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Abstract: The effect of three different types of polymer chain structures on the polymer 
release from hydrophilic matrix tablets was investigated by comparing a synthetic semi-
crystalline linear polymer (PEO), a branched amorphous polysaccharide (dextran) and an 
amorphous substituted cellulose derivative (HPMC). The polymer release rates for tablets 
containing mixtures of high and low molecular weight grades in different ratios were 
determined by using a modified USP II method and a SEC-RI chromatography system. 
The results showed that independent of polymer type: (i) plots of the release versus time 
had similar shapes, (ii) the release of long and short polymer chains was equal and no 
fractionation occurred during the release and (iii) the release rate could be related to the 
average intrinsic viscosity of the polymer mixtures. This confirms the hypothesis that the 
release rate can be related to a constant viscosity on the surface of the hydrophilic matrix 
tablet and that it is valid for all the investigated polymers. 
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1. Introduction  

The use of hydrophilic matrix tablets as drug delivery systems started already during the 60s and is 
today one of the major extended drug release platforms [1-3]. Reasons for the large industrial interest 
and use of the hydrophilic matrix tablets is probably that this platform can be used for a variety of 
drugs with different preformulation properties, and furthermore, the production process is conventional 
and robust, leading to a relative low the production cost [4]. Different polymers can be used as matrix 
formers; for example polysaccharides like xanthan, dextran, or substituted cellulose derivatives like 
hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose or synthetic polymers like 
poly(ethylene oxide) (PEO) and polyacrylic acid [5-10].  

The drug release rate from hydrophilic matrix tablets is determined by several properties, such as 
the composition of the formulation, the manner of production, the properties of the drug itself and the 
properties of the polymers in the matrix, where molecular weight, hydrophilicity, degree of cross 
linking, degree of substitution, etc, are all polymer parameters known to influence the swelling and 
erosion of the matrices [4]. Many experimental studies and modelling efforts have been performed in 
order to reveal the detailed physics behind the dissolution process of a polymer. Much of this work is 
summarized in recent review articles [11,12]. However, these models often contain parameters that are 
not available from published experiments. Therefore, the models can only be used for qualitative 
comparisons. To understand the polymer release one needs to look into what happens when a dry 
hydrophilic polymer matrix tablet comes in contact with water. During this step a high-viscous gel 
layer of macroscopic thickness will develop and surround the solid core. This gel layer is a polymer 
solution of high concentration and it will remain stationary, even if the surrounding solution is stirred. 
When a fluid passes an ordinary solid surface a velocity gradient is formed in the fluid due to the shear 
forces causing the fluid to slow down to zero velocity at the dry solid interface. Also, when a flowing 
fluid passes the surface of a dissolving hydrophilic matrix tablet the shear forces cause the fluid to 
slow down. However, the surface of the swollen tablet is not rigid; instead the surface is a very viscous 
polymer solution. A force balance is therefore established between the shear force developed by the 
external liquid and the resistance of the gel layer towards shear. Specifically, this force balance may be 
assumed to result in a certain threshold viscosity at the gel surface, and the part of the gel layer having 
a viscosity below the threshold value will be rapidly rinsed off from the tablet. This threshold viscosity 
can be represented by a critical polymer concentration, cs, at the gel/solution boundary, and for a given 
tablet cs will be constant during the entire dissolution process when the shear environment remains 
constant. The viscosity depends on polymer parameters like molecular weight, hydrophilicy etc and 
the threshold viscosity on the gel surface of matrix tablets will correspond to different concentrations 
cs depending of used matrix polymer.  

These ideas behind the polymer release mechanism have been proposed by Ubereiter et al. [13] and 
Ju et al. [6] and have been further extended by us in a model in which we have shown that cs can be 
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related to the release rate dm/dt. The models starts in the phenomenological mass transfer  
equation [14,15]:  

sss
s

cAk
dt
dm

=        (1) 

where cs is the critical polymer concentration on at the gel surface of the matrix, As is the area over 
which mass transfer occurs, ks is a phenomenological rate constant, describing the rate at which the 
water penetrates into the gel and dilutes the polymer down to the critical value cs. The value of ks is 
expected to depend on the gradient of the chemical potential of water (the solvent) in the outermost 
part of the gel layer. The release rate when 50 % of the polymer has been released, r50 , can be an 
estimate of (dm/dt)50 and this together with ks=ks,50 and As=As,50 gives: 

sss cAkr 50,50,50 =       (2) 

This equation was shown to be valid for PEO samples with different average molecular weights 
[14] and different polydisperties, where cs was estimated from the assumption that cs is direct 
proportional to the overlap concentration, c*, and that c* is inversely proportional to the intrinsic 
viscosity [η]. By using this relation and Equation 2 the release rate r50 can be expressed as: 

[ ]η1*50 ∝∝ cr       (3) 

Another finding for PEO matrix tablets was that the release rates of short and long polymer chains 
were equal [7,14]. This means that no fractionation of polymer occurs during the release process 
within the gel layer. This result was explained by the fact that the relative movement of polymers 
chains within the gel layer was negligible and that the swelling and dilution of the gel layer by water 
was faster than the polymer-polymer movement. Thus, in a homogenous mixture of short and long 
PEO chains in the matrix the polymer chains will enter the gel-solution interface at the same time 
regardless of polymer size.  

Since no systematic studies relating the polymer release rate to the intrinsic viscosity have been 
performed for hydrophilic matrix tablets other than PEO [7,14,16] one can ask if the model presented 
is also valid for other polymers. It is not obvious that this should be the case, since PEO is special in 
the sense that it is a synthetic semi-crystalline linear polymer. To test if the hypothesis is also valid for 
other types of polymer, two amorphous polysaccharides in the glassy state, dextran and hydroxypropyl 
methyl cellulose (HPMC) were chosen as model polymers (Figure 1). Furthermore, dextran is a 
branched polysaccharide available in many different molecular weights, whereas HPMC is a 
substituted cellulose derivative and the most used polymer in hydrophilic matrix tablets for extended 
drug release formulations. In order to test our hypothesis we needed to determine the rheological 
properties and release rates from matrixes of the chosen polymers and mixtures whereof. The results in 
this study showed that the proposed model was valid for all investigated polymers, but that the release 
mechanism contained more elements than was covered by the suggested model. 
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Figure 1. Schematic chemical structures for: (a) PEO, (b) HPMC and (c) dextran. 

a.

b.

c.

 

2. Results and Discussion  

2.1. Characteristics of the polymer samples 

Table 1 summarizes the measured number average molecular weight (Mn), weight average 
molecular weight (Mw), polydispersity index (PI) and intrinsic viscosity ([η]) of the polymers and 
polymer mixtures used in the study. For the convenience of the reader, we also include corresponding 
data for PEO, which have been published before [7,14,16]. In general, both the number-average and 
the weight-average molecular weights increase with increasing amount of high-molecular weight 
polymer in the sample. Mw is shown to be much more sensitive than Mn to the addition of small 
amounts of high molecular weight polymer, as would be expected from the definition of the two 
averages. Furthermore, for low molecular weights, the precision of the Mn measurements is known to 
be low, due to a low signal from the MALS-detector [17]. This explains why Mn for the samples in the 
dextran and HPMC series initially decrease with the addition of high molecular weight polymer. From 
the table it can also be seen that the polydispersity of the nonmixed commercial samples increases with 
increasing molecular weight.  
 
2.2. Release experiments 

When a tablet was exposed to the dissolution medium it soon developed a gel layer for all 
investigated types of polymers. However, the appearance of the gel layer was strikingly different for 
the different polymer types. For the dextran tablets the gel layer was very thin and the dimensions of 
the tablet decreased throughout the release experiment. Similar features have been observed for low 
molecular weight PEO tablets (Mw of about 105) [14]. The time for total release of the various dextran 
tablets varied in the interval 2-5 h. For the HPMC tablets the gel layer was transparent and grew with 
time. It was noticed that the major growth took place in the axial direction. We have no explanation for 
this phenomenon, but it has been observed also in other studies [18,19].  
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Table 1. Characteristics of the tablet compositions used in this study. The average ± one 
standard deviation (n=3) is given for the number average molecular weight, Mn, the weight 
average molecular weight Mw, the average intrinsic viscosity [η] and polydispersity index, 
PI, together with the release rate r50 and time when 50% was released t50.  

Tablet 
Composition 

Mn/105 
(g/mol) 

Mw/105 
(g/mol) 

PI [η] 
(dl/g) 

r50 

(%/h) 
t50  
(h) 

Dextran       

100:0 0.49±0.01 0.76±0.01 1.56±0.01 0.21 100.0 0.5 
90:10 0.38±0.01 3.61±0.26 9.40±0.74 0.25 78.6 0.6 
50:50 1.18±0.01 15.2±0.15 13.0±0.72 0.40 45.8 0.9 
0:100 4.42±0.15 26.8±0.35 6.06±0.19 0.54 34.7 1.3 
T500 2.26±0.04 6.09±0.06 2.64±0.03 0.47 49.6 0.9 
HPMC       

60SH100:0 0.18±0.01 0.34±0.01 1.87±0.03 0.87 14.9 2.8 
60SH90:10 0.17±0.01 0.69±0.01 3.04±1.72 1.77 8.1 6.0 
60SH50:50 0.29±0.01 2.07±0.01 7.28±0.13 3.91 3.1 17.4 
60SH30:70 0.42±0.01 2.85±0.04 6.75±0.05 5.41 2.3 24.2 
60SH0:100 0.80±0.01 3.87±0.12 4.84±0.16 6.31 2.0 29.1 
60SH50 0.36±0.01 0.870±0.00 2.38±0.02 2.16 6.8 7.4 

90SH100 0.44±0.01 1.19±0.003 2.69±0.02 2.71 4.4 10.5 
90SH4000 0.97±0.004 3.01±0.02 3.11±0.02 6.40 2.1 24.3 
90SH100000 2.05±0.06 6.14±0.09 3.00±0.13 11.0 1.3 46.8 
PEO       

PEO 100:0 0.25±0.01b 1.22±0.05a 4.78b 1.0b 37.8a 1.3a  
PEO 90:10 0.36±0.01b 3.02±0.08a 8.39b 1.6b 21.8a 2.3a 

PEO 88:12 0.40±0.01c 3.15±0.03c 7.74c 1.6 17.9c 2.9c 

PEO 80:20 0.50±0.01c 4.35±0.1c 8.77c 2.2 11.5c 4.6c 

PEO 70:30 0.52±0.01b 6.95±0.06a 13.4b 2.9b 9.4a 5.8a 

PEO 50:50 0.64±0.02b 12.2±0.33a 19.1b 4.3b 6.8a 8.5a 

PEO 30:70 0.87±0.01b 14.5±0.13a 16.7b 5.4b 4.9a 11.2a 

PEO 10:90 1.56±0.06b 19.3±0.37a 12.4b 6.8b 4.0a 14.1a 

PEO 0:100 2.34±0.01b 21.9±0.07a 9.37b 7.8b 4.0a 14.0a 

PEO 0.3 1.01±0.02b 3.9±0.03b 3.88b 2.7b 11.6b 4.3b 

PEO 0.9 1.56±0.09b 9.7±0.11b 6.28b 4.9b 5.9b 9.4b 

PEO 0.3M 2.00±0.03c 2.34±0.02c 1.17c 2.1 17.4c 2.9c 

aFrom reference [7]; bFrom reference [16]; c From reference [14]. 
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Figure 2 shows that the shapes of the release curves were smooth and similar for all the tablets in 
the study, with a slow initial release rate, an almost linear release rate during the main release period, 
and a slower release rate at the end of the experiment. This general shape, similar for nonmixed and 
mixed samples, was also observed for the release profiles of PEO tablets in previous work [7]. The 
release time, t50, defined as the time when 50% of the polymer in the tablet had been released, was 
taken directly from the release profile for each polymer. The release rate at 50% released amount 
polymer, r50, was taken as the slope of a linear fit to the experimental points between 10 and 60% 
released polymer. The r50 and t50 values for the various tablets in the study are summarized in Table 1. 

 
Figure 2. The release curves of: (a) dextran; (b) HPMC60SH and (c) HPMC 90SH as 
indicated by the figure legend. The symbols denote the calculated average from two tablets 
and the error bars indicates the positions of the individual measurements. 
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2.3. Absence of fractionation of polymer from polymer mixtures during release 

In Figure 3 the fractions of low molecular weight polymer in the release samples for the mixed 
dextran and HPMC 60SH tablets, respectively, are plotted against time, together with the release 
profiles which are also included in the plots. As observed previously in a similar analysis of mixed 
PEO tablets [14], the fraction of low molecular weight (LMW) polymer released from the tablets was 
constant during the main part of the release experiment. For the HPMC tablets, the LMW fraction was 
released at a slightly higher rate than the HMW fraction during a short initial time period, and the same 
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feature was also observed in the previous PEO study. For the dextran tablets no initial fractionation 
could be observed.  

Figure 3. The released fraction low molecular weight polymer (dotted lines) together with 
the polymer release profiles (full line) for the mixed dextran compositions as indicated in 
the figure legend (a) and the mixed HPMC 60SH compositions as indicated in the figure 
legend (b). The symbols denote the calculated average from two tablets and the error bars 
indicates the positions of the individual measurements. 

 
 
Since the data in Figure 3 refer to the accumulated LMW fraction in the release medium, they do 

not directly give information on the release rate of the LMW fraction as a function of time. In Figure 4 
we have therefore converted the data for the HPMC 50:50 tablets into release profiles for the LMW 
and HMW fractions.  

 
Figure 4. Release profiles up to 60% released polymer, for the low molecular fraction 
(triangles) and high molecular weight fraction (squares) of tablets from HPMC 50:50. 
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This conversion was made from the data in Figure 3b, by multiplying each point in the overall 
release profile with the fraction LMW (or HMW) polymer obtained at that point, and normalizing 
these data to 100% at full dissolution. It can be seen that the release rates (the slopes of the release 
curves) for the two fractions, within the experimental uncertainty, were identical (LMW: r50=3.05, 
HMW: r50=3.08, overall r50=3.06). The same was true for all compositions investigated in Figure 3. 

Many theoretical models [11,12] assume that the polymer molecules are released from a swollen 
polymer by diffusion of the molecules through the gel layer (reptation), and that this step is the rate 
limiting step in the dissolution process. However, this picture is not supported by our results. 
According to the reptation theory, the diffusion constant should depend in the molecular weight as 
D∝M-2 [20]. Thus, if the polymer diffusion in the gel layer is the rate-limiting step, the diffusion of the 
shorter polymer molecules is expected to be much faster than the diffusion of the long molecules, and 
a pronounced fractionation would occur during the dissolution. According to the model proposed in 
our work, the release from the swollen gel layer is determined by a certain threshold viscosity at the 
tablet surface, and the polymer self-diffusion in the gel layer is negligibly slow, so that the mutual 
diffusion coefficient between polymer and water is determined by the water self-diffusion coefficient. 
Consequently, the polymer components do not move significantly relative to each other during the 
time it takes them to reach the threshold viscosity where the outermost part of the gel layer is rinsed 
off, and no fractionation should occur. Indeed, the experimental observations from the three different 
polymer systems support this model. 
 

Figure 5. The polymer release is plotted against the reduced time (t/t50) for dextran (blue 
line), HPMC 60SH (black line) and PEO (red line, adopted from reference [7]) as indicated 
in the figure legend. 100:0 samples are represented by open squares, 90:10 by filled 
diamonds, 50:50 by filled triangles, 30:70 by filled squares, 0:100 by asterisks and the 
nonmixed samples by circles. 
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Figure 6. The release rate (r50) plotted against the inverse of the intrinsic viscosity of the 
polymer in the tablet for: (a) PEO, (b) dextran, (c) HPMC 60SH and (d) HPMC 90SH 
(triangles) together with HPMC 60SH (circles). The filled symbols represent the mixed 
samples and the unfilled symbols the nonmixed samples. 
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2.4. Release and swelling 

Figure 5 compares the release profiles of dextran, PEO and HPMC tablets on a reduced time scale, 
t/t50. This type of plot clearly illustrates the general similarity in shape of the release profiles for 
different mixtures, and also for different polymer types. However, there are significant deviations 
especially at times t > t50. Here the data fall into two main categories, with PEO and HPMC tablets in 
the first category and the dextran tablets in a second category, whose curves fall systematically below 
the other polymers. In general, the tablets in the first category display a significant swelling, whereas 
the dextran tablets have thin gel layers and thus the tablet dimensions decrease throughout the release 
experiment. Equation (3) predicts that the polymer release rate of a given tablet should depend 
explicitly on the area of the swollen tablet (As). Such dependence was confirmed by detailed 
measurements of tablet swelling as a function of time [16]. The continuously decreasing areas of the 
dextran tablets should therefore, according to Equation (3), result in slower release rates compared to 
the tablets in the first category. This is indeed what one can see in Figure 5. By using the suggested 
model the observed differences between the different types of polymers can be explained. 
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2.5. Relation between release and intrinsic viscosity 

In our previous studies, we proposed that ks, cs and As in eq 3 should be the same for tablets with 
same release rate but different polydispersities [7,14]. We also suggested that this would imply that 
tablets with same release rate would have the same intrinsic viscosity [η], which is a measure of the 
size of the polymer coil [7,14]. The suggestion was based on the following reasoning. The zero shear 
viscosity, η0, of a polymer solution in a good solvent has repeatedly been found to be a universal 
function of the reduced concentration c/c*, where c* is the overlap concentration [21] and an estimate 
of the overlap concentration may be obtained as c* ≈ 1/[η]. From this, it follows that then the viscosity 
on the surface of the tablet is equal, samples with different degrees of polydispersity should yield the 
same concentration cs if they have the same value of [η]. If we further assume that ks and As are 
insensitive to polydispersity, we obtain from Equation (3) that samples with the same cs should have 
the same release rate. Indeed, our earlier study showed that the intrinsic viscosity of a PEO sample 
could, to a good approximation, predict the release rate of the tablet, irrespectively of the 
polydispersity. In a plot of the release rate, r50, versus 1/[η], all data collapsed on a universal 
relationship. New data obtained in this work, however, giver rise to a relatively large scatter in such 
plots (Figure 6). 

Figure 7. Zero shear viscosity plotted against the reduced concentration on a log-log scale 
for PEO 0.3 (filled red diamonds), PEO 80:20 (open red diamonds), dextran 500 (filled 
blue squares) and dextran 50:50 (open blue squares). Since no Newtonian plateau was 
found for HPMC 60SH 90:10 the viscosity at 1 s-1 is included in the plot for comparison. 
(open grey circles). 

 

A central question is if these small deviations in Figure 6 annihilate the proposed model. To test the 
model the zero shear viscosity was plotted against c[η] (Figure 7), where unfortunately HPMC could 
not be included in the comparison since its pronounced shear thinning effect made it difficult to 
estimate the zero shear viscosity (see Figure 8 and Supplementary materials). Figure 7 indeed shows 
that viscosity curves for mixed and nonmixed samples actually depend differently on c[η]. This 
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indicates that the same viscosity for a nonmixed and a mixed sample would yield differently c[η], and 
thus equal [η] will give different cs and as a consequence of this different release rates (Equation 3).  

2.6. Quantitative aspects 

The many common qualitative features discussed above indicate a common release mechanism for 
the polymers in the study. Does this also imply quantitative similarities, i.e. do all three polymers obey 
a single relationship when r50 is plotted against 1/[η]? Figure 9 shows that this is not the case. For 
HPMC there are immediately obvious reasons for a deviation, since HPMC shows significantly shear 
thinning (see Figure 8) and, presumably for this reason, a significantly different relationship between 
the low shear viscosity and the overlap parameter than the other mixed polymers. Intramolecular 
interactions in dilute systems, and intermolecular interactions in semi-dilute systems, of the 
hydrophobically associating HPMC molecules result in that predictions based on the intrinsic viscosity 
overestimates the surface concentration (cs) of this polymer compared to the other polymers. The slope 
of the relationship between r50 and 1/[η] is therefore expected to be lower for HPMC than for the other 
polymers. This is indeed the case as can be seen from Figure 9.  

Figure 8. Flow curves (viscosity versus shear rate on a log-log scale) for the measured 
samples of: (a) dextran 50:50 and dextran 500, (b) PEO 80:20 and PEO 0.3 and (c) HPMC 
60SH 90:10 for different reduced concentrations, c [η]=15 (black diamonds), c [η]= 10 
(blue triangles) and c [η]=5 (red squares). Filled symbols represent mixed samples and 
open symbols nonmixed samples.  
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From Figure 9 it can also be seen that the combined results for mixed PEO and mixed dextran 
tablets do not give rise to a single master curve, even though they follow the same relationship 
between the viscosity and the overlap parameter in (see Figure 10 and Supplementary materials). The 
reason for this deviation should then be attributed to differences in the parameters ks,50 and As,50. The 
rate constant ks,50 should depend on the gradient in the chemical potential of water (or, equivalently, 
the osmotic pressure) in the outermost gel layer, and there is no reason to assume that the osmotic 
pressure is the same in tablets made of different kinds of polymers. Moreover, if there is a difference in 
osmotic pressure, the area at t50 (As,50) should also vary between the polymer types, even for samples 
that have the same intrinsic viscosities. Hence, we cannot generally expect all polymers to fall on a 
single relationship. 
 

Figure 9. Comparing the relationship between r50 and 1/[η] for PEO (red diamonds), 
dextran (blue squares), HPMC60SH (black triangles) and HPMC90SH (black circles). 
Filled symbols represent samples in the mixing series, unfilled symbols nonmixed samples. 
The lines are linear fits to data for the mixed samples, and are included as a guide for the eye. 

 

Figure 10. Zero shear viscosity plotted against concentration on a log-log scale for PEO 0.3 
(open red diamonds), PEO 80:20 (filled red diamonds), dextran 500 (open blue squares) and 
dextran 50:50 (filled blue squares). 
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3. Experimental  
 
3.1. Materials 

Samples of dextran T70, T500 and T2000 (where the number is indicative of the approximate 
molecular weight of the dextran grade) were purchased from Amersham Pharmacia, Sweden. HPMC 
(Metolose) 60SH6, 60SH50, 60SH10000, 90SH100, 90SH4000 and 90SH100000 were kindly 
supplied by Shin-Etsu, Japan. Here the numbers appearing before and after SH denotate the 
substitution grade and the viscosity grade, respectively. Thus, 60SH (USP type 2910) and 90SH (USP 
type 2208) have a methoxy substitution of 28-30 wt% and 19-24 wt%, and a hydroxypropyl 
substitution of 7-12 wt% and 4-12 wt%, respectively. Polyox WSR N-10 (hereafter referred to as PEO 
0.1), Polyox WSR N-750 (hereafter referred to as PEO 0.3), Polyox WSR-1105 (hereafter referred to 
as PEO 0.9) and Polyox WSR N-60K (hereafter referred to as PEO 2.0) were kindly supplied by Dow, 
Austria. PEO with a narrow molecular weight distribution (hereafter referred to as PEO 0.3M, where 
M refers to monodisperse) was purchased from Polymer Laboratories Ltd, (Shropshire, UK). Also 
used in this work are sodium chloride (MERCK) and sodium azide (BDH Laboratory Supplies). 
 
3.2. Tablet preparation 

Tablets were made of dextran T70, T500, T2000 and by mixtures of T70 and T2000 at varying 
ratios. Tablets were also made of HPMC 60SH50, 60SH6, 60SH10000, 90SH100, 90SH4000, 
90SH100000 and by mixtures of 60SH6 and 60SH10000 at varying ratios. Mixed tablets are denoted 
by the mass percentages of the two polymer components, starting with the low molecular weight 
component. Thus, a sample denoted 90:10 in the dextran series contains 90 wt% T70 and 10 wt% 
T2000, whereas a sample denoted 90:10 in the 60SH-series contains 90 wt% 60SH6 and 10 wt% 
60SH10000. The tablets were made according to a method described earlier [7]. Here follows only a 
short description of the tablet preparation process. To ensure a homogeneous mixing on the molecular 
level of the two polymers in mixed samples, 1% w/w aqueous solutions were made of all (mixed or 
nonmixed) polymer samples. The polymer solutions were freeze-dried using a HETO CD 13-2 freeze-
drier. The freeze-dried material was milled before tableting. The tablets were made in a single-punch 
tableting machine (Kilian SP300, Kilian & Co, GmbH) equipped with 12.0 mm flat-faced punches. 
The distance between punches was set to 2.0 mm and a compression force of 11.2 ± 0.1 kN. About  
315 mg of polymer was introduced into the die and the automatic compression cycle was run. Due to 
the fluffy nature of the freeze-dried powders, it was difficult to obtain tablets with a uniform tablet 
weight, especially in the dextran case where the tablet weight could vary by up to 8%.  
 
3.3. Moisture content 

Since dextran was found to be very hygroscopic, the dextan tablets were dried overnight in a 
heating cabinet at 60 °C before the dissolution test and the moisture in the HPMC and the dried 
dextran tablets was measured using a Mettler Toledo HR73 Halogen Moisture Analyzer (Greifensee, 
Switzerland). One tablet was accurately weighed in the sample pan before slowly heating to 110 °C 
using the “Gentle Drying” program with a temperature ramp. The weight loss recorded during drying 
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was assumed to be due to loss of moisture. After two hours the value was stable and this value was 
taken as the moisture content. In the dried dextran tablets the moisture content was between 3.9 and 
5.0% and in the HPMC tablets between 4.3 and 5.3% in the 60SH series, and between 6.0 and 8.7% in 
the 90SH series. The dried tablets in the dextran series used in the dissolution experiments weighed 
307 ± 12 mg and the tablets in the HPMC series weighed 315 ± 5 mg.  
 
3.4. Release experiment 

The release experiments were carried out according to a method described in detail earlier[14]. The 
release was studied in a USP dissolution apparatus (Dissolutest, Prolabo) equipped with rotating discs. 
The tablet weight was noted before a tablet was mounted at the centre of a disc using water 
impermeable glue. The discs were rotated at 100 rpm in the dissolution medium (deionised water,  
25 °C). Aliquots (2 mL) were withdrawn from the dissolution medium at different times using a 
Pharma Test PTFC2 fraction collector. For the rapidly dissolving dextran 100:0 and 90:10 tablets, the 
initial samples from the dissolution medium were taken manually, using a 2 mL voll pipette, since the 
fraction collector could not take samples as often as once a minute. At least two tablets of each 
composition were studied. 
 
3.5. Analysis of release samples and determinations of the average molecular weight 

The analyses were performed in a similar experimental setup as described before [14], where the 
polymer content in the release samples was determined using size exclusion chromatography (SEC) 
combined with refractive index (RI) detection. A multi-angle light scattering (MALS) detector was 
connected online to the chromatography system providing information of the average molecular 
weight and molecular weight distribution of the sample. All analyses were performed at room 
temperature and the flow rate was set to 0.5 ml/min. An aqueous solution of 10 mM NaCl with 0.02% 
NaN3 was used as mobile phase in the HPMC analyses and deionised water with 0.02% NaN3 in the 
dextran analysis. The sample volume injected was 100 μL in both cases. The ASTRA 4.73 software 
(Wyatt Technology, Santa Barbara, CA) was used for analysis of the obtained RI and MALS 
chromatograms and refractive index increments, dn/dc, of 0.140 and 0.135 for dextran and HPMC, 
respectively, was used in the calculations. 

The percentage polymer dissolved at each sample time was calculated using the following relation: 
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Here cn is the polymer concentration in release sample n, V0 is the total volume of the dissolution 
medium at time t=0, i.e. 500 mL, Vs is volume of the release sample, i.e. 2 mL, n is the sample number 
in the release series and wtbl is the tablet weight. All release profiles were normalized to reach 100% 
dissolved at the end of the experiment (t=∞). 
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Figure 11. The molecular weight distribution of a mixed 50:50 sample (open circles) 
together with the pure polymers used in the mixture, (a) dextran T70 (diamonds) and 
dextran T2000 (triangles) and (b) HPMC 60SH6 (diamonds) and HPMC 60SH10000 
(triangles). 

 
 

The molecular weight distributions for selected dextran and HPMC samples are shown in Figure 11. 
For both polymers, the high molecular weight polymer sample had a very broad molecular weight 
distribution, partly containing polymer molecules in the same molecular weight range as the low 
molecular weight polymer. As a consequence, no baseline separation was obtained between the peaks 
in a mixed sample. Since no baseline separation was achieved, the retention volume at the minimum 
between the two polymer peaks for the final release sample in each tablet release series was used as a 
border line separating two fractions, defined as the high-molecular weight (HMW) and low-molecular 
weight (LMW) fractions, respectively. The concentration of these fractions could then be determined 
in each release sample. Note that by this definition, the LMW and HMW fractions are not the same as 
the fractions of T70 or 60SH6 and T2000 or 60SH10000 originally mixed in the tablet. This is 
because, for example, both T70 and T2000 contribute with molecules in the LMW range. However, 
since the molecules from both samples are mixed on a molecular level a polymer molecule of a certain 
molecular weight behaves in the same way irrespective of which sample it originates from. 
 
3.6. Viscometry 

The drainage times (t) in an Ubbelohde viscometer at 25.0° C were measured for aqueous solutions 
of the polymer compositions used in the release experiments as described before [7]. The intrinsic 
viscosity, [η], was calculated using [22]:  
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η        (5) 

where t is the drainage time for the PEO solution, t0 is the drainage time for the solvent and c is the 
concentration of the PEO solution. 
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 3.7. Rheometry 

Flow curves were recorded for selected samples of PEO, dextran and HPMC at various 
concentrations using an Anton-Paar Physica MCR 500 rheometer. Aqueous solutions of PEO 80:20, 
PEO 0.3, HPMC 90:10, dextran 50:50 and dextran 500 were prepared at concentrations corresponding 
to 5/[η], 10/[η] and 15/[η] mg/mL, where [η] was obtained as described above. All measurements 
were carried out at 25 °C using a cone (diameter 50mm, CP 50-2) and plate geometry. The flow curves 
were obtained by increasing the shear rate in a logarithmic manner from 10-3 s-1 to 500 s-1. The 
measuring point duration was decreased logarithmically from 1000 to 10 s and the system was allowed 
to rest for two minutes before the measurements were started. 

4. Conclusions 

The dissolving polydisperse polymer tablets investigated in this study had several qualitative 
features in common 

• they all developed a gel upon contact with the dissolution medium. 
• the shapes of the release curves were similar for mixed and nonmixed samples, with a 

slower initial rate, an almost linear release rate during the main release period and a slower 
release rate at the end of the release experiment. 

• the polymers showed virtually no fractionation during release. 
• the release rate from a tablet of a given polymer could, to a good approximation, be 

predicted by the average intrinsic viscosity of the polymer sample. 

Together this indicates a similar release mechanism for polydisperse PEO, dextran and HPMC 
tablets dissolving in water. The obtained results support a physical model with the key assumption of a 
constant viscosity at the tablet surface. 
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