiazolines to thiazoles by MnO2 oxidationa. 

Entry Compd. R1 R2 Solvent Time(h) Yield(%) 
1 1a Ph Me DCM 48 – 
2 1a Ph Me DCE 12 95 
3 1a Ph Me Benzene 12 90 
4 1a Ph Me CH3CN 12 90 
5 1a Ph Me Toluene 6 80 
6 1b Ph i-Pr DCE 12 90 
7 1c Ph i-Bu DCE 12 90 
8 1d Ph Ph DCE 12 99 
9 1e 2-Py Me DCE 12 90 
10 1f 2-Py i-Pr DCE 12 77 
11 1g 2-Furyl Bn DCE 12 70 
12 1h 2-Furyl Ph DCE 12 95 
13 1i 2-thienyl Ph DCE 12 95 
14 1j PhCH=CH- i-Pr DCE 12 80 
15 1k PhCH=CH- Ph DCE 12 95 
16 1l Me Ph DCE 12 76 
17 1m Me i-Pr DCE 24 – 

a The reactions were run under reflux in different solvents. 
 

Scheme 2. The synthesis of 2,4-disubstituted bis-thiazoles. 
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Table 2. The conversion of bis-thiazolines to bis-thiazoles by MnO2 oxidationa. 

Entry Compd. R1 R2 Reaction time Yield 

1 5a i-Pr 12 80 

2 5b 
N

Me 12 85 

3 5c 
N

i-Pr 6 80 

4 5d Ph 8 70 

a The reactions were run under reflux in DCE. 
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3. Conclusions 

In conclusion, we have demonstrated that thiazoles bearing different electron-donating and 
electron-withdrawing groups can be conveniently synthesized from the corresponding thiazolines 
using activated MnO2 in dichloroethane. The critical effects of the reaction temperature and the 
substitutions on the thiazoline ring were investigated. The scope of this method was further extended 
to the preparation of 2,4-disubstituted thiazoles with diverse groups. 

4. Experimental  

NMR spectra were recorded on a Bruker Avance DPX300 spectrometer with tetramethylsilane as 
internal standard and CDCl3 as solvent. Infrared spectra were obtained on a Nicolet AVATAR 330  
FT-IR spectrometer. Elemental analyses were carried out on an Elementar Vario EL instrument. 
Melting points were measured on an XT-4 melting point apparatus and were uncorrected. Solvents 
were purified and dried following standard procedures.  

4.1. Synthesis of Thiazolines 

All thiazolines were prepared according to the literature [19,20]. 

4.2. Typical Procedure for Oxidation of Thiazolines to Thiazoles 

To a solution of 4-methyl-2-phenylthiazoline (177 mg, 1 mmol) in 1,2-dichloroethane (10 mL) was 
added activated MnO2 (860 mg, 10 mmol). The mixture was then refluxed for 12 h under a nitrogen 
atmosphere. After filtration, the mixture was evaporated in vacuo. The residue was chromatographed 
on silica gel (ethyl Acetate-hexane, 10:1) to give 176 mg (95% yield) of 4-methyl-2-phenylthiazole 
(1a) [21] as a colorless oil; 1H-NMR: δ 7.94–7.91(m, 2H), 7.43–7.39 (m, 3H), 6.85 (t, J = 0.96 Hz, 
1H), 2.50 (d, J = 0.96 Hz, 3H); 13C-NMR: δ 167.44, 153.71, 133.72, 129.65, 128.75, 126.34, 113.30, 17.14. 

4.3. Spectral Data of Other Thiazole Compounds 

1b [11]: 1H-NMR: δ 7.96–7.91(m, 2H, ArH), 7.44–7.37 (m, 3H, ArH), 6.86 (s, 1H), 3.21–3.11 (m, 
1H), 1.35 (d, J = 6.90 Hz, 6H); 13C-NMR: δ 167.29, 164.87, 134.08, 129.63, 128.79, 126.52, 110.88, 
31.05, 22.40. 

1c: colorless oil; IR (KBr, cm−1): 3063, 2955, 2928, 1516, 1461, 1244, 763; 1H-NMR: δ 7.95–7.91 (m, 
2H, ArH), 7.49–7.35 (m, 3H, ArH), 6.85 (d, J = 0.63 Hz, 1H), 2.67 (dd, J = 9.0, 0.75 Hz, 2H),  
2.16–2.06 (m, 1H), 0.97 (d, J = 6.60 Hz, 6H); 13C-NMR: δ 167.16, 157.77, 133.93, 129.57, 128.74, 
128.43, 113.45, 40.78, 28.38, 22.35; Anal. Calcd. for C13H15NS (217.34): C 71.84, H 6.96, N 6.44. 
Found: C 71.96, H 6.85, N 6.23. 

1d [22]: white solid, mp: 90.5 °C–92.0 °C (lit. [22] 91.0–92.0°C); 1H-NMR: δ 8.05–7.98 (m, 4H),  
7.47–7.42 (m, 6H), 7.41–7.34 (m, 1H); 13C-NMR: δ 167.74, 156.21, 134.48, 133.72, 129.53, 128.83, 
128.65, 128.08, 126.54, 126.34, 112.54. 
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1e [23]: white solid, mp: 85.0–86.0 °C (lit. [23] 84.0–84.5 °C); 1H-NMR: δ 8.60–8.58 (m, 1H),  
8.18–8.14 (m, 1H), 7.79–7.73 (m, 1H), 7.30–7.26 (m, 1H), 6.99 (d, J = 0.84 Hz, 1H), 2.52 (d, J = 0.84 
Hz, 3H); 13C-NMR: δ 167.92, 153.81, 151.12, 149.06, 136.53, 123.87, 119.17, 115.84, 16.96. 

1f: colorless oil; IR (KBr, cm−1): 3060, 2920, 1738, 1365, 1217; 1H-NMR: δ 8.60–8.58 (m, 1H),  
8.21–8.18 (m, 1H), 7.79–7.73 (m, 1H), 7.29–7.25 (m, 1H), 6.98 (d, J = 0.84 Hz, 1H), 3.19–3.14 (m, 
1H), 1.36 (d, J = 6.90 Hz, 6H); 13C-NMR: δ 167.96, 165.07, 151.61, 149.26, 136.71, 124.01, 119.57, 
113.45, 30.96, 22.31; Anal. Calcd. for C11H12N2S (204.30): C 64.67, H 5.92, N 13.71. Found: C 64.88, 
H 5.91, N 13.45. 

1g: colorless oil; IR (KBr, cm−1): 3120, 1569, 1495, 1473, 1299, 1133, 810, 769; 1H-NMR: δ 7.49  
(t, J = 1.20 Hz, 1H), 7.35–7.22 (m, 5H, ArH), 6.97 (dd, J = 2.1, 0.6 Hz, 1H), 6.69 (s, 1H), 6.51  
(dd, J = 4.80, 3.33 Hz, 1H), 4.17 (s, 2H); 13C-NMR: δ 157.81, 151.51, 149.04, 143.41, 138.89, 129.08, 
128.54, 126.48, 113.59, 112.08, 108.79, 37.91; Anal. Calcd. for C14H11NOS (241.32): C 69.68, H 4.59, 
N 5.80. Found: C 69.75, H 4.85, N 5.93. 

1h: white solid, mp: 72.3–72.9°C; IR (KBr, cm−1): 3060, 2970, 1738, 1452, 1217, 1015, 750; 
1H-NMR: 7.96 (d, J = 1.32 Hz, 1H), 7.94 (s, 1H), 7.53 (d, J = 1.14 Hz, 1H), 7.46–7.32 (m, 4H, ArH), 
7.08 (d, J = 3.45Hz, 1H), 6.55 (dd, J = 3.30, 1.80 Hz, ArH); 13C-NMR: 157.79, 156.26, 149.09, 
143.48, 134.19, 128.66, 128.20, 126.46, 112.13, 111.83, 108.98; Anal. Calcd. for C13H9NOS (227.89): 
C: 68.52, H: 3.98, N: 6.15. Found: C 68.66, H 4.05, N 6.13. 

1i [24]: colorless oil; 1H-NMR: δ 7.96–7.93 (m, 2H), 7.52 (dd, J = 3.60, 1.14 Hz, 1H), 7.44–7.32 (m, 5H), 
7.05 (dd, J = 5.40, 3.60 Hz, 1H); 13C-NMR: δ 161.15, 155.56, 137.30, 133.95, 128.50, 127.99, 127.60, 
127.45, 126.38, 126.26, 111.74.  

1j: colorless oil; IR (KBr, cm−1): 3034, 1738, 1476, 1365, 1217; 1H-NMR: δ 7.52–7.48 (m, 2H, ArH), 
7.38–7.24 (m, 5H, ArH), 6.78 (s, 1H,), 3.16–3.06 (m, 1H), 1.33 (d, J = 6.90 Hz, 6H); 13C-NMR:  
δ 166.20, 164.50, 135.85, 133.72, 128.70, 128.57, 126.89, 121.88, 110.26, 30.89, 22.29; Anal. Calcd. 
for C14H15NS (229.35): C 73.32, H 6.59, N 6.11. Found: C 73.55, H 6.72, N 6.33. 

1k [25]: colorless oil; 1H-NMR: δ 7.95–7.92 (m, 2H), 7.58–7.55 (m, 2H), 7.47–7.32 (m, 9H);  
13C-NMR: δ 166.76, 156.26, 135.82, 134.52, 134.42, 128.88, 128.75, 128.70, 128.20, 127.12, 126.44, 
121.68, 112.09. 

1l [26]: white solid, mp: 64.0–65.5 °C (lit. [26] 64°C); 1H-NMR: δ 7.89–7.85 (m, 2H), 7.44–7.38 (m, 
2H), 7.34–7.28 (m, 2H), 2.77 (s, 3H); 13C-NMR: δ 165.80, 155.22, 134.59, 129.01, 128.69, 127.95, 
126.54, 126.34, 112.19, 19.31. 

5a: colorless oil; IR (KBr, cm−1): 2961, 1569, 1509, 1429, 1270, 742; 1H-NMR: δ 8.45 (t, J = 1.75 Hz, 
1H), 7.98 (dd, J = 7.80, 1.50 Hz, 2H), 7.47 (t, J = 7.80 Hz, 1H), 6.90 (d, J = 0.72 Hz, 1H), 3.23–3.13 
(m, 2H), 1.37 (d, J = 6.90 Hz, 12H); 13C-NMR: δ 166.38, 164.89, 134.65, 129.23, 127.53, 124.37, 
111.22, 30.98, 22.32; Anal. Calcd. for C18H20N2S2 (328.51): C 65.81, H 6.14, N 8.53. Found: C 65.95, 
H 6.25, N 8.44. 
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5b [27]: white solid, mp: 126–126.5 °C; 1H-NMR: δ 8.14(d, J = 7.80 Hz, 2H), 7.86 (t, J = 7.80 Hz, 1H), 
7.02 (d, J = 0.90 Hz, 2H), 2.53 (d, J = 0.85 Hz, 6H); 13C-NMR: δ 165.80, 155.22, 134.59, 128.69, 
127.95, 126.34, 112.19, 19.31. 

5c: white solid, mp: 61.5–62.0 °C; IR (KBr, cm−1): 3068, 2926, 1564, 1510, 1498, 1011, 669;  
1H-NMR: δ 8.17 (d, J = 7.80 Hz, 2H), 7.85 (t, J = 7.80 Hz, 1H), 7.01 (d, J = 0.66 Hz, 2H), 3.21–3.12 
(m, 2H), 1.37 (d, J = 6.90 Hz, 12H); 13C-NMR: δ 167.68, 165.28, 151.28, 137.80, 119.86, 113.93, 
31.10, 22.44; Anal. Calcd. for C17H19N3S2 (329.50): C: 61.97, H: 5.81, N: 12.75. Found: C: 61.99, H: 
5.85, N: 12.90. 

5d: colorless oil; IR (KBr, cm−1): 2920, 1569, 1485, 1270, 1174, 1072, 731; 1H-NMR: δ 7.98 (d,  
J = 1.38Hz, 4H), 7.45–7.30 (m, 8H), 3.11 (t, J = 7.74Hz, 4H), 2.25–2.20 (m, 2H); 13C-NMR: δ 174.92, 
155.01, 134.67, 128.69, 127.99, 126.42, 113.29, 51.32, 36.64, 16.61; Anal. Calcd. for C22H18N2S2 

(374.54): C 70.55, H 4.84, N 7.48. Found: C 70.69, H 4.85, N 7.62. 
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