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Abstract: Selective lowering of amyloid-β levels with small-molecule γ-secretase 

inhibitors is a promising therapeutic approach for Alzheimer’s disease. In this work, we 

developed a high throughput assay for screening of γ-secretase inhibitors with endogenous 

γ-secretase and a fluorogenic substrate. The IC50 values of known γ-secretase inhibitors 

generated with this method were comparable with reported values obtained by other 

methods. The assay was optimized and applied to a small-scale screening of 1,280 

compounds. The discovery of several new inhibitors warrants further investigation. This 

assay was also proven to be easily adopted to test compounds for drosophila and mouse γ-

secretase, which could be very useful to assess compounds activity against γ-secretase 

from different species before the in vivo test in animal models. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder of the central nervous 

system. Amyloid plaques, mainly composed of the β-amyloid protein (Aβ), are a major characteristic 
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of Alzheimer neuropathology and considered to be the primary cause of the disease [1]. Sequential 

cleavage of amyloid precursor protein (APP), a ubiquitously expressed type I membrane glycoprotein, 

by β-secretase and by γ-secretase, generates Aβ. The Aβ peptides generated in the proteolytic 

pathways vary in length from 38 to 43 amino acids with Aβ40 as the predominant secreted Aβ species. 

The longer form (Aβ42) is a minority of all Aβ peptides, but being much more prone to aggregation, it 

is the major species in the diffuse plaques that represent the earliest stage of Aβ deposition [2]. 

The γ-secretase complex is composed of at least four membrane proteins: presenilin (PS), nicastrin 

(NCT), APH-1 and PEN2 [3]. Most Familial Alzheimer’s disease (FAD)-causing mutations are found 

to localize on the two PS genes (PS1 and PS2) and correlate with the selective elevation of Aβ42 

versus Aβ40 [4]. The pivotal role of γ-secretase in AD pathogenesis leads to drug development based 

on this target. The first reported in vivo testing of a γ-secretase inhibitor involved the dipeptidic 

compound DAPT, developed by ELAN and Eli Lilly. This compound potently inhibited Aβ production 

in human primary neuronal culture and HEK 293 cells [5]. L-685,458, an aspartyl protease transition 

state mimic, reduced both Aβ40 and Aβ42 peptide formation in SH-SY5Y, Neuro2a and CHO cells [6]. 

A large Phase III study is currently underway to examine the therapeutic effect of a new γ-secretase 

inhibitor semagacestat (LY450139). And a number of other candidate γ-secretase inhibitors are 

entering clinical trials [7,8]. 

Currently most of the methods for screening of γ-secretase inhibitors are based on cellular Aβ 

detection. These methods usually need cell lines that over-express human APP and the costly sandwich 

ELISA method of detection [5,6,9]. To search for new γ-secretase inhibitors, we have developed and 

validated a high-throughput screening (HTS) assay utilizing a specific fluorogenic substrate and the 

endogenously expressed γ-secretase in HEK293T cells. This assay was also proved to be easily 

adopted to test compounds on drosophila and mouse γ-secretase, which could be very useful to assess 

compounds activity against γ-secretase from different species before the in vivo test in animal models. 

This assay was also applied to screen the LOPAC library containing 1,280 synthetic compounds. Eight 

compounds with γ-secretase modulation activity were identified. 

2. Results and Discussion 

2.1. Assay optimization 

HEK293T cells have been reported to express the active γ-secretase complex [10,11] and our 

Western blot analysis also indicated the endogenous expression of PS-1, the catalytic subunit of  

γ-secretase (Figure 1A). This cell line provides us an easy way to collect large quantities of human  

γ-secretase containing membranes. An intra-molecularly quenched fluorogenic substrate [12] 

containing the C-terminal amino acid sequence of APP (an endogenous substrate of γ-secretase, Figure 

1B and C) that is recognized and cleaved by γ-secretase was utilized. Membrane was prepared from 

HEK293T cells and solubilized γ-secretase was generated with CHAPSO detergent containing buffer 

as previously described [4,13]. γ-Secretase mediated cleavage of the substrate was monitored by 

measuring fluorescence after incubating solubilized membrane at 37°C in the absence or presence of 

L-685,458, a known specific transition state analogue inhibitor of γ-secretase. Various experimental 

conditions, including membrane amount, substrate concentration and incubation time, were tested. We 

found with the increase of membrane amount and substrate concentration, the total fluorescent signal 
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increased dramatically (Figure 1D). After subtracting the background fluorescence, we analyzed the 

specific -secrease activity with different substrate concentrations. As shown in Figure 1E, there is a 

clear dose response with the increase of the substrate concentration. This indicates that the substrate 

concentrations we used are sub-saturating and the assay should be sensitive to competitive inhibition. 

The incubation time was found to significantly affect the specific signal with the longer time giving 

larger signal window (Figure 1F). To be time and cost effective, we eventually decided on the 

following conditions with membrane protein amount at 10 μg, substrate concentration at 6 μΜ and 

incubation time at 5 h in 37 °C. 

Figure 1. Assay optimization. A. Western blot analysis of the expression of PS-1 in 

HEK293T cells. HEK293T cells were transfected with a plasmid encoding the N-terminal 

fragment of human PS1 (PS1-NTF) or not (HEK293T), and the samples were subjected to 

western blot assay. B. The sequence of APP with the γ-secretase cleavage sites. C. The 

sequence of the fluorogenic substrate. D. Various amount of membrane proteins were 

incubated with 4, 6 or 8 M of fluorogenic substrate for 5 h with or without the presence of 

1 M L-685,458. The γ-secretase activity was presented as the relative fluorescent unit 

(RFU). E. The specific -secrease activity increases with the increase of substrate 

concentration. F. 10 g of membrane proteins were incubated with 6 M of substrate for 

various periods of time, and γ-secretase activity were measured. Data was shown as 

Mean±SEM of at least three independent experiments. (n ≥ 3). 

 

2.2. Assay performance  

The Z’ factor is the normalized three standard deviation window between the negative controls and 

positive controls. It is widely used for the evaluation of HTS assay qualities. The signal/background 

(S/B) ratio is another metric used to evaluate the assay window [14]. In general, a Z’ value above 0.5 
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suggests that an assay is robust enough for HTS. As shown in Figure 2A, the Z’ value for the assay 

was 0.79 and the S/B ratio was 3.99， indicating that the system was adequately optimized for HTS. 

Furthermore, to investigate reproducibility between duplicate plates, the corresponding wells from two 

different 96-well plates were treated with same concentration of L685,458. The data from 

corresponding wells of different plates were investigated with liner regression analysis. The correlation 

coefficient was 0.956 (Figure 2B), showing a high degree of reproducibility between duplicate sample 

plates [15]. 

Figure 2. Assay Performance. (A) Z’ factor determination. At the optimized conditions  

(10 g membrane proteins, 6 M substrate, 5 h incubation time), 48 replicates of positive 

(wells treated with 1% DMSO) and negative signals (wells treated with 1 M L685,458) 

were studied. Dashed lines indicate means ± 3 SD of 48 data points. (B) Reproducibility. 

The corresponding wells from two different 96-well plates were inhibited with same 

concentration of L685,458. The reproducibility of data from duplicate plates was 

investigated with linear repression analysis. 

 

2.3. The γ-secretase inhibitor activity measurement with human γ-secretase 

Using the optimal assay conditions, we tested a series of known γ-secretase inhibitors of human  

γ-secretase, including the non-transition state inhibitors, such as DAPT, compound E, and transition 

state analogs, such as L685,458, DBZ and 31C [16]. L685,458 was used as a positive control and 

DMSO as a negative control. As shown in Figure 3, three compounds showed inhibitory effect similar 

to L685,458, with maximal inhibition at 103.1% (31C), 95.2% (DBZ) and 92.3% (Comp E), 

respectively. The other two compounds displayed partial inhibitory activity with maximal inhibition at 
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69.7% (DAPT) and 67.3% (Inhibitor VI, Calbiochem). The IC50 values obtained with this fluorogenic 

substrate assay were listed in Table 1. The IC50 of L685,485, DBZ and DAPT matched quite well with 

previously reported values. For 31C, this assay is approximately 10 times more sensitive than the 

reported one. But for compound E and Inhibitor VI, this assay is about 20 times less sensitive than the 

reported ones.  

Figure 3. Dose-response curves of known inhibitors against human γ-secretase. Six  

γ-secretase inhibitors were tested on human γ-secretase obtained from HEK293T cell 

membrane with the fluorogenic substrate assay. Data are mean ± SEM (n ≥ 3). 

  

Table 1. Comparison of IC50 values of various compounds obtained by fluorogenic 

substrate assay and previous reported methods. 

Compound 
Fluorogenic 

substrate 
assay IC50 (nM) 

Reported IC50(nM) / Assay used 

L685,458 4.43 ± 0.9691 
IC50 (Aβ40) = 4 nM; IC50(Aβ42) = 8 nM /immunoblotting assay [9] 
IC50 = 17 ± 8 nM/ HTRF assay [6] 
IC50 = 3 nM / in vitro γ-secretase assay [17] 

Compound E 53.86 ± 5.312 
IC50(Aβ40) = 0.24 nM; IC50(Aβ42) = 0.37 nM / immunoblotting assay[9] 
IC50(Aβ40) = 0.8 nM; IC50(Aβ42) = 7 nM / Aβ ELISA assay [18] 
IC50 = 7 nM / in vitro γ-secretase assay [17] 

DBZ 12.50 ± 5.764 IC50 = 1.7 nM / Sup-T1 NICT assay[19] 

DAPT 3910 ± 550.7 
IC50(Aβ40) = 1600 nM 
IC50(Aβ42) = 4000 nM / Aβ ELISA assay [18] 

31C 53.48 ± 13.58 IC50((Aβ) = 300 nM / In vivo γ-secretase assay [20] 
Inhibitor VI 44457 ± 25568 IC50 (Aβ1-42) = 1800 nM [21] 

2.4. The γ-secretase inhibitor activity measurement with drosophila and mouse γ-secretase 

Drosophila has provided us a useful model animal system to study fundamental pathways in 

physiological and pathological conditions. It has also been applied to elucidate mechanisms of human 

neurodegenerative disorders including Alzheimer's diseases [22,23]. Transgenic mice have also been 

widely used to evaluate the therapeutic effects of compounds and drug candidates for Alzheimer's 

diseases [24,25]. Due to the time consuming nature of these in vivo studies, it would be very useful to 

assess compound activity against γ-secretase from different species in vitro before the animal tests. So 
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we tested whether or not our fluorogenic substrate assay could be applied to drosophila or mouse  

γ-secretase. The membrane containing drosophila or mouse γ-secretase was isolated from S2 cells or 

mouse cortex, respectively. Using the optimal assay conditions, we tested four γ-secretase inhibitors 

(L685,458, Compound E, DBZ, 31C) on drosophila γ-secretase (Figure 4A). The IC50 values obtained 

with drosophila γ-secretase is comparable with human γ-secretase (Table 2). 

Figure 4. Dose-response curves of known inhibitors against drosophila and mouse  

γ-secretase. Four γ-secretase inhibitors were tested on drosophila γ-secretase obtained from 

S2 cell membrane (A) and mouse γ-secretase from mouse cortex membrane with the 

fluorogenic substrate assay. Data are mean ± SEM (n = 3). 

 

Table 2. Comparison of the IC50 values of various compounds obtained with human, 

drosophila and mouse γ-secretase. 

Compound 
human γ-secretase 

IC50 (nM) 

drosophila γ-
secretase IC50 (nM)

mouse γ-
secretase IC50 

(nM) 
L685,458 4.43 ± 0.9691 10.35 ± 1.657 0.9759 ± 0.1467 

Compound E 53.86 ± 5.312 40.55 ± 6.997 2.398 ± 0.6046 
DBZ 12.50 ± 5.764 6.970 ± 1.984 1.446 ± 0.4350 
31C 53.48 ± 13.58 0.9328 ± 0.1690 20.69 ± 5.242 

 

We then tested these γ-secretase inhibitors on mouse γ-secretase either (Figure 4B). The IC50 values 

obtained with mouse γ-secretase is in the same range as human and drosophila γ-secretase (Table 2). 

These results indicate that this assay can be easily adapted to test compounds in different species and 

are a useful assay to assess compounds activity against γ-secretase before the in vivo test in different 

animal models. 

2.5. HTS campaign 

The assay was applied to a small-scale screening of a compound library consisting of 1280 

compounds with membrane isolated from HEK293T cells, which contains the human γ-secretase 

complex. In the primary screening, compounds were tested at 10 μM in a duplicate setup. Thirty one 

hits (2.4%) showing more than 60% inhibition of the γ-secretase were identified (Figure 5A). 
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Secondary screening was carried out to further confirm the hits in a triplicate setup using L685,458 as 

a positive control (Figure 5B). Finally, seven compounds displaying consistent inhibitory effects were 

picked out and will be further characterized. 

Figure 5. High-throughput screening of 1280 compounds. (A) Result of the primary 

screening of 1280 compounds in duplicate setup with HEK293T membrane. Compounds 

with more than 60% inhibition of the γ-secretase were further tested. (B) In the secondary 

screening with a triplet setup, seven compounds displayed consistant inhibitory effect 

compare to the known γ-secretase inhibitor L685,458. 

 

3. Experimental  

3.1. Reagents 

The fluorogenic substrate, γ-secretase inhibitors and CHAPSO were purchased from Merck KGaA 

(Darmstadt, Germany). Cell culture medium and fetal bovine serum were bought from Invitrogen 

(Carlsbad, CA, USA). Tris base was purchased from Amresco (Solon, OH, USA). CompleteTM 

protease inhibitor cocktail was purchased from Roche Applied Science (Basel, Switzerland). Other 

reagents and solvents used in the experiments were of analytical grade. 

3.2. Cell culture  

HEK293T cells obtained from ATCC (Manassas, VA, USA) were maintained in high-glucose 

Dulbecco’s modified Eagle’s medium(HG-DMEM) supplemented with 10% fetal bovine serum,  

100 mg/L penicillin and 100 mg/L streptomycin at 37 °C in a humidified atmosphere of 5% CO2. Cells 

were trypsinized and seeded onto 10 cm plates at proper density for 48 h before harvesting. Drosophila 

Schneider 2 (S2) cells obtained from Invitrogen (Carlsbad, CA, USA) were maintained in Schneider’s 

Drosophila medium containing 10% fetal bovine serum in a 28 °C incubator. 

3.3. Animals 

Adult C57BL/6 mice were purchased from Shanghai Laboratory Animal Center, Chinese Academy 

of Sciences one week prior to surgery. The animals were housed under a 12-h light/dark cycle in a 

climate-controlled room with food and water available ad libitum. All experimental procedures were 
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performed in accordance with the National Institutes of Heath Guide for the Care and Use of 

Laboratory Animals. 

3.4. Membrane protein preparation from cells and mouse brain 

All procedures were carried out at 4 °C. HEK 293T or S2 cells were washed with ice-cold PBS by 

centrifugation at 500 g for 5 min and the pellets were homogenized with a Dounce homogenizer 

(pestle B, 15 strokes) in lysis buffer contained 5 mM Tris-HCl (pH 7.4), 5 mM EDTA, 5 mM EGTA 

and CompleteTM protease inhibitor cocktail. Mouse cortex was homogenized with 15 stokes of pestle 

A in the same lysis buffer. The homogenates were centrifuged at 800 g for 10 min to remove nuclei 

and large debris. The supernatants were centrifuged at 25,000 g for 1 h at 4 °C and the membrane 

pellets were resuspended in reaction buffer containing 50 mM Tris-HCl (pH 6.8), 2 mM EDTA,  

150 mM KCl and CompleteTM protease inhibitor cocktail. After measuring the protein concentration, 

the membranes were diluted to 1 mg/ml in 50 mM Tris-HCl, pH 6.8, 2 mM EDTA, 150 mM KCl, 

0.25% CHAPSO. 

3.5. Fluorogenic substrate assay 

For assay optimization, aliquots of membrane protein (5~30 μg) was added to each well of a  

96-well plate with various concentrations of fluorogenic substrate (4~8 μM). Different concentrations 

of compounds were added and the final reaction system was adjusted to 100 μL/well with the reaction 

buffer. The plate was incubated at 37 °C in a humidified atmosphere for indicated time periods. 

Fluorescence was measured using a BIOTEK FLX800 microplate reader with the excitation 

wavelength at 355 nm and the emission wavelength at 440 nm. The activity of γ-secretase was 

presented as the relative fluorescent unit (RFU). For compound screening, 1 M of L685,458 was used 

as a positive control, and 1% DMSO was used as negative control. The inhibition rate of each 

compound was calculated with the following equation: InhibitionCompound % = (Average Value1%DMSO-

Average Value Compound)/(Average Value1%DMSO-Average ValueL685,458) × 100%. So the inhibition rate 

of 1 M L685,458 is 100% and that of 1% DMSO is 0. The samples showing more than 60% 

inhibition were considered as “hits” in the screening. 

3.6. Western blot 

HEK293T cells were lysed with SDS loading buffer (50 mmol/L Tris-HCl, 2%SDS, 10% glycerol, 

100 mmol/L dithiothreitol, 0.1% bromophenyl blue) and boiled at 95-100 °C for 5 min. Aliquots of 

proteins were separated with 10% SDS-PAGE and then transferred onto PVDF membrane (BIO-RAD, 

USA). The membrane was incubated with blocking buffer (20 mmol/L Tris, 137 mmol/L NaCl, 0.1% 

Tween®-20, and 5% non-fat dry milk) for 1h at room temperature. The membrane was then probed 

with rabbit polyclonal anti-PS1-NTF antibody (529591; Calbiochem, Germany) overnight at 4 °C and 

then with goat anti-rabbit IgG HRP for 1 h at room temperature. After the final wash with TBST, the 

membrane was developed on Kodak Imagine station 2000MM (Eastman Kodak, Rochester, NY, USA) 

using the SuperSignal West Pico chemiluminescent kit according to manufacturer’s instruction 

(Thermo Scientific, San Jose, CA, USA). 
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3.7. Data analysis 

Data were analyzed with GraphPad Prism software (GraphPad, San Diego, CA, USA). Non-linear 

regression analyses were performed to generate dose-response curves and calculate IC50 values, and 

linear regression was used to analyze data reproducibility. Mean ± SEM was calculated automatically 

with this software. Z’ factor was calculated by the following equation:  

Z’ = 1 － (3SD＋＋3SD－) / │Ave＋ － Ave－│ 

in which SD＋ is the standard deviation of positive control, SD－is the standard deviation of negative 

control, Ave＋ is the mean value of the positive control, and Ave－is the mean value of the negative 

control [14]. 

4. Conclusions 

In this study, we developed a high-throughput assay for screening of γ-secretase inhibitor with 

endogenously expressing human γ-secretase from HEK293T cell membrane and a fluorogenic 

substrate. This assay was optimized with the Z’ value at 0.79 and an S/B ratio at 3.99. The IC50 values 

of known γ-secretase inhibitors generated with this method were comparable with reported values 

obtained by other methods. This assay was also proven to be easily adapted to test compounds for 

drosophila and mouse γ-secretase inhibitors, which could be very useful to assess compounds’ activity 

against γ-secretase from different species before the in vivo test in animal models. Finally, this assay 

was applied to a small-scale screening of a compound library consisting of 1,280 compounds, seven 

compounds with consistent inhibition of γ-secretase were identified and will be further characterized. 
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