Next Article in Journal
Catalytic Asymmetric 1,4-Additions of β-Keto Esters to Nitroalkenes Promoted by a Bifunctional Homobimetallic Co2-Schiff Base Complex
Previous Article in Journal
Synthesis and Antimicrobial Activity of New 5-(2-Thienyl)-1,2,4-triazoles and 5-(2-Thienyl)-1,3,4-oxadiazoles and Related Derivatives
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Synthesis of Some New Mono- and Bis-Polycyclic Aromatic Spiro and Bis-Nonspiro-β-Lactams

by
Aliasghar Jarrahpour
* and
Edris Ebrahimi
Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
*
Author to whom correspondence should be addressed.
Molecules 2010, 15(1), 515-531; https://doi.org/10.3390/molecules15010515
Submission received: 2 November 2009 / Revised: 3 December 2009 / Accepted: 9 December 2009 / Published: 22 January 2010

Abstract

:
Some new mono-and bis-polycyclic aromatic spiro-β-lactams and bis-non spiro-polycyclic aromatic β-lactams have been synthesized from imines derived from anthracene-9-carbaldehyde, 2-naphtaldehyde and a ketene derived from 9H-xanthene-9-carboxylic acid and phenoxyacetic acid by a [2+2] cycloaddition reaction. The cycloadducts were characterized by spectral data, including 1H-NMR, 13C-NMR, IR and elemental analyses. The configurations of some of these mono-spiro-β-lactams were established by X-ray crystal analysis.

1. Introduction

β-Lactams, being a structural unit found in the most widely used antibiotics [1], have occupied a basic position in medicinal chemistry for almost a century now. With the microbes responding to the traditional antibiotics through β-lactamases, the need for novel antibiotics prevails, making synthesis of newer β-lactams ever more important. In addition to their use as antibiotics, β-lactams are increasingly being used as synthons for other biologically important molecules [2,3,4,5,6,7,8,9,10,11]. β-Lactams have been found to act as cholesterol acyl transferase inhibitors [12], thrombin inhibitors [13], human cytomegalovirus protease inhibitors [14], matrix metalloprotease inhibitors [15], cysteine protease [16], and apoptosis inductors [17]. Spirocyclic β-lactams have attracted attention as they have been shown to be β-turn mimetics [18,19] and precursors for α,α-disubstituted β-amino acids [20]. The chartelline has a spiro-β-lactam moiety in its structure marine natural products [21]. It has been found that spiro-β-lactams act as poliovirus and human rhinovirus 3C-proteinases inhibitors [22]. These compounds are mostly synthesized by cycloaddition to an exocyclic bond. Several syntheses of spiro-β-lactams have been reported [23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]. Polycyclic aromatic β-lactams have shown anticancer and other biological activities [43,44,45]. Some polyaromatic β-lactams have been reported to have polyaromatic ring in part of imines that prepared by Staudinger reaction [46]. Therefore in continuation of our work on the synthesis of novel β-lactams [47,48,49], we present here for the first time the results obtained in the synthesis of mono- and bis-polyaromatic spiro and nonspiro-β-lactams using a modified Staudinger reaction.

2. Results and Discussion

Treatment of anthracene-9-carbaldehyde or 2-naphtaldehyde with different primary amines in refluxing ethanol afforded the polycyclic aromatic imines 1a–n [50,51,52,53]. These Schiff bases were then treated with 9H-xanthene-9-carboxylic acid in the presence of triethylamine and tosyl chloride to afford polycyclic aromatic spiro-β-lactams 2a–n as single diastereomers (Scheme 1). The reaction progress was monitored by TLC and the presence of a new compound was confirmed. In addition, the cycloadducts were characterized by spectral analysis. For 2a the IR spectrum showed the characteristic absorption of a β-lactam carbonyl at 1,747 cm−1. The 1H-NMR spectrum exhibited the methoxy protons as a singlet at 3.64 ppm, the β-lactam H-4 proton as a singlet at 6.29 and aromatic protons as a multiplet at 6.39–8.82. The 13C-NMR spectrum exhibited the C-3 (spiro carbon) at 64.3. The results for other polycyclic aromatic spiro-β-lactams 2a–n are shown in Table 1.
Then we decided to synthesize bis-spiro- and bis-nonspiro- polycyclic aromatic β-lactams 4a–d, 6b and 4e–h, 6a from bis-imines 3a–d and 5 [53] (Scheme 2). The structures of 4a–h and 5a–b are shown in Table 2. The cis-trans stereochemistry of 2-azetidinones 4e–h and 6a were deduced from the coupling constant of H-3 and H-4, which was calculated to be J3,4 = 4–9 Hz for the cis and J3,4 = 1–3 Hz for the trans stereoisomers.
The X-ray crystallography of 2a (Figure 1) confirmed the proposed spiro configuration at C3 [54,55,56,57,58,59]. The X-ray analysis also showed that the β-lactam ring is planar and it is perpendicular to xanthene ring. The anthracene ring has dihedral angles of 51.8° with the β-lactam ring.

3. Experimental Section

3.1. General

All needed chemicals were purchased from the Merck, Fluka or Acros chemical companies. All reagents and solvents were dried prior to use according to standard methods [60]. IR spectra were run on a Shimadzu FT-IR 8300 spectrophotometer. 1H-NMR and 13C-NMR spectra were recorded in DMSO-d6 or CDCl3 using a Bruker Avance DPX instrument (1H-NMR 250 MHz, 13C-NMR 62.9 MHz). Chemical shifts were reported in parts per million (δ) downfield from TMS. All of the coupling constants (J) are in hertz. The mass spectra were recorded on a Shimadzu GC-MS QP 1000 EX instrument. Elemental analyses were run on a Thermo Finnigan Flash EA-1112 series. Melting points were determined in open capillaries with Buchi 510 melting point apparatus. Thin-layer chromatography was carried out on silica gel F254 analytical sheets obtained from Fluka. Column chromatography was performed on Merck Kiesel gel (230–270 mesh).

3.2. General Procedure for Preparation of Schiff Bases 1a–n

A mixture of an aromatic amine (1.00 mmol) and anthracene-9-carbaldehyde or 2-naphtaldehyde (1.00 mmol) was refluxed in ethanol (20 mL) for 1–5 hours. After cooling, the pure Schiff bases were separated as crystals. Some of these were recrystallized from ethanol.
(E)-N-(Anthracen-10-ylmethlene)-4-methxybenzenamine (1a): Yellow powder crystal (yield 91%); Mp: 140–148 °C; IR (CHCl3, cm−1): 1,608 (C=N); 1H-NMR δ (ppm): 3.88 (OMe, s, 3H), 6.52–7.64 (ArH, m, 13H), 9.80 (CHN, s, 1H). Analysis calculated for C22H17NO: C, 84.86; H, 5.50; N, 4.50%. Found: C, 84.83; H, 5.55; N, 4.48%.
(E)-N-(Anthracen-10-ylmethylene)-3-methoxybenzenamine (1b): Yellow powder crystal (yield 84%); Mp: 100–102 °C; IR (CHCl3, cm−1): 1,608 (C=N); 1H-NMR δ (ppm): 3.87 (OMe, s, 3H), 6.89–8.74 (ArH, m, 13H), 9.66 (CHN, s, 1H). Analysis calculated for C22H17NO: C, 84.86; H, 5.50; N, 4.50%. Found: C, 84.83; H, 5.55; N, 4.48%.
(E)-N-(Anthracen-10-ylmethylene)-2-methoxybenzenamine (1c): Orange powder crystal (yield 76%); Mp: 94–96 °C; IR (CHCl3, cm−1): 1,620 (C=N); 1H-NMR δ (ppm): 6.73–8.75 (ArH, m, 13H), 9.66 (CHN, s, 1H). Analysis calculated for C22H17NO: C, 84.86; H, 5.50; N, 4.50%. Found: C, 84.83; H, 5.55; N, 4.48%.
(E)-N-(Anthracen-10-ylmethylene)benzenamine (1d): Yellow powder crystal (yield 76%); Mp: 102–104 °C; IR (KBr, cm−1): 1,608 (C=N); 1H-NMR δ (ppm): 6.61–8.96 (ArH, m, 14H), 9.63 (CHN, s, 1H). Analysis calculated for C21H15N: C, 89.65; H, 5.37; N, 4.98%. Found: C, 89.61; H, 5.41; N, 4.95%.
(E)-N-(Anthracen-10-ylmethylene)-4-chlorobenzenamine (1e): Yllow crystal (yield 51%); Mp: 182–184 °C; IR (KBr, cm−1): 1,623 (C=N); 1H-NMR δ (ppm): 6.64–8.72 (ArH, m, 13H), 9.61 (CHN, s, 1H). Analysis calculated for C21H14ClN: C, 79.87; H, 4.47; N, 4.44%. Found: C, 79.85; H, 4.50; N, 4.49%.
(E)-N-(Anthracen-10-ylmethylene)-3-nitrobenzenamine (1f): Orange crystal (yield 67%); Mp: 166–168 °C; IR (KBr, cm−1): 1,666 (C=N); 1H-NMR δ (ppm): 6.62–8.96 (ArH, m, 13H), 9.66 (CHN, s, 1H). Analysis calculated for C21H14N2O2: C, 77.29; H, 4.32; N, 8.58%. Found: C, 77.35; H, 4.38; N, 8.60%.
(E)-N-(Anthracen-10-ylmethylene)-2-ethylbenzenamine (1g): Yellow crystal (yield 60%); Mp: 182–184 °C; IR (CHCl3, cm−1): 1,620 (C=N); 1H-NMR δ (ppm): 1.27 (CH2, t, 2H, J = 7.5), 2.89 (CH3, q, 4H, J = 7.5), 6.82–8.80 (ArH, m, 13H), 9.55 (CHN, s, 1H). Analysis calculated for C23H19N: C, 89.28; H, 6.19; N, 4.53%. Found: C, 89.32; H, 6.25; N, 4.55%.
(E)-N-(Anthracen-10-ylmethylene)-3-bromobenzenamine (1h): Yellow crystal (yield 77%); Mp: 122–124 °C; IR (KBr, cm−1): 1,620 (C=N); 1H-NMR δ (ppm): 6.84–8.71 (ArH, m, 13H), 9.60 (CHN, s, 1H). Analysis calculated for C21H14BrN: C, 70.01; H, 3.92; N, 3.89%. Found: C, 70.11; H, 3.98; N, 3.84%.
(E)-N-(Anthracen-10-ylmethylene)-2,4-dimethoxybenzenamine (1i): Orange crystal (yield 88%); Mp: 160–162 °C; IR (CHCl3, cm−1): 1,616 (C=N); 1H-NMR δ (ppm): 3.75, 3.98 (2OMe, s, 6H), 6.51–8.73 (ArH, m, 12H), 9.92 (CHN, s, 1H). Analysis calculated for C23H19NO2: C, 80.92; H, 5.61; N, 4.10%. Found: C, 80.96; H, 5.66; N, 4.17%.
(E)-N-(Anthracen-10-ylmethylene)-3,4-dimethoxybenzenamine (1j): Orange crystal (yield 90%); Mp: 160–162 °C; IR (CHCl3, cm−1): 1,605 (C=N); 1H-NMR δ (ppm): 3.88, 3.91 (2OMe, s, 6H), 6.88–8.68 (ArH, m, 12H), 9.92 (CHN, s, 1H). Analysis calculated for C23H19NO2: C, 80.92; H, 5.61; N, 4.10%. Found: C, 80.96; H, 5.66; N, 4.17%.
(E)-N-(Anthracen-10-ylmethylene)cyclohexanamine (1k): Orange crystal (yield 92%); Mp: 132–134 °C; IR (CHCl3, cm−1): 1,639 (C=N); 1H-NMR δ (ppm): 1.34–3.56 (cyclohexyl, m, 11H), 7.41–8.43 (ArH, m, 9H), 9.34 (CHN, s, 1H). Analysis calculated for C21H21N: C, 87.76; H, 7.36; N, 4.87%. Found: C, 87.71; H, 7.33; N, 4.91%.
(E)-N-(Anthracen-10-ylmethlene)naphthalene-1-amine (1l): Yellow crystal (yield 60%); Mp: 142–144° C; IR (CHCl3, cm−1): 1,624 (C=N); 1H–NMR δ (ppm): 6.67–8.94 (Ar-H, m, 16H), 8.80 (CHN, s, 1H). Analysis calculated for C25H17N: C, 90.60; H, 5.17; N, 4.23%. Found: C, 90.66; H, 5.20; N, 4.28%.
(E)-N-(Naphthalen-2-ylmethylene)naphthalen-1-amine (1m): Green crystal (yield 78%); Mp: 129–130° C. IR (CHCl3, cm−1): 1,624 (C=N); 1H–NMR δ (ppm): 6.73–8.63 (Ar-H, m, 14H), 8.94 (CHN, s, 1H). Analysis calculated for C25H17N: C, 90.60; H, 5.17; N, 4.23%. Found: C, 90.66; H, 5.20; N, 4.28%.
(E)-4-Methoxy-N-(naphthalen-2-ylmethylene)benzenamine (1n): Silver powder crystal (yield 80%); Mp: 118–120° C; IR (CHCl3, cm−1): 1,620 (C=N); 1H-NMR δ (ppm): 3.78 (OMe, s, 3H), 6.90–8.13 (ArH, m, 11H), 8.60 (CHN, s, 1H). Analysis calculated for C18H15NO: C, 82.73; H, 5.79; N, 5.36%. Found: C, 82.75; H, 5.83; N, 5.32%.

3.3. General Procedure for Preparation of Bis-Schiff Bases 3a–d and 5

A mixture of anthracene-9-carbaldehyde (1.00 mmol) and bisamine (0.50 mmol) was refluxed in ethanol (20 mL) for (1–5) h. After cooling, the pure Schiff bases were separated as crystals. Some of these were recrystallized from ethanol.
(E)-4-(E)-4-[(E)-Anthracen-10-ylmethyleneamino)benzyl]-N-(anthracen-10-ylmethylene)benzene-amine (3a): Yellow powder (yield 96%); Mp: 216–218 °C; IR (KBr, cm−1): 1,623 (C=N); 1H-NMR δ (ppm): 4.15 (CH2, s, 2H), 6.68–9.70 (ArH, m, 26H), 10.02 (CH=N, s, 2H); Analysis calculated for C43H30N2: C, 89.86; H, 5.26; N, 4.87%. Found: C, 89.81; H, 5.22; N, 4.83%.
(E)-3-(E)-3-[(E)-Anthracen-10-ylmethyleneamino)benzyl]-N-(anthracen-10-yl-methylene)benzenenamine (3b): Yellow powder (yield 95%); Mp: 184–186 °C; IR (KBr, cm−1): 1,623 (C=N); 1H-NMR δ (ppm): 4.19 (CH2, s, 2H), 7.24–8.92 (ArH, m, 26H), 9.73 (CH=N, s, 2H); Analysis calculated for C43H30N2: C, 89.86; H, 5.26; N, 4.87%. Found: C, 89.81; H, 5.22; N, 4.83%.
(E)-N-(Anthracen-10-yl-methylene)-4-(4-[(E)-anthracen-10-ylmethyleneamino]phenoxy)benzene-amine (3c): Orange powder (yield 96%); Mp: 202–204 °C; IR (KBr, cm−1): 1,608 (C=N); 1H-NMR δ (ppm): 6.73–8.78 (ArH, m, 26H), 9.60 (CH=N, s, 2H); Analysis calculated for C42H28N2O: C, 87.47; H, 4.89; N, 4.86%. Found: C, 87.51; H, 4.95; N, 4.81%.
(E)-N-(Anthracen-10-ylmethylene)-3-(4-[(E)-anthracen-10-ylmethyleneamino]phenoxy)benzeneamine (3d): Yellow powder (yield 88%); Mp: 216–218 °C; IR (KBr, cm−1): 1,620 (C=N); 1H-NMR δ (ppm): 6.20–9.01 (ArH, m, 26H), 9.71 (CH=N, s, 2H); Analysis calculated for C42H28N2O: C, 87.47; H, 4.89; N, 4.86%. Found: C, 87.51; H, 4.95; N, 4.81%.
(N1E,N4E)-N1,N4-bis(Anthracen-10-ylmethylene)benzene-1,4-diamine (5): Yellow powder (yield 95%); Mp: > 240 °C; IR (KBr, cm−1): 1,604 (C=N); 1H-NMR δ (ppm): 7.25–8.84 (ArH, m, 22H), 9.81 (CHN, s, 2H). Analysis calculated for C36H24N2: C, 89.23; H, 4.99; N, 5.78%. Found: C, 89.28; H, 5.05; N, 5.73%.

3.4. General Procedure for the Synthesis of Polycyclic Aromatic Spiro-β-Lactams 2a–n

A mixture of Schiff base (1.00 mmol), triethylamine (5.00 mmol), 9H-xanthene-9-carboxylic acid (1.50 mmol) and tosyl chloride (1.50 mmol) in dry CH2Cl2 (15 mL) was stirred at room temperature for 24 h. Then it was washed with HCl 1N (20 mL), saturated NaHCO3 (20 mL) and brine (20 mL). The organic layer was dried (Na2SO4), filtered and the solvent was evaporated to give the product as a crystal which was then purified by recrystallization from appropriate organic solvents.
2-(Anthracen-9-yl)-1-(4-methoxyphenyl)spiro[azetidine-3,9’-xanthen]-4-one (2a): Light yellow crystals from EtOAc (yield 25%); Mp: 223–225 °C; IR (CHCl3, cm−1): 1,740 (CO β-lactam); 1H-NMR δ (ppm): 3.64 (OMe, s, 3H) 6.29 (H-4, s, 1H), 6.51–8.82 (ArH, m, 21H); 13C-NMR δ (ppm) 64.3 (OMe) 82.8 (C-3), 75.6 (C-4), 116.4–152.2 (aromatic carbon), 167.3 (CO β-lactam); GC-MS m/z = 519 [M+]; Analysis calculated for C36H25NO3: C, 83.22; H, 4.85; N, 2.70%. Found: C, 83.95; H, 4.90; N, 2.82.
2-(Anthracen-9-yl)-1-(3-methoxyphenyl)spiro[azetidine-3,9’-xanthen]-4-one (2b): Yellow crystals from EtOAc (yield 54%); Mp: 212–214 °C; IR (CHCl3, cm−1): 1,755 (CO β-lactam); 1H-NMR δ (ppm): 3.75 (OMe, s, 3H) 6.33 (H-4, s, 1H), 6.53–8.80 (ArH, m, 21H); 13C-NMR δ (ppm): 55.3 (OMe) 65.6 (C-3), 75.6 (C-4), 103.5–160.4 (aromatic carbon), 167.6 (CO β-lactam); GC-MS m/z = 519 [M+]; Analysis calculated for C36H25NO3: C, 83.22; H, 4.85; N, 2.70%. Found: C, 83.95; H, 4.90; N, 2.82%.
2-(Anthracen-9-yl)-1-(2-methoxyphenyl)spiro[azetidine-3,9’-xanthen]-4-one (2c): Light yellow crystals from EtOAc (yield 57%); Mp: 214–216 °C (dec.); IR (KBr, cm−1): 1,739 (CO β-lactam); 1H-NMR δ (ppm): 2.94 (OMe, s, 3H), 6.34 (H-4, s, 1H), 6.55–9.20 (ArH, m, 21H);13C-NMR δ (ppm): 55.4 (OMe), 66.0 (C-3), 78.5 (C-4), 112.8–152.0 (aromatic carbon), 168.0 (CO β-lactam); GC-MS m/z = 519 [M+]; Analysis calculated for C36H25NO3: C, 83.22: H, 4.85; N, 2.70%. Found: C, 83.90; H, 4.80; N, 2.81%.
2-(Anthracen-9-yl)-1-phenylspiro[azetidine-3,9’-xanthen]-4-one (2d): Light yellow crystals from EtOAc (yield 63%); Mp: 238–240 °C (dec.); IR (KBr, cm−1): 1,758 (CO β-lactam); 1H-NMR δ (ppm): 6.34 (H-4, s, 1H), 6.51–8.83 (ArH, m, 22H); 13C-NMR δ (ppm): 65.6 (C-3), 75.4 (C-4), 115.9–152.0 (aromatic carbon), 167.5 (CO β-lactam); GC-MS m/z = 489 [M+]; Analysis calculated for C35H23NO2: C, 85.87; H, 4.74; N, 2.86%. Found: C, 85.87; H, 4.74; N 2.86%.
2-(Anthracen-9-yl)-1-(4-chlorophenyl)spiro[azetidine-3,9’-xanthen]-4-one (2e): Yellow crystals from EtOAc (yield 70%); Mp: 254–256 °C (dec.); IR (KBr, cm−1): 1,743 (CO β-lactam); 1H-NMR δ (ppm): 6.30 (H-4, s, 1H), 6.52–9.06 (ArH, m, 21H); 13C-NMR δ (ppm): 66.0 (C-3), 75.5 (C-4), 116.0–151.9 (aromatic carbon), 167.4 (CO β-lactam); GC-MS m/z = 524 [M+, 35Cl], 526 [M+, 37Cl]; Analysis calculated for C35H22ClNO2: C, 80.22; H, 4.23; N 2.67%. Found: C, 80.28; H, 4.18; N, 2.53%.
2-(Anthracen-9-yl)-1-(3-nitrophenyl)spiro[azetidine-3,9’-xanthen]-4-one (2f): Yellow crystals from EtOAc (yield 40%); Mp: 212–214 °C; IR (KBr, cm−1): 1,762 (CO β-lactam); 1H-NMR δ (ppm): 5.98 (H-4, s, 1H), 6.40–9.16 (ArH, m, 21H); 13C-NMR δ (ppm): 66.4 (C-3), 75.8 (C-4), 112.4–152.1 (aromatic carbon), 169.2 (CO β-lactam); GC-MS m/z = 534 [M+]; Analysis calculated for C35H22N2O4: C, 78.64; H, 4.15; N, 5.24%. Found: C, 78.63; H, 4.20; N, 5.32%.
2-(Anthracen-9-yl)-1-(2-ethylphenyl)spiro[azetidine-3,9’-xanthen]-4-one (2g): White solid (yield 35%); Mp: 208–210 °C; IR (KBr, cm−1): 1,755 (CO β-lactam); 1H-NMR δ (ppm): 1.14 (t, 3H, Me, J = 7.1), 4.00 (CH2, q, 2H, J = 7.1), 4.92 (s, 1H, H-4), 6.30–8.74 (ArH, m, 21H); 13C-NMR δ (ppm): 15.1 (CH3), 25.8 (CH2), 64.5 (C-3), 75.1 (C-4), 115.9–152.2 (aromatic carbon), 168.1 (CO β-lactam); GC-MS m/z = 517 [M+]; Analysis calculated for C37H27NO2: C, 85.85; H, 5.26; N, 2.71%. Found: C, 85.83; H, 5.30; N, 2.76%.
2-(Anthracen-9-yl)-1-(3-bromophenyl)spiro[azetidine-3,9’-xanthen]-4-one (2h): Yellow crystals from EtOAc (yield 55%); Mp: 222–224 °C; IR (KBr, cm−1): 1,755 (CO β-lactam); 1H-NMR δ (ppm): 6.18 (H-4, s, 1H), 6.23–8.65 (ArH, m, 21H); 13C-NMR δ (ppm): 66.0 (C-3), 75.6 (C-4), 115.7–151.9 (aromatic carbon), 167.7 (CO β-lactam); GC-MS m/z = 567 [M+, 80Br], 569 [M+, 82Br]; Analysis calculated for C35H22BrNO2: C, 73.95; H, 3.90; N, 2.46%. Found: C, 73.90; H, 3.93; N, 2.51%.
2-(Anthracen-9-yl)-1-(2,4-dimethoxyphenyl)spiro[azetidine-3,9’-xanthen]-4-one (2i): Light green crystals from EtOAc (yield 69%); Mp: 180–182 °C (dec.); IR (KBr, cm−1): 1,739 (CO β-lactam); 1H-NMR δ (ppm): 2.91, 3.58 (2OMe, s, 6H) 6.16 (H-4, s, 1H), 6.17–8.18 (ArH, m, 20H); 13C-NMR δ (ppm): 55.4, 55.5 (s, 6H, 2 OMe) 65.9 (C-3), 78.1 (C-4), 100.2–158.2 (aromatic carbon), 167.7 (CO β-lactam); GC-MS m/z = 549 [M+]; Analysis calculated for C37H27NO4: C, 80.86; H, 4.95; N, 2.55%. Found: C, 80.03; H, 4.98; N, 2.83%.
2-(Anthracen-9-yl)-1-(3,4-dimethoxyphenyl)spiro[azetidine-3,9’-xanthen]-4-one (2j): Yellow solid (yield 91%); Mp: 172–174 °C; IR (KBr, cm−1): 1,743 (CO β-lactam); 1H-NMR δ (ppm): 3.69, 3.97 (2OMe, s, 6H) 6.30 (H-4, s, 1H), 6.50–8.77 (ArH, m, 20H); 13C-NMR δ (ppm): 55.9, 56.1 (2 OMe) 65.6 (C-3), 75.6 (C-4), 102.3–153.0 (aromatic carbon), 166.9 (CO β-lactam); GC-MS m/z = 549 [M+]; Analysis calculated for C37H27NO4: C, 80.86; H, 4.95; N, 2.55%. Found: C, 80.81; H, 4.97; N, 2.53%.
2-(Anthracen-9-yl)-1-cyclohexylspiro[azetidine-3,9’-xanthen]-4-one (2k): Orange crystals from EtOAc (yield 69%); Mp: 216–218 °C; IR (KBr, cm−1): 1,743 (CO β-lactam); 1H-NMR δ (ppm): 1.53, 1.75, 1.95, 2.22, 2.65, 3.81 (cyclohexyl, m, 11H) 5.96 (H-4, s, 1H), 6.36–9.19 (ArH, m, 17H); 13C-NMR δ (ppm): 24.5, 25.5, 30.0, 31.0, 56.7 (cyclohexyl) 64.5 (C-3), 72.8 (C-4), 115.9–152.4 (aromatic carbon), 169.6 (CO β-lactam); GC-MS m/z = 495 [M+]; Analysis calculated for C35H29NO2: C, 84.82; H, 5.90; N, 2.83%. Found: C, 84.81; H, 5.92; N, 2.81%.
2-(Anthracen-9-yl)-1-(naphthalen-1-yl)spiro[azetidine-3,9’-xanthen]-4-one (2l): Orange crystals from EtOAc (yield 68%); Mp: 184–186 °C (dec.); IR (CHCl3, cm−1): 1,759 (CO β-lactam); 1H-NMR δ (ppm): 6.45 (H-4, s, 1H), 6.61–9.8 (ArH, m, 24H); 13C-NMR δ (ppme) 90.3 (C-3), 74.8 (C-4), 116.7–152.1 (aromatic carbon), 168.3 (CO β-lactam); GC-MS m/z = 539 [M+]; Analysis calculated for C39H25NO2: C, 86.80; H, 4.67; N, 2.60%. Found: C, 86.52; H, 4.63; N, 2.61%.
1-(Naphthalen-1-yl)-2-(naphthalen-2-yl)spiro[azetidine-3,9’-xanthen]-4-one (2m): White solid (yield 50%); Mp: 187–189 °C; IR (KBr, cm−1): 1,758 (CO β-lactam); 1H-NMR δ (ppm) 5.73 (H-4, s, 1H), 6.50–9.00 (ArH, m, 22H); 13C-NMR δ (ppm): 62.8 (C-3), 75.8 (C-4), 116.4–152.29 (aromatic carbon), 196.3 (CO β-lactam); GC-MS m/z = 489 [M+]; Analysis calculated for C35H23NO2: C, 85.87; H, 4.74; N, 2.86%. Found: C, 85.67; H, 4.65; N, 2.79%.
1-(4-Methoxyphenyl)-2-(naphthalen-2-yl)spiro[azetidine-3,9’-xanthen]-4-one (2n): Gray solid (yield 40%); Mp: 184–186 °C; IR (CHCl3, cm−1): 1,751 (CO β-lactam); 1H-NMR δ (ppm): 3.81 (OMe, s, 3H) 5.21 (H-4, s, 1H), 6.64–8.33 (ArH, m, 19H); 13C-NMR δ (ppm): 55.5 (OMe) 64.0 (C-3), 74.6 (C-4), 113.9–151.8 (aromatic carbon), 167.0 (CO β-lactam); GC-MS m/z = 469 [M+]; Analysis calculated for C32H23NO3: C, 81.86; H, 4.94; N, 2.98%. Found: C, 81.53; H, 4.98; N, 2.83%.

3.5. General Procedure for the Synthesis of Bis-Polycyclic Aromatic Spiro and Nonspiro-β-Lactams 4a–h and 6a–b

A mixture of Schiff base (1.00 mmol), triethylamine (10.00 mmol), 9H-xanthen-9-carboxylic acid or phenoxyacetic acid (3.00 mmol) and tosyl chloride (3.00 mmol) in dry CH2Cl2 (15 mL) was stirred at room temperature for 24 h. Then it was washed with HCl 1N (20 mL), saturated NaHCO3 (20 mL) and brine (20 mL). The organic layer was dried (Na2SO4), filtered and the solvent was evaporated to give the product as a crystal which was then purified by recrystallization from suitable organic solvents.
2-(Anthracen-9-yl)-1-(4-(4-(2-(anthracen-9-yl)-4-oxospiro[azetidine-3,9’-xanthene]-1-yl)benzyl)-phenyl)spiro[azetidine-3,9’-xanthen]-4-one (4a): Orange solid (yield 92%); Mp: 162–164 °C (dec.); IR (KBr, cm−1): 1,755 (CO β-lactam); 1H-NMR δ (ppm): 3.76 (CH2, s, 2H) 6.15 (H-4, s, 2H), 6.19–8.99 (ArH, m, 42H); 13C-NMR δ (ppm): 40.8 (CH2) 65.7 (C-3), 75.4 (C-4), 115.9–152.0 (aromatic carbon), 167.3 (CO β-lactam). Analysis calculated for C71H46N2O4: C, 86.04; H, 4.68; N, 2.83%. Found: C, 86.10; H, 4.71; N, 2.80%.
2-(Anthracen-9-yl)-1-(3-(3-(2-(anthracen-9-yl)-4-oxospiro[azetidine-3,9’-xanthene]-1-yl)benzyl) phenyl)spiro[azetidine-3,9’-xanthen]-4-one (4b): Orange solid (Yield 87%); Mp: 220–222 °C (dec.); IR (KBr, cm−1): 1,758 (CO β-lactam); 1H-NMR δ (ppm): 3.78 (CH2, s, 2H,) 6.22 (H-4, s, 2H), 6.26–9.52 (ArH, m, 42H); 13C-NMR δ (ppm): 41.5 (CH2) 59.6 (C-3), 75.4 (C-4), 115.9–152.0 (aromatic carbon), 167.4 (CO β-lactam). Analysis calculated for C71H46N2O4: C, 86.04; H, 4.68; N, 2.83%. Found: C, 86.06; H, 4.70; N, 2.80%.
2-(Anthracen-9-yl)-1-(4-(4-(2-(anthracen-9-yl)-4-oxospiro[azetidine-3,9’-xanthene]-1-yl)phenoxy) phenyl)spiro[azetidine-3,9’-xanthen]-4-one (4c): Yellow solid (Yield 75%); Mp: 242–244 °C (dec.); IR (KBr, cm−1): 1,755 (CO β-lactam); 1H-NMR δ (ppm): 6.20 (H-4, s, 2H), 6.22–8.68 (ArH, m, 42H); 13C-NMR δ (ppm): 65.8 (C-3), 75.5 (C-4), 115.9–153.9 (aromatic carbon), 167.0 (CO β-lactam). Analysis calculated for C70H44N2O5: C, 84.66; H, 4.47; N, 2.82%. Found: C, 84.64; H, 4.48; N, 2.80%.
2-(Anthracen-9-yl)-1-(3-(4-(2-(anthracen-9-yl)-4-oxospiro[azetidine-3,9’-xanthene]-1-yl)phenoxy) phenyl)spiro[azetidine-3,9’-xanthen]-4-one (4d): Orange solid (Yield 85%); Mp: 140–142 °C; IR (KBr, cm−1): 1,759 (CO β-lactam); 1H-NMR δ (ppm): 6.15 (H-4, s, 2H), 6.40–8.79 (ArH, m, 42H). 13C-NMR δ (ppm): 65.8 (C-3), 75.7 (C-4), 117.5–157.4 (aromatic carbon), 167.4 (CO β-lactam). Analysis calculated for C70H44N2O5: C, 84.66; H, 4.47; N, 2.82%. Found: C, 84.63; H, 4.45; N, 2.81%.
1,1’-(4,4’-Methylenebis(4,1-phenylene))bis(4-(anthracen-9-yl)-3-phenoxyazetidin-2-one) (4e): Yellow solid (Yield 80%); Mp: 146–148 °C; IR (KBr, cm−1): 1,755 (CO β-lactam); 1H-NMR δ (ppm): 3.42 (CH2, s, 2H) 5.85 (H-4, d, 2H, J = 2.8), 6.40 (H-3, d, 2H, J = 2.8), 6.47–9.54 (ArH, m, 36H); 13C-NMR δ (ppm): 40.5 (CH2) 62.9 (C-3), 59.1 (C-4), 115.6–157.1 (aromatic carbon), 163.3 (CO β-lactam). Analysis calculated for C59H42N2O4: C, 84.06; H, 5.02; N, 3.32%. Found: C, 84.10; H, 5.08; N, 3.35%.
1,1’-(3,3’-Methylenebis(3,1-phenylene))bis(4-(anthracen-9-yl)-3-phenoxyazetidin-2-one) (4f): Orange solid (Yield 87%); Mp: 118–120 °C; IR (KBr, cm−1): 1,758 (CO β-lactam); 1H-NMR δ (ppm): 3.47 (CH2, s, 2H) 5.71 (H-4, d, 2H, J = 3.6), 6.38 (H-3, d, 2H, J = 3.6), 6.41–9.41 (ArH, m, 36H); 13C-NMR δ (ppm): 41.1 (CH2) 82.6 (C-3), 60.6 (C-4), 115.5–157.1 (aromatic carbon), 163.4 (CO β-lactam); Analysis calculated for C59H42N2O4: C, 84.06; H, 5.02; N, 3.32%. Found: C, 84.08; H, 5.05; N, 3.30%.
1,1’-(4,4’-Oxybis(4,1-phenylene))bis(4-(anthracen-9-yl)-3-phenoxyazetidin-2-one) (4g): Orange solid (Yield 90%); Mp: 126–128 °C; IR (KBr, cm−1): 1,755 (CO β-lactam); 1H-NMR δ (ppm): 5.71 (H-4, d, 2H, J = 5.1), 6.20 (H-3, d, 2H, J = 5.1), 6.36–8.78 (m, ArH, 36H);13C-NMR δ (ppm): 83.1 (C-3), 59.2 (C-4), 115.6–133.0 (aromatic carbon), 167.7 (CO β-lactam). Analysis calculated for C58H40N2O5: C, 82.45; H, 4.77; N, 3.32%. Found: C, 82.41; H, 4.79; N, 3.35%.
4-(Anthracen-9-yl)-1-(3-(4-(2-(anthracen-9-yl)-4-oxo-3-phenoxyazetidin-yl)phenoxy)phenyl)-3-phen oxyazetidin-2-one (4h): Yellow solid (Yield 95%); Mp: 118–120 °C; IR (KBr, cm−1): 1,758 (CO β-lactam); 1H-NMR δ (ppm): 5.75 (H-4, d, 2H, J = 3.8), 6.25 (H-3, d, 2H, J = 3.8), 6.42–8.79 (ArH, m, 36H); 13C-NMR δ (ppm): 83.1 (C-3), 65.4 (C-4), 107.7–157.4 (aromatic carbon), 163.5 (CO β-lactam). Analysis calculated for C58H40N2O5: C, 82.45; H, 4.77; N, 3.32%. Found: C, 82.43; H, 4.75; N, 3.30%.
1,1’-(1,4-Phenylene)bis(4-(anthracen-9-yl)-3-phenoxyazetidin-2-one) (6a): Gray solid (Yield 96%); Mp: 178–180 °C (dec.); IR (KBr, cm−1): 1,751 (CO β-lactam); 1H-NMR δ (ppm): 5.58 (H-4, d, 2H, J = 3.9), 6.30 (H-3, d, 2H, J = 3.9), 6.33–8.82 (ArH, m, 32H);13C-NMR δ (ppm): 83.0 (C-3), 59.1 (C-4), 114.6–156.8 (aromatic carbon), 163.0 (CO β-lactam). Analysis calculated for C52H36N2O4: C, 82.96; H, 4.82; N, 3.72% Found: C, 82.95; H, 4.81; N, 3.70%.
1,1’-(1,4-Phenylene)bis(2-(anthracen-9-yl)spiro[azetidine-3,9’-xanthen]-4-one) (6b): Orange solid (Yield 85%); Mp: 186–188 °C (dec.); IR (KBr, cm−1): 1,751 (CO β-lactam); 1H-NMR δ (ppm): 6.27 (H-4, s, 2H), 6.30–8.99 (ArH, m, 38H); 13C-NMR δ (ppm): 59.7 (C-3), 75.2 (C-4), 115.9–152.0 (aromatic carbon), 167.0 (CO β-lactam). Analysis calculated for C64H40N2O4: C, 85.31; H, 4.47; N, 3.11%. Found: C, 85.30; H, 4.45; N, 3.15%.

4. Conclusions

This article describes for the first time the synthesis and characterization of some examples of mono-and bis-spiro- and nonspiro-β-lactams bearing a polycyclic aromatic moiety by reaction of polycyclic aromatic imines and two ketenes derived from 9H-xanthene-9-carboxylic acid and phenoxyacetic acid. These ketenes were prepared in situ with triethylamine and p-toluenesulfonyl chloride.

Acknowledgments

The authors thank the Shiraz University Research Council for financial support (Grant No. 88-GR-SC-23).

References

  1. Southgate, R. The synthesis of natural β-lactam antibiotics. Contemp. Org. Synth. 1994, 1, 417–431. [Google Scholar] [CrossRef]
  2. Broccolo, F.; Carnally, G.; Caltabiano, G.; Cocuzza, C.E.A.; Fortuna, C.; Galletti, G.; Giacomini, P.D.; Musumarra, G.; Musumeci, R.; Quitavalla, A. Design, synthesis, and biological evaluation of 4-alkyliden-beta lactams: new products with promising antibiotic activity against resistant bacteria. J. Med. Chem. 2006, 49, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
  3. Alcaide, B.; Almendros, P.; Aragoncillo, C. β-Lactams: Versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem. Rev. 2007, 107, 4437–4492. [Google Scholar] [CrossRef] [PubMed]
  4. Alcaide, B.; Almendros, P. β-Lactams as versatile intermediates for the preparation of heterocycles of biological interest. Curr. Med. Chem. 2004, 11, 1921–1949. [Google Scholar] [CrossRef] [PubMed]
  5. Deshmukh, A.R.A.S.; Bhawal, B.M.; Krishnaswamy, D.; Govande, V.V.; Shinkre, B.A.; Jayanthi, A. Azetidin-2-ones, synthon for biologically important compounds. Curr. Med. Chem. 2004, 11, 1889–1920. [Google Scholar] [CrossRef] [PubMed]
  6. Alcaide, B.; Almendros, P. Selective bond cleavage of the β-lactam nucleus: Application in stereocontrolled synthesis. Synlett 2002, 381–393. [Google Scholar] [CrossRef]
  7. Palomo, C.; Aizpurua, J.M.; Ganboa, I.; Oiarbide, M. β-lactams as versatile intermediates in α- and β-amino acid synthesis. Synlett 2001, 1813–1826. [Google Scholar] [CrossRef]
  8. Ojima, I. The Organic Chemistry of β-Lactams; Georg, G.I., Ed.; VCH: New York, NY, USA, 1993; pp. 197–255. [Google Scholar]
  9. Ojima, I. Recent advances in the β-lactam synthon method. Acc. Chem. Res. 1995, 28, 383–389. [Google Scholar] [CrossRef]
  10. O’Driscoll, M.; Greenhalgh, K.; Young, A.; Turos, E.; Dickey, S.; Lim, D.V. Studies on the antifungal properties of N-thiolated β-lactams. Bioorg. Med. Chem. 2008, 16, 7832–7837. [Google Scholar] [CrossRef] [PubMed]
  11. Turos, E.; Reddy, G.S.K.; Greenhalgh, K.; Ramaraju, P.; Abeylath, S.C.; Jang, S.; Dickey, S.; Lim, D.V. Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA. Bioorg. Med. Chem. Lett. 2007, 17, 3468–3472. [Google Scholar] [CrossRef] [PubMed]
  12. Dugar, S.; Yumibe, N.; Clader, J.W.; Vizziano, M.; Huie, K.; van Heek, M.; Compton, D.S.; Davis, H.R., Jr. Metabolism and structure activity data based drug design: discovery of (−) SCH 53079 an analog of the potent cholesterol absorption inhibitor (−) SCH 48461. Bioorg. Med. Chem. Lett. 1996, 6, 1271–1274. [Google Scholar] [CrossRef]
  13. Han, W.T.; Trehan, A.K.; Wright, J.J.K.; Federici, M.E.; Seiler, S.M.; Meanwell, N.A. Azetidin-2-one derivatives as inhibitors of thrombin. Bioorg. Med. Chem. 1995, 3, 1123–1143. [Google Scholar] [CrossRef]
  14. Borthwick, A.D.; Weingarte, G.; Haley, T.M.; Tomaszewski, M.; Wang, W.; Hu, Z.; Bedard, J.; Jin, H.; Yuen, L.; Mansour, T.S. Design and synthesis of monocyclic β-lactams as mechanism-based inhibitors of human cytomegalovirus protease. Bioorg. Med. Chem. Lett. 1998, 8, 365–370. [Google Scholar] [CrossRef]
  15. Cainelli, G.; Galletti, P.; Garbisa, S.; Giacomini, D.; Sartor, L.; Quintavalla, A. 4-Alkylidene-azetidin-2-ones: novel inhibitors of leukocyte elastase and gelatinase. Bioorg. Med. Chem. 2003, 11, 5391–5399. [Google Scholar] [CrossRef] [PubMed]
  16. Zhou, N.E.; Guo, D.; Thomas, G.; Reddy, A.V.N.; Kaleta, J.; Purisima, E.; Menard, R.; Micetich, R.G.; Singh, R. 3-Acylamino-azetidin-2-one as a novel class of cysteine proteases inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 139–141. [Google Scholar] [CrossRef]
  17. Kazi, A.; Hill, R.; Long, T.E.; Kuhn, D.J.; Turos, E.; Dou, Q.P. Novel N-thiolated β-lactam antibiotics selectively induce apoptosis in human tumor and transformed, but not normal or nontransformed, cells. Biochem. Pharmacol. 2004, 67, 365–374. [Google Scholar] [CrossRef] [PubMed]
  18. Alonso, E.; Lopez-Ortiz, F.; Del Pozo, C.; Peratta, E.; Macias, A.; Gonzalaz, J. Spiro β-lactams as β-turn mimetics. Design, synthesis, and NMR conformational analysis. J. Org. Chem. 2001, 66, 6333–6338. [Google Scholar] [CrossRef] [PubMed]
  19. Bittermann, H.; Gmeiner, P. Chirospecific synthesis of spirocyclic β-lactams and their characterization as potent type ii β-turn inducing peptide mimetics. J. Org. Chem. 2006, 71, 97–102. [Google Scholar] [CrossRef] [PubMed]
  20. Alonso, E.; Del Pozo, C.; Gonzalez, J. Synthesis of α,α-disubstituted β-amino esters and peptide derivatives. Synlett 2002, 69–72. [Google Scholar] [CrossRef]
  21. Pinder, J.L.; Weinreb, S.M. Preliminary feasibility studies on total synthesis of the unusual marine bryozoan alkaloids chartellamide A and B. Tetrahedron Lett. 2003, 44, 4141–4143. [Google Scholar] [CrossRef]
  22. Skiles, J.W.; McNeil, D. Spiro indolinone beta-lactams, inhibitors of poliovirus and rhinovirus 3C-proteinases. Tetrahedron Lett. 1990, 31, 7277–7280. [Google Scholar] [CrossRef]
  23. Jarrahpour, A.; Khalili, D. Synthesis of some mono- and bis-spiro-β-lactams of benzylisatin. Tetrahedron Lett. 2007, 48, 7140–7143. [Google Scholar] [CrossRef]
  24. Lin, X.; Weinreb, S.M. Model studies on total synthesis of the chartellines, spirocyclic β-lactam alkaloids from a marine bryozoan. Tetrahedron Lett. 2001, 42, 2631–2633. [Google Scholar] [CrossRef]
  25. Anklam, S.; Liebscher, J. Synthesis of optically active spiro-β-lactams by cycloadditions to α- alkylidene-β-lactams. Tetrahedron 1998, 54, 6369–6384. [Google Scholar] [CrossRef]
  26. Alcaide, B.; Almendros, P.; Del Campo, T.M.; Rodríguez-Acebes, R. Diversity-oriented preparation of enantiopure spirocyclic 2-azetidinones from α-oxo-β-lactams through barbier-type reactions followed by metal-catalyzed cyclizations. Adv. Synth. Catal. 2007, 349, 749–758. [Google Scholar] [CrossRef]
  27. Gareth, A.; Jonathan, C.; Stuart, D.H. Azabicyclic amino acids by stereoselective dearomatizing cyclization of the enolates of n-nicotinoyl glycine derivatives. Org. Lett. 2006, 8, 5325–5328. [Google Scholar]
  28. Bhalla, A.; Venugopalan, P.; Bari, S.S. A new synthetic approach to novel spiro-β-lactams. Eur. J. Org. Chem. 2006, 4943–4950. [Google Scholar] [CrossRef]
  29. Zanobini, A.; Brandi, A.; De Meijere, A. A new three-component cascade reaction to yield 3-spirocyclopropanated β-lactams. Eur. J. Org. Chem. 2006, 1251–1255. [Google Scholar] [CrossRef]
  30. Zanobini, A.; Gensini, M.; Magull, J.; Vidovic, D.; Kozhushkov, S.I.; Brandi, A.; De Meijere, A. A convenient new synthesis of 3-substituted β-lactams formally derived from 1-(aminomethyl)cyclopropanecarboxylic acids. Eur. J. Org. Chem. 2004, 4158–4166. [Google Scholar] [CrossRef]
  31. Alcaide, B.; Almendros, P.; Rodríguez-Acebes, R. Pd-Cu bimetallic catalyzed domino cyclization of α-allenols followed by a coupling reaction: New sequence leading to functionalized spirolactams. Chem. Eur. J. 2005, 11, 5708–5712. [Google Scholar] [CrossRef] [PubMed]
  32. Bhalla, A.; Venugopalan, P.; Bhasin, K.K.; Bari, S.S. Seleno-β-lactams: synthesis of monocyclic and spirocyclic selenoazetidin-2-ones. Tetrahedron 2007, 63, 3195–3204. [Google Scholar] [CrossRef]
  33. Galliford, C.V.; Martenson, J.S.; Stern, C.; Scheidt, K.A. A highly diastereoselective, catalytic three-component assembly reaction for the synthesis of spiropyrrolidinyloxindoles. Chem. Commun. 2007, 631–633. [Google Scholar] [CrossRef] [PubMed]
  34. Sun, C.; Lin, X.; Weinreb, M. Explorations on the total synthesis of the unusual marine alkaloid chartelline A. J. Org. Chem. 2006, 71, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
  35. Alcaide, B.; Almendros, P.; Rodrı´guez-Acebes, R. Efficient entry to diversely functionalized spirocyclic oxindoles from isatins through carbonyl-addition/cyclization reaction sequences. J. Org. Chem. 2006, 71, 2346–2351. [Google Scholar] [CrossRef] [PubMed]
  36. Cremonesi, G.; Dalla Croce, P.; La Rosa, C. Synthesis of imidazo[5,1-b]thiazoles or spiro-β-lactams by reaction of imines with mesoionic compounds or ketenes generated from N-acyl-thiazolidine-2-carboxylic acids. Tetrahedron 2004, 60, 93–97. [Google Scholar] [CrossRef]
  37. Alcaide, B.; Almendros, P.; Del Campo, T.M.; Rodrı´guez-Acebes, R. Metal-assisted synthesis of enantiopure spirocyclic β-lactams from azetidine-2,3-diones. Tetrahedron Lett. 2004, 45, 6429–6431. [Google Scholar] [CrossRef]
  38. Toshio, N.; Shigeo, K.; Minoru, I. Novel synthesis of bromoindolenine with spiro-blactam in chartelline. Synlett 2004, 2025–2027. [Google Scholar]
  39. Arjona, O.; Csa`ky, A.G.; Murcia, M.C.; Plumet, J. The Staudinger reaction of imines derived from 7-oxanorbornenone: formation of spiranic oxazinone versus β-lactam rings. Tetrahedron Lett. 2002, 43, 6405–6408. [Google Scholar] [CrossRef]
  40. Alonso, E.; Del Pozo, C.; Gonzalez, J. Staudinger reactions of unsymmetrical cyclic ketenes: A synthetically useful approach to spiro β-lactams and derivatives. Reaction mechanism and theoretical studies. J. Chem. Soc. Perkin Trans. 1 2002, 571–576. [Google Scholar] [CrossRef]
  41. Cooper, I.R.; Grigg, R.; MacLachlan, W.S.; Thornton-Pett, M.; Sridharane, V. 3-Component palladium-indium mediated diastereoselective cascade allylation of imines with allenes and aryl iodides. Chem. Commun. 2002, 1372–1373. [Google Scholar] [CrossRef]
  42. Palomo, C.; Aizpurua, J.M.; Ganboa, I.; Oiarbide, M. Asymmetric synthesis of β-lactams through the staudinger reaction and their use as building blocks of natural and nonnatural products. Curr. Med. Chem. 2004, 11, 1837–1872. [Google Scholar] [CrossRef] [PubMed]
  43. Banik, I.; Becker, F.F.; Banik, B.K. Stereoselective synthesis of β-lactams with polyaromatic imines: Entry to new and novel anticancer agents. J. Med. Chem. 2003, 46, 12–15. [Google Scholar] [CrossRef] [PubMed]
  44. Banik, B.K.; Becker, F.F.; Banik, I. Synthesis of anticancer β-lactams: Mechanism of action. Bioorg. Med. Chem. 2004, 12, 2523–2528. [Google Scholar] [CrossRef] [PubMed]
  45. Becker, F.F.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: Synthesis and biological evaluation of some chrysene derivatives. Bioorg. Med. Chem. Lett. 1998, 8, 2877–2880. [Google Scholar] [CrossRef]
  46. Becker, F.F.; Banik, B.K. Unprecedented stereoselectivity in the Staudinger reaction with polycyclic aromatic imines. Tetrahedron lett. 2000, 41, 6551–6554. [Google Scholar]
  47. Jarrahpour, A.; Alvand, P. Synthesis of some new sugar based 3,3-disubstituted monocyclic b-lactams by asymmetric [2+2] cycloaddition reactions. Iran J. Sci. Technol. Trans. A 2007, 31, 17–22. [Google Scholar]
  48. Jarrahpour, A.; Zarei, M. Synthesis of novel N-sulfonyl monocyclic β-lactams as potential antibacterial agents. Molecules 2006, 11, 49–58. [Google Scholar] [CrossRef] [PubMed]
  49. Jarrahpour, A.; Zarei, M. The Vilsmeier reagent as an efficient acid activator for the synthesis of β-lactams. Tetrahedron Lett. 2007, 48, 8712–8714. [Google Scholar] [CrossRef]
  50. Giuseppone, N.; Schmitt, J.L.; Schwartz, E.; Lehn, J.M. Scandium(III) catalysis of transimination reactions. Independent and constitutionally coupled reversible processes. J. Am. Chem. Soc. 2005, 127, 5528–5539. [Google Scholar] [CrossRef] [PubMed]
  51. Cabello, N.; Kizirian, J.C.; Alexakis, A. Enantioselective addition of aryllithium reagents to aromatic imines mediated by 1,2-diamine ligands. Tetrahedron Lett. 2004, 45, 4639–4642. [Google Scholar] [CrossRef]
  52. Jarrahpour, A.; Nazari, M.; Jalbout, A.F. Synthesis and physical characterization of 4-(anthracen-10-yl)-1-cyclohexyl-3-phenoxyazetidin-2-one as a new Trans 2-azetidinone. Molbank 2007, M538. [Google Scholar] [CrossRef]
  53. He, L.; Jurs, P.C. Predicting the Genotoxicity of Polycyclic Aromatic Compounds from Molecular Structure with Different Classifiers. Chem. Res. Toxicol. 2003, 16, 1567–1580. [Google Scholar] [CrossRef] [PubMed]
  54. Akkurt, M.; Karaca, S.; Jarrahpour, A.; Ebrahimi, E.; Büyükgüngör, O. 4-(9-Anthr-yl)-1-(4-methoxy-phen-yl)spiro[azetidin-3,9′-xanthen]-2-one. Acta Cryst. 2008, E64, 902–903, (Crystallographic data (excluding structure factors) for the structure in this Letter have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication No. CCDC 688989 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-Mail: [email protected].). [Google Scholar]
  55. Akkurt, M.; Yalcin, S.P.; Jarrahpour, A.; Ebrahimi, E.; Büyükgüngör, O. 4-(9-Anthryl)-1 (2-methoxyphenyl)-spiro[azetidin-3,9′-xanthen]-2-one. Acta Cryst. 2009, E65, 0626–0627. [Google Scholar] [CrossRef] [PubMed]
  56. Akkurt, M.; Celik, I.; Jarrahpour, A.; Ebrahimi, E.; Büyükgüngör, O. 4-(9-Anthryl)-1 phenylspiro[azetidine- 3,9′-xanthen]-2-one. Acta Cryst. 2009, E65, 501–502. [Google Scholar]
  57. Akkurt, M.; Celik, I.; Jarrahpour, A.; Ebrahimi, E.; Büyükgüngör, O. 4-(9-Anthryl)-1-(3-bromophenyl)spiro-[azetidine-3,9′-xanthen]-2-one. Acta Cryst. 2009, E65, o2522–o2523. [Google Scholar]
  58. Akkurt, M.; Baktir, Z.; Jarrahpour, A.; Ebrahimi, E.; Büyükgüngör, O. 4-(9-Anthryl)-1-(2,4-dimethoxyphenyl)-spiro[azetidine-3,9′-xanthen]-2-one. Acta Cryst. 2009, E65, o1623–o1624. [Google Scholar]
  59. Akkurt, M.; Gencaslan, M.; Jarrahpour, A.; Ebrahimi, E.; Büyükgüngör, O. 4-(9-Anthryl)-1-(1-naphthyl)spiro-[azetidine-3,9′-xanthen]-2-one n-hexane hemisolvate. Acta Cryst. 2008, E64, 2466–2467. [Google Scholar]
  60. Amarego, W.L.; Chai, C.L.L. Purificatinon of Laboratory Chemicals, 5th ed.; Elsevier: New York, NY, USA, 2003. [Google Scholar]
Sample Availability: Samples of the compounds 2a–n, 3a–d, 4a–h and 6a–b are available from authors.
Scheme 1. Synthesis of polycyclic aromatic spiro-β-lactams 2a–n.
Scheme 1. Synthesis of polycyclic aromatic spiro-β-lactams 2a–n.
Molecules 15 00515 sch001
Scheme 2. Synthesis of bis-spiro- and bis-nonspiro- polycyclic aromatic β-lactams 4a–h and 6a–b.
Scheme 2. Synthesis of bis-spiro- and bis-nonspiro- polycyclic aromatic β-lactams 4a–h and 6a–b.
Molecules 15 00515 sch002
Figure 1. X-ray crystal structure of 2a.
Figure 1. X-ray crystal structure of 2a.
Molecules 15 00515 g001
Table 1. Structures of spiro-β-lactams.
Table 1. Structures of spiro-β-lactams.
EntryProductYield (%) aEntryProductYield (%) a
1 Molecules 15 00515 i001
2a
256 Molecules 15 00515 i006
2f
40
2 Molecules 15 00515 i002
2b
547 Molecules 15 00515 i007
2g
35
3 Molecules 15 00515 i003
2c
518 Molecules 15 00515 i008
2h
53
4 Molecules 15 00515 i004
2d
639 Molecules 15 00515 i009
2i
70
5 Molecules 15 00515 i005
2e
7010 Molecules 15 00515 i010
2j
91
11 Molecules 15 00515 i011
2k
6913 Molecules 15 00515 i013
2m
50
12 Molecules 15 00515 i012
2l
6814 Molecules 15 00515 i014
2n
40
a Isolated yield of pure products.
Table 2. Structures of bis-spiro and bis-nonspiro-β-lactams.
Table 2. Structures of bis-spiro and bis-nonspiro-β-lactams.
EntryProductYield(%)aEntryProductYield(%)a
1 Molecules 15 00515 i015
4a
926 Molecules 15 00515 i020
4f
87
2 Molecules 15 00515 i016
4b
877 Molecules 15 00515 i021
4g
90
3 Molecules 15 00515 i017
4c
968 Molecules 15 00515 i022
4h
95
4 Molecules 15 00515 i018
4d
859 Molecules 15 00515 i023
6a
96
5 Molecules 15 00515 i019
4e
8010 Molecules 15 00515 i024
6b
85
a Isolated yields of pure products.

Share and Cite

MDPI and ACS Style

Jarrahpour, A.; Ebrahimi, E. Synthesis of Some New Mono- and Bis-Polycyclic Aromatic Spiro and Bis-Nonspiro-β-Lactams. Molecules 2010, 15, 515-531. https://doi.org/10.3390/molecules15010515

AMA Style

Jarrahpour A, Ebrahimi E. Synthesis of Some New Mono- and Bis-Polycyclic Aromatic Spiro and Bis-Nonspiro-β-Lactams. Molecules. 2010; 15(1):515-531. https://doi.org/10.3390/molecules15010515

Chicago/Turabian Style

Jarrahpour, Aliasghar, and Edris Ebrahimi. 2010. "Synthesis of Some New Mono- and Bis-Polycyclic Aromatic Spiro and Bis-Nonspiro-β-Lactams" Molecules 15, no. 1: 515-531. https://doi.org/10.3390/molecules15010515

Article Metrics

Back to TopTop