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Abstract: Eleven new 2-styrylbenzothiazole-N-oxides have been prepared by aldol – type 
condensation reactions between 2-methylbenzothiazole–N-oxide and para-substituted 
benzaldehydes. Compounds with cyclic amino substituents showed typical push-pull 
molecule properties. Four compounds were tested against various bacterial strains as well 
as the protozoan Euglena gracilis as model microorganisms. Unlike previously prepared 
analogous benzothiazolium salts, only weak activity was recorded.  
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Introduction 

Various benzothiazoles are known as industrial chemicals, dyes and drugs [1–3]. The biological 
activity of compounds with benzothiazole skeletons includes anticancer, antibacterial, antifungal and 
anthelmintic properties [4,5]. Some of the active antimicrobial substances have a dipolar push-pull 
structures with benzothiazole as the acceptor part of the molecule and an amino-substituted benzene 
ring as a donor part, linked together with a conjugated bridge. A previous QSAR study of such a type 
of compounds revealed that 2-styrylbenzothiazoles with p-dialkylamino-substituted benzene rings 
presented interesting antimicrobial activity [6]. The next generation of derivatives showed enhanced 
activity when a conjugated bridge was enlarged to two or three double bonds, the dialkylamino 
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substituent was changed to N-cyclic amino and the nitrogen in benzothiazole part of molecule was 
quaternized to the corresponding N-alkylbenzothiazolium salt, preferentially with allyl, propargyl or 
methyl halogenides [7]. The substitution at the benzene ring of benzothiazole did not add any 
substantial bonus. As the quaternization of the benzothiazole nitrogen by an alkyl group improved the 
biological activity 2-3 fold [8,9], we shifted our interest to the benzothiazolium-N-oxide derivatives 
assuming a similar activity effect might result. The N-oxide structure could also influence the electron 
density in the benzothiazole ring what could extend the synthetic route to derivatives substituted on the 
heterocycle phenyl ring. Since the benzothiazole push-pull dipolar structures also show important 
nonlinear optical properties, photonics and optoelectronics could be other fields of possible application 
[9–11]. These were the main reasons to synthesize the target compounds with the general structure 
presented in Figure 1. 

Figure 1. Structure of target benzothiazole-N-oxides. 
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In this paper the synthesis and characterization of eleven new 2-styrylbenzothiazole-N-oxides is 
reported. Diverse substituents R are bonded to the 4´-position of the styryl part of the molecule: 
electron-acceptors –NO2 and –CN as well as electron-donors represented by the dimethylamino group 
and various N-cyclic amines. Four chosen compounds were also tested against various model 
microorganisms.  

Results and Discussion 

As the quaternization of benzothiazole heterocyclic nitrogen causes increased acidity of the  
2-methyl hydrogens, the most appropriate way to prepare the target styryl compounds consists of the 
aldol-type condensation of 2-methylbenzothiazole-N-oxide and a substituted benzaldehyde  
(Scheme 1). Methanol was chosen as a suitable solvent due to its good solvatation of the reactants. The 
use of dimethylsulfoxide, which was beneficial in the case of the reaction between simple  
2-methylbenzothiazole and the respective aldehydes did not show any advantage in this case as the 
products remain dissolved in the reaction mixture. 2-Methylbenzothiazole-N-oxide was prepared from 
2-methylbenzothiazole by the known oxidation procedure with hydrogen peroxide–maleic anhydride 
mixture [12]. The required p-substituted benzaldehydes were synthesized via nucleophilic aromatic 
substitution from 4-fluorobenzaldehyde [13].  
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Scheme 1. Synthesis of benzothiazole-N-oxides. 
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The prepared derivatives were identified by 1H- and 13C-NMR, UV-vis spectroscopy and elemental 
analysis. The physicochemical properties of prepared compounds and their biological activity were 
compared with the same data of analogous condensation products of 2-methyl-3-alkylbenzothiazolium 
salts with the corresponding aldehydes. 

UV–VIS absorption spectra of the prepared compounds were measured and they consist of the 
long-wavelength band located between 340–420 nm and other band at shorter wavelength sometimes 
separable to two bands. The long wavelength band is usually the most intensive one and represents the 
S0 S1 electronic transition. The position of λmax of this band strongly depends on the character of a 
substituent in the para position on the styrene moiety. The electron-donating cyclic amine substituents 
cause a higher push-pull effect, expressed with the batochromic shift of λmax to 400–420 nm. These 
compounds appear as orange – red solids, contrary to yellow colour of the compounds with electron-
accepting or heteroaromatic substituents at the same position.  

In all, of the eleven new benzothiazole derivatives prepared, four of them with the divers types of 
aminosubstituents were tested for their antimicrobial and antifungal activity. The activities of prepared 
compounds have been measured and compared with the corresponding neutral conjugated 
benzothiazoles and N-alkyl benzothiazolium salts. Unfortunately the new derivatives are less active 
than the analogous benzothiazolium salts. They are comparable to the corresponding neutral 
conjugated benzothiazole derivatives. The results are listed in Table 1. The activities against the 
unicellular flagelate Euglena gracilis were also low and did not exceed a value of 3 expressed as 
log(1000/ED50). The activities of the corresponding N-alkyl benzothiazolium salts were found to be 
more than 6 [8].  

Table 1. The quantitative antibacterial and antifungal activities of new benzothiazole-N-oxides. 

Compound MIC values (μg/mL) for individual organisms 
S. aureus B. subtilis E. coli P. aeruginosa C. albicans M. gypseum 

1c 50 500 >500 >500 250 500/250 
1e 250 500 >500 >500 250 > 500/250 
1f 250 500 >500 >500 250 > 500/500 
1h 250 500 >500 >500 250 > 500/500 

 
Conclusions 

In summary, an aldol type condensation reaction between 2-methylbenzothiazole–N-oxide and 
divers types of p-substituted benzaldehydes has been used to prepare eleven new  
2-styrylbenzothiazole-N-oxides. The UV-vis spectra show typical push-pull character in derivatives 
with amino substituents. Four compounds were tested against various bacterial strains as well as the 
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protozoan Euglena gracilis. However only weak activity was recorded compared with previously 
prepared analogous benzothiazolium salts.  

Experimental 

General 

NMR spectra were recorded on a Varian Gemini 2000 spectrometer, at 300 MHz (1H) and 75 MHz 
(13C) using tetramethylsilane as an internal standard. UV-vis spectra were measured on Hewlett-
Packard Diode Array 8245 in methanol (UV grade) and ε values are expressed in mol-1·m2. Elemental 
analysis was determined on a Carlo Erba Science 1106 instruments and obtained values were in 
acceptable error range (0.4%). Solvents were dried and distilled before use. Condensation products 
were purified by crystallization.  

2-Methylbenzothiazole-N-oxide 

To a solution of 2-methylbenzothiazole (7.5 g, 0.05 mol) and maleic anhydride (6.10 g, 0.062 mol) 
in CH2Cl2 (25 mL) 30% aqueous H2O2 (6.35 g, 0.18 mol) was added dropwise. The mixture was 
stirred and heated to reflux for 1 h, then cooled in the ice-water bath. The resulting precipitated maleic 
acid was filtered off and washed with CH2Cl2. The combined filtrates were dried and concentrated 
under reduced pressure. Chromatography of the residue on silica gel using MeOH-CH2Cl2 (1:15) gave 
2-methylbenzothiazole-N-oxide (2.9 g, 36%) as a white solid, m.p. 46–48 °C. 1H-NMR (CDCl3)  
δ 8.12–8.15 ( 1H, m, 4-H), 7.96–8.00 (1H, m, 7-H), 7.58–7.70 (2H, m, 5,6-H), 2.65 (3H, s, CH3).  

General procedure for the preparation of condensation products 

2-Methylbenzothiazole-N-oxide (0.16 g, 0.001 mol) and the appropriate substituted benzaldehyde 
(0.001 mol) were dissolved in methanol (2 mL). Potassium hydroxide (0.05 mL of 50% aqueous 
solution) was added as a base catalyst and the mixture was heated to reflux for 3 h. The precipitated 
crude product was crystallized from ethanol to give pure compound. 

 
2-[(E)-2-Phenylvinyl]-1,3-benzothiazole-3-oxide (1a): Yield 74%; M.p 241–244 °C; 1H-NMR 
(DMSO-d6) δ 8.15–8.18 (1H, m, H-7), 7.99–8.02 (1H, m, H-4), 7.89 (1H, d, J = 16.5, H-β), 7.76 (2H, 
d, J = 8.1, H-2,6), 7.73 (1H, d, J = 16.5, H-α), 7.64–7.67 (2H, m, H-5,6), 7.37–7.48 (3H, m, H-3,4,5); 
13C- NMR: (DMSO-d6) δ 142.86, 141.38, 135.91, 135.51, 129.57, 128.99, 128.52, 127.55, 127.38, 
125.86, 123.86, 116.81, 114.48; UV-vis: λmax /nm (log ε): 344 (3.19).  
 
2-[(E)-2-[4-Cyanophenyl]vinyl]-1,3-benzothiazole-3-oxide (1b): Yield 66%. M.p. 224- 228 °C. 1H 
NMR (DMSO) δ 8.18–8.21 (1H, m, H-7), 8.01–8.04 (1H, m, H-4), 7.96 (2H, d, J = 8.4, H-3`,5`), 
7.86–7.91 (2H, m, H-α,β), 7.89 (2H, d, J = 8.4, H-2`,6`), 7.66–7.69 (2H, m, H-5,6). 13C NMR: 
(DMSO) δ 142.74, 141.88, 140.09, 135.96, 133.41, 132.59, 128.72, 127.99, 127.36, 126.13, 118.55, 
117.66, 116.81, 110.98. UV-vis: λmax /nm (log ε): 347 (3.95).  
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2-[(E)-2-[4-(Dimethylamino)phenyl]vinyl]-1,3-benzothiazole-3-oxide (1c): Yield 31%. M.p.  
255–259 °C. 1H NMR (CDCl3) δ 8.11–8.14 (1H, m, H-7), 7.66–7.72 (1H, m, H-4), 7.62 (1H, d,  
J = 16.4, H-β), 7.52 (2H, d, J = 8.9, H-2`,6`), 7.42–7.55 (2H, m, H-5,6), 7.38 (1H, d, J = 16.4, H-α), 
6.70 (2H, d, J = 8.9, H-3`,5`), 3.04 (6H, s, N(CH3)2). 13C NMR (CDCl3) δ 150.95, 145.69, 141.73, 
137.32, 132.98, 128.92, 127.74, 127.19, 126.55, 124.37, 116.89, 111.54, 109.25, 39.74. 
 
2-[(E)-2-[4-Nitrophenyl]vinyl]-1,3-benzothiazole-3-oxide (1d): Yield 54%; M.p. 230–234 °C;  
1H- NMR: (DMSO-d6) δ 8.10–8.14 (1H, m, H-7), 7.94–7.97 (1H, m, H-4), 7.71 (1H, d, J = 16.5, H-β), 
7.61–7.63 (4H, m, H-5,6, H-3`,5`), 7.51 (1H, d, J = 16.4, H-α), 6.99 (2H, d, J = 8.8, H-2`,6`);  
13C-NMR: (DMSO-d6) δ 151.79, 146.68, 143.44, 141.65, 139.68, 132.17, 127.70, 126.94 (2C), 126.73, 
126.63, 123.27 (2C), 116.57, 109.31; UV-vis: λmax /nm (log ε): 276 (2.85).  

2-[(E)-2-[4-(1H-Benzo[d]imidazole-1-yl)phenyl]vinyl]-1,3-benzothiazole-3-oxide (1e): Yield 40%; 
M.p 186–188 °C; 1H-NMR: (DMSO-d6) δ 8.64 (1H, s, H-2benzim), 8.17–8.20 (1H, m, H-7), 8.00–8.05 
(1H, m, H-4), 8.03 (2H, d, J = 8.8, H-2`,6`), 7.83 (1H, d, J = 16.7, H-β), 7.79 (2H, d, J = 8.8, H-3`,5`), 
7.78 (1H, d, J = 16.7 H-α), 7.73–7.80 (2H, m, H-4,7benzim), 7.66–7.73 (2H, m, H-5,6), 7.29–7.42 (2H, 
m, H-5,6benzim); 13C-NMR (DMSO-d6) δ 145.48, 143.53, 143.23, 142.98, 142.82, 142.04, 
133.75,132.48, 132.88, 129.13 (2C), 128.58, 127.42, 125.91, 123.73, 123.59, 122.61, 119.95, 116.78, 
115.17, 110.82; UV-vis: λmax /nm (log ε) : 276 (3.48), 350 (2.77). 
 
2-[(E)-2-[4-(1H-Benzo[d]triazole-1-yl)phenyl]vinyl]-1,3-benzothiazole-3-oxide (1f): Yield 35%; M.p 
219–223 °C; 1H-NMR: (DMSO-d6) 8.13–8.18 (1H, m, H-7), 8.01–8.05 (1H, m, H-4), 7.92 (1H, d,  
J = 16.3, H-β), 7.89 (2H, d, J = 8.5, H-2`,6`), 7.88 (1H, d, J = 16.3 H-α), 7.75 (2H, d, J = 8.5, H-
3`,5`), 7.62–7.70 (6H, m, H-5,6, Hbenzotri); 13C-NMR (DMSO-d6) δ 145.67, 144.90, 141.71, 135.33, 
134.16, 132.77, 131.76, 129.09, 128.60, 127.67, 127.34 (2C), 126.80, 124.62, 123.63, 122.49 (2C), 
119.60, 116.60, 115.51, 110.87; UV-vis: λmax /nm (log ε): 304 (3.48), 356 (2.82).  
 
2-[(E)-2-[4-(Morpholine-1-yl)phenyl]vinyl]-1,3-benzothiazole-3-oxide (1g): Yield 49%; M.p  
240–244 °C; 1H-NMR (DMSO-d6) δ 8.10–8.13 (1H, m, H-7), 7.94–7.97 (1H, m, H-4), 7.72 (1H, d, J = 
16.5, H-β), 7.54–7.69 (4H, m, H-5,6,2`,6`), 7.52 (1H, d, J = 16.2, H-α), 7.00 (2H, d, J = 8.7, H-3`,5`), 
3.74 (4H, m, OCH2), 3.28 (4H, m, NCH2); 13C-NMR (DMSO-d6) δ 151.79, 143.37, 142.95, 136.24, 
135.97, 128.87, 127.98, 126.64, 125.78, 123.60, 116.47, 114.43 (2C), 110.64, 65.69, 46.37; UV-vis: 
λmax /nm (log ε): 316 (2.77), 420 (3.41).  

2-[(E)-2-[4-(Imidazole-1-yl)phenyl]vinyl]-1,3-benzothiazole-3-oxide (1h): Yield 50%; M.p.  
196–198 °C; 1H-NMR (DMSO-d6) δ 8.38 (1H, s br, H-2im), 8.16–8.19 (1H, m, H-7), 8.00–8.04 (1H, 
m, H-4), 7.93 (1H, d, J = 16.5, H-β), 7.92 (2H, d, J = 8.7, H-3`,5`), 7.85 (1H, t, H-4im) 7.83 (1H, d,  
J = 16.5 H-α), 7.65–7.68 (2H, m, H-5,6), 7.63 (2H, d, J = 8.7 H-2`,6`), 7.13 (1H, t, H-5im); 13C-NMR: 
(DMSO-d6) δ 142.73, 142.03, 137.08, 135.17, 134.24, 133.89, 131.35, 129.76, 128.64 (2C), 126.97, 
125.62, 123.40, 120.27, 117.43, 116.50, 114.67; UV-vis: λmax /nm (log ε) : 344 (3.54). 
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2-[(E)-2-[4-(4-Methylpiperazine-1-yl)phenyl]vinyl]-1,3-benzothiazole-3-oxide (1i): Yield 63%; M.p. 
222–225 °C; 1H-NMR (DMSO-d6) δ 8.10–8.13 (1H, m, H-7), 7.96 (1H, m, H-4), 7.71 (1H, d, J = 16.4, 
H-β), 7.59–7.66 (2H, m, H-5,6), 7.60 (2H, d, J = 8.8 H-2`,6`), 7.50 (1H, d, J = 16.4 H-α), 6.99 (2H, d, 
J = 8.8 H-3`,5`), 3.25–3.29 (4H, m, NCH2), 2.42–2.46 (4H, m, NCH2), 2.22 (3H, s, NCH3); 13C-NMR 
(DMSO-d6) δ 151.41, 142.99, 142.78, 136.53, 135.98, 128.56, 127.61, 126.79, 125.49, 125.10, 116.20, 
114.27, 110.18, 54.03, 46.79, 45.29; UV-vis: λmax /nm (log ε) : 316 (3.00), 420 (3.57).  
 
2-[(E)-2-[4-(4-Etoxycarbonylpiperazine-1-yl)phenyl]vinyl]-1,3-benzothiazole-3-oxide (1j): Yield 
50%; M.p. 216–219 °C; 1H-NMR: (DMSO-d6) δ 8.11–8.14 (1H, m, H-7), 7.95–7.98 (1H, m, H-4), 
7.72 (1H, d, J = 16.4, H-β), 7.62–7,66 (2H, m, H-5,6), 7.63 (2H, d, J = 8.8 H-2`,6`), 7.52 (1H, d,  
J = 16.4 H-α), 7.00 (2H, d, J = 8.8 H-3`,5`), 4.07 (2H, q, J = 7.0, COOCH2), 3.48–3.53 (4H, m, 
NCH2), 3.25–3.30 (4H, m, NCH2), 1.20 (3H, t, J = 7.0, CH3); 13C-NMR: (DMSO-d6) δ 154.64, 151.46, 
143.72, 142.92, 136.35, 133.76, 129.05 (2C), 128.30, 128.11, 125.69, 125.01, 116.53, 114.99 (2C), 
110.60, 61.02, 45.74, 42.62, 14.61; UV-vis: λmax /nm (log ε) : 276 (3.82), 400 (3,04).  
 
2-[(E)-2-[4-(Thiomorpholine-1-yl)phenyl]vinyl]-1,3-benzothiazole-3-oxide (1k): Yield 64%; M.p. 
229–231 °C; 1H-NMR: (DMSO-d6) δ 8.10–8.13 (1H, m, H-7), 7.94–7.97 (1H, m, H-4), 7.70 (1H, d,  
J = 16.5, H-β), 7.60–7.64 (2H, m, H-5,6), 7.60 (2H, d, J = 9.0, H-2`,6`), 7.49 (1H, d, J = 16.5, H-α), 
6.97 (2H, d, J = 9.0, H-3`,5`), 3.70–3.73 (4H, m, NCH2), 2.61–2.66 (4H, m, SCH2); 13C-NMR: 
(DMSO-d6) δ 150.43, 143.70, 142.28, 136.34, 131.62, 129.17, 127.93, 127.16. 125.27, 124.71, 116.38, 
114.81, 110.10, 58.79, 46.95; UV-vis: λmax /nm (log ε): 424 (3.46).  
 
Biological testing 

The compounds 1c-1h have been tested for their antimicrobial activities against Gram positive 
(Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and 
Pseudomonas aeruginosa) as well as a yeast (Candida albicans) and a mould (Microsporum gypseum). 
The standard plate diffusion method using Mueller-Hinton and Saboraud agar, or standard dilution 
method in Saboraud medium [14] were used. The tested compounds were dissolved in DMSO. 
Minimum inhibitory concentrations (MIC in 　g/mL) are given in Table 1.  
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