One-Pot Synthesis of 2,3,4-Triarylquinolines via SuzukiMiyaura Cross-Coupling of 2-Aryl-4-chloro-3-iodoquinolines with Arylboronic Acids

Malose Jack Mphahlele * and Mamasegare Mabel Mphahlele
Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa

* Author to whom correspondence should be addressed; E-Mail: mphahmj@unisa.ac.za; Tel. +27-12-429-8805; Fax: +27-12-429-8549.

Received: 16 September 2010; in revised form: 12 October 2010 / Accepted: 18 October 2010 / Published: 22 October 2010

Abstract

Palladium-catalyzed Suzuki cross-coupling of 2-aryl-4-chloro-3-iodoquinolines with excess arylboronic acids (2.5 equiv.) in the presence of tricyclohexylphosphine afforded the 2,3,4-triarylquinolines in one-pot operation. The incipient 2,3-diaryl-4chloroquinolines were also prepared and transformed to the primary 4-amino-2,3diarylquinolines and 2,3-diarylquinolin- $4(1 \mathrm{H})$-ones.

Keywords: 2-aryl-4-chloro-3-iodoquinolines; Suzuki-Miyaura cross-coupling; 2,3-diaryl-4-chloroquinolines; 2,3,4-triarylquinolines

1. Introduction

The high reactivity of the aryl-iodo bond toward oxidative addition with palladium in Suzuki [1-4], Sonogashira [4,5], Stille [4] and Heck [4] cross-coupling reactions has been found to allow successive substitution of the halogen atoms ($\mathrm{I}>\mathrm{Br}>\mathrm{Cl} \gg \mathrm{F}$) in dihaloquinolines. The observed trend relates to the $\mathrm{Ar}-\mathrm{X}$ bond strength, which increases as follows: $\mathrm{I}<\mathrm{Br}<\mathrm{Cl}<\mathrm{F}$ ($D_{\mathrm{Ph}-\mathrm{X}}$ values 65, 81, 96 and 126 $\mathrm{Kcal} / \mathrm{mol}$, respectively) and makes the oxidative addition step increasingly difficult [6]. We have previously subjected a series of 2-aryl-4-chloro-3-iodoquinolines to Suzuki cross-coupling with phenylboronic acid (1.2-2.0 equiv.) using tetrakis(triphenylphosphine)palladium(0) $\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}\right)$ as catalyst and $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ in dimethyl formamide (DMF) under reflux to afford the 2,3-diaryl-4-
chloroquinolines in moderate yields [1]. Hitherto our investigation, the analogous 4-chloro-6(bromo/iodo)quinolines were subjected to successive replacement of the two halogen atoms via Suzuki cross-coupling to afford the $\mathrm{Csp}{ }^{2}-\mathrm{Csp}^{2}$ cross-coupled products $[2,3]$. The second arylboronic acid was in this case added to the reaction mixture after completion of the first step (tlc monitoring) without isolating the incipient 6 -substituted derivative. Despite the successes in sequential metal-catalyzed halogen substitution reactions [2-4], the development of versatile and efficient methods for the synthesis of polysubstituted quinolines from dihaloquinolines in a single operation remains a challenge in organic synthesis. We are interested in the synthesis of 3,4-disubstituted 2-arylquinoline derivatives as a prelude to derivatives with potential biological activity or photoelectronic properties and the 2 -aryl-4-chloro-3-iodoquinolines appeared suitable candidates for palladium-catalyzed Suzuki crosscoupling to afford such systems.

As we have previously communicated, Suzuki cross-coupling of the 2-aryl-4-chloro-3iodoquinolines with phenylboronic acid did not proceed beyond C-3 substitution after 48 hours [1]. The slow oxidative addition step using $\operatorname{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{4}$ as a precursor of palladium(0) complex is attributed to the inhibiting role of the extra PPh_{3} generated in the $2^{\text {nd }}$ equilibrium $\left\{\operatorname{SPd}(0)\left(\mathrm{PPh}_{3}\right)_{3} \rightleftharpoons \operatorname{SPd}(0)\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{PPh}_{3}\left(K_{2} /\left[\mathrm{PPh}_{3}\right] \ll 1\right) ; S=\right.$ solvent $\}$ to afford the reactive low ligated 14-electron species $\left(\operatorname{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{2}\right)$ [7]. The oxidative addition performed from palladium (0) complex $\left(\mathrm{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}^{-}\right)$generated by the reduction of dichlorobis(triphenylphosphine)palladium(II) $\left(\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right)$ is reported to be more than 30 times faster than that performed from $\operatorname{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{4}$ [7]. Likewise, alkylphosphine ligands are known to coordinate with palladium and increase its electron density than arylphosphines and, in turn, accelerate the oxidative addition and reductive elimination steps in the catalytic cycle [8,9]. Based on this postulate we decided to investigate the possibility for the direct one-pot synthesis of 2,3,4-triarylquinolines via palladium-catalyzed Suzuki-Miyaura crosscoupling of 2-aryl-4-chloro-3-iodoquinolines with arylboronic acids as models for $\mathrm{C}-\mathrm{C}$ bond formation.

2. Results and Discussion

We subjected the known 2-aryl-4-chloro-3-iodoquinolines 1 [1] to $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$-catalyzed Suzuki cross-coupling with arylboronic acid derivatives (2.5 equiv.) in the presence of tricyclohexylphosphine $\left(\mathrm{PCy}_{3}\right)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in dioxane-water (3:1, v/v) (Scheme 1). The reaction in the presence of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{PCy}_{3}$ catalyst mixture was complete within 18 hours without any trace of the starting material. We isolated in all cases by column chromatography a single product characterized using a combination of spectroscopic techniques(NMR, IR, MS) as the corresponding 2,3,4-triarylquinoline 3. In some cases, the 2,3-diaryl-4-chloroquinoline 2 was detected in the reaction mixture by thin layer chromatography, but could not be isolated by column chromatography. The 2,3-diarylquinolines substituted at the C-4 position with $\mathrm{H}, \mathrm{CH}_{3}, \mathrm{NH}_{2}, \mathrm{CO}_{2} \mathrm{H}$ or Ph have been found to serve as selective cyclooxygenase-1/-2 (COX-1 or COX-2) inhibitors [10]. 2-Arylquinolines bearing vinyl, alkynyl, halogen $(\mathrm{Cl}, \mathrm{Br})$ or phenyl substituent on the $\mathrm{C}-4$ position, on the other hand, were found to display high affinity ($3-5 \mathrm{nM}$) and significant selectivity (up to 83 -fold) for estrogen receptor β (ER β) [11]. Moreover, the analogous 2,4-diarylquinolines show intense blue emission upon UV excitation [12].

Scheme 1. Suzuki-Miyaura cross-coupling of 2-aryl-4-chloro-3-iodoquinolines.

Reagents (i) $\mathrm{ArB}(\mathrm{OH})_{2}$ (2.5 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{PCy}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, dioxane-water ($3: 1, \mathrm{v} / \mathrm{v}$); heat, 18 h
Crystals of quality suitable for X-ray diffraction were obtained for 3f and the molecular structure of these novel systems were further confirmed by X-ray diffraction. Compound $3 f$ crystallizes in the triclinic space group $P-1\left[a=10.2571(2), b=13.2887(2), \mathrm{c}=16.7681(3) \AA ; \alpha=103.289(1)^{\circ}\right.$, $\beta=99.454(1)^{\circ}, \gamma=96.939(1)^{\circ}$] with two independent molecules (\mathbf{A} and \mathbf{B}) and an ethanol molecule in the asymmetric unit (Fig. 1). One of the molecules (A) is hydrogen bonded to ethanol: $\mathrm{O}(1)-\mathrm{H}(1) 0.84$ \AA; $\mathrm{H}(1) \cdots \mathrm{N}(1) 2.11 \AA ; \mathrm{O}(1) \cdots \mathrm{N}(1) 2.919(2) \AA ;<\mathrm{O}(1) \mathrm{H}(1) \mathrm{N}(1) 161^{\circ}$. The 2-, 3- and 4 -aryl rings of both molecules in the unit are strongly deformed out of plane of the quinoline ring as evidenced by the large torsion angles (Table 1) [13]. The 2-aryl substituent of molecule (A) is however relatively less deformed $\left(\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(22)-\mathrm{C}(23)=42.09^{\circ}\right)$ due to the hydrogen bonded ethanol molecule. Crystal data and experimental details for compound $\mathbf{3 f}$ are shown in Table 2.

Figure 1. X-ray crystal structure of 2,3,4-tris(4-fluorophenyl)quinoline $3 f$ showing crystallographic numbering. For clarity, hydrogen atoms are not labelled.

Table 1. Selected torsion angles $\left({ }^{\circ}\right)$ for $\mathbf{3 f}$. For atom labelling see Figure 1.

Ring	Torsion angles/deg (molecule A)		Torsion angles/deg (molecule B)	
$2-\mathrm{Ar}$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	42.09°	$\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(49)-\mathrm{C}(50)$	60.22°
	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(22)-\mathrm{C}(27)$	45.80°	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(49)-\mathrm{C}(54)$	60.07°
$3-\mathrm{Ar}$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	68.03°	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(37)-\mathrm{C}(42)$	68.93°
	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{C}(15)$	67.27°	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(37)-\mathrm{C}(38)$	66.95°
$4-\mathrm{Ar}$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(17)$	68.08°	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(43)-\mathrm{C}(48)$	74.75°
	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(21)$	68.29°	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(43)-\mathrm{C}(44)$	71.34°

Table 2. Crystal data and structure refinement for compound $3 \mathbf{3}$.

Empirical formula	$\mathrm{C}_{56} \mathrm{H}_{38} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	868.88
Temperature	$173(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
Unit cell dimensions	$\mathrm{a}=10.2571(2) \AA \alpha=103.2890(10)^{\circ}$.
	$\mathrm{b}=13.2887(2) \AA \beta=99.4540(10)^{\circ}$.
	$\mathrm{c}=16.7681(3) \AA \gamma=96.9390(10)^{\circ}$.
Volume	$2164.00(7) \AA^{3}$
Z	2
Density (calculated)	$1.333 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.097 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	900
Crystal size	$0.44 \times 0.37 \times 0.37 \mathrm{~mm}{ }^{3}$
Theta range for data collection	1.27 to 27.00°.
Index ranges	$-13<=\mathrm{h}<=13,-16<=\mathrm{k}<=16,-21<=1<=21$
Reflections collected	40665
Independent reflections	$9440[\mathrm{R}(\mathrm{int})=0.0484]$
Completeness to theta $=27.00^{\circ}$	100.0%
Absorption correction	None
Max. and min. transmission	0.9650 and 0.9586
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F} 2$
Data / restraints / parameters	$9440 / 0 / 588$
Goodness-of-fit on F^{2}	1.055
Final R indices [I>2sigma(I) $]$	$\mathrm{R} 1=0.0424$, wR2 $=0.1057$
R indices (all data)	$\mathrm{R} 1=0.0640$, wR2 $=0.1158$
Largest diff. peak and hole	0.218 and $-0.379 \mathrm{e} . \AA^{-3}$

Since the 2-aryl-4-chloro-3-(4-fluorophenyl)quinolines 2e-h have not been described before and were in some cases only detected in the reaction mixtures, we decided to prepare these systems from 1. We followed a similar procedure previously employed for the synthesis of 2a-d [1] and subjected systems 1 to 4-fluorophenylboronic acid (1.2 equiv.) in the presence of $\operatorname{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{4}$ and $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ as a base in DMF. We isolated in all cases the corresponding 3-(4-fluorophenyl) derivatives $\mathbf{2 e} \mathbf{e} \mathbf{h}$ as sole products (Scheme 2). The presence of a fluorine atom in quinolones and quinoline derivatives is known to have a profound effect on their biological, chemical and physical properties [1,14,15]. With
this consideration in mind, we took advantage of the known ease of displacement of the 4-chloro atom on the quinoline ring by nucleophiles and subjected systems $\mathbf{2 e}-\mathbf{h}$ to aniline in dioxane under reflux (Scheme 2). We isolated the corresponding primary 4 -amino 2,3 -diarylquinolines 4 with potential antimalarial [16-18], anti-inflammatory [19], and antihypertensive activities [20]. The primary 4-amino-2-arylquinolines also represent a novel class of NR1/2B subtype selective N-methyl-D-aspartate (NMDA) receptor antagonists [21].

Scheme 2. Successive C-3 arylation and amination of $\mathbf{1}$.

Reagents (i) p-FC $\mathrm{F}_{6} \mathrm{~B}(\mathrm{OH})_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$, heat, 48 h ; (ii) $\mathrm{NH}_{2} \mathrm{Ph}$, dioxane, heat, 18 h
To further demonstrate the versatility of the 4-chloroquinoline derivatives in synthesis in the last part of this investigation, we decided to investigate the possibility of transforming systems $2 \mathbf{e}-\mathbf{f}$ to the NH-4-oxo derivatives. Whereas the NMe-4-oxo [22] or NPh-4-oxo [23] derivatives undergo Suzuki cross-coupling with arylboronic acids with ease to afford the corresponding N-substituted 2,3diarylquinolinones, under similar reaction conditions the NH-4-oxo precursors afford complex mixtures of products [22]. Although demethylation of 2,3-diaryl-4-methoxyquinolines with boron tribromide in dichloromethane afforded the 2,3-diarylquinolin- $4(1 \mathrm{H})$-ones, under these reaction conditions the 4-methoxy-2-(4-methoxyphenyl)-3-phenylquinoline led to a complex mixture of products lacking the methoxy signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum [1]. Consequently, in this investigation we subjected systems $2 \mathbf{e}-\mathrm{h}$ to acetic acid/water ($4: 1, \mathrm{v} / \mathrm{v}$) under reflux and we isolated the corresponding previously undescribed 2-aryl-3-(4-fluorophenyl)quinolin-4(1H)-ones 5a-d in high yield and purity (Scheme 3). The smooth hydrolysis of the 4-chloroquinolines to afford the NH-4-oxo derivatives without affecting the 4-methoxy group make this a convenient synthetic strategy for the construction of 2,3-diarylquinolin- $4(1 \mathrm{H})$-ones that are difficult to synthesize otherwise.

Scheme 3. Hydrolysis of 2 to NH-4-oxo derivatives 5.

2e-h

5a-d

Scheme 3. Cont.

Comp	4-R	\% Yield (5)
\mathbf{a}	H	70
\mathbf{b}	F	70
\mathbf{c}	Cl	55
\mathbf{d}	OMe	65

Reagents: (i) AcOH-Water (4:1, v/v), heat, 6 h

3. Experimental

3.1. General

Melting points were recorded on a Thermocouple digital melting point apparatus. IR spectra were recorded as powders using FTS 7000 Series Digilab Win-IR Pro ATR (attenuated total reflectance) spectrometer. For column chromatography, Merck Kieselgel $60(0.063-0.200 \mathrm{~mm})$ was used as stationary phase. NMR spectra were obtained using a Varian Mercury 300 MHz NMR spectrometer and the chemical shifts are measured relative to the solvent peaks. Low and high-resolution mass spectra were recorded at an ionization potential of 70 eV using a Micromass Autospec-TOF (double focusing high resolution) instrument. The synthesis and characterization of substrates $\mathbf{1}$ have been described before [1].

3.2. Typical procedure for the one-pot synthesis of 2,3,4-triarylquinolines 2

2-Aryl-4-chloro-3-iodoquinoline 1 (1 equiv.), arylboronic acid (2.5 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (5% of $\mathbf{1}$), $\mathrm{PCy}_{3}(10 \%$ of $\mathbf{1}), \mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.) and $3: 1$ dioxane-water ($c a .5 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1}$) were added to a twonecked flask equipped with a stirrer bar, rubber septum and a condenser. The mixture was flushed for 20 minutes with argon gas and a balloon filled with argon gas was connected to the top of the condenser. The mixture was heated with stirring at $80-90^{\circ} \mathrm{C}$ under argon atmosphere for 18 hours and then allowed to cool to room temperature. The cooled mixture was poured into ice-cold water and the product was taken-up into chloroform. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered and then evaporated under reduced pressure. The residue was purified by column chromatography to afford the 2,3,4-triarylquinoline 3 . The following products were prepared in this fashion:

2,3,4-Triphenylquinoline (3a). A mixture of $\mathbf{1 a}(0.50 \mathrm{~g}, 1.37 \mathrm{mmol})$, phenylboronic acid $(0.42 \mathrm{~g}, 3.42$ $\mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05 \mathrm{~g}, 0.07 \mathrm{mmol}), \mathrm{PCy}_{3}(0.04 \mathrm{~g}, 0.14 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.38 \mathrm{~g}, 2.74 \mathrm{mmol})$ in dioxane/water (20 mL) afforded (3a) as a solid ($0.29 \mathrm{~g}, 59 \%$), mp 197-198 ${ }^{\circ} \mathrm{C}$ (ethanol); $R_{f}(10 \%$ ethyl acetate/hexane) 0.26 ; $v_{\max }$ (neat) $1026,1074,1347,1441,1481,1549,2923 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.86-6.90 (m, 2H), 6.97-7.01 (m, 3H), 7.11-7.15 (m, 2H), 7.19-7.22 (m, 3H), $7.25-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dt}, J 1.5 \mathrm{and} 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J 0.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{dt}, J 1.5$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J 0.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 126.3$, $126.5,126.6,126.7,127.2,127.3,127.5,127.7,127.8,129.3,129.7,129.9,130.3,131.3,132.9,136.9$, 138.3, 141.1, 147.3, 147.6, 159.0; MS m/z (100, MH ${ }^{+}$) 358; HRMS (ES): MH^{+}, found 358.1585. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}^{+}$requires 358.1596.

2-(4-Fluorophenyl)-3,4-diphenylquinoline ($\mathbf{3 b}$). A mixture of $\mathbf{1 b}(0.50 \mathrm{~g}, 1.30 \mathrm{mmol})$, phenylboronic acid $(0.40 \mathrm{~g}, 3.26 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05 \mathrm{~g}, 0.07 \mathrm{mmol}), \mathrm{PCy}_{3}(0.04 \mathrm{~g}, 0.13 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.36 \mathrm{~g}, 2.61 \mathrm{mmol})$ in dioxane/water (20 mL) afforded ($\mathbf{3 b}$) as a solid $(0.27 \mathrm{~g}, 55 \%), \mathrm{mp} 181-183{ }^{\circ} \mathrm{C}$ (ethanol); $R_{f}\left(10 \%\right.$ ethyl acetate/hexane) 0.38 ; $v_{\max }$ (neat) $836,1158,1232,1345,1479,1509,1601$, $3052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.86-6.92(\mathrm{~m}, 4 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 2 \mathrm{H})$, $7.24-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{dd}, J 5.4$ and $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dt}, J 1.2$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J 1.5$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dt}, J 1.2$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 114.6 (d, ${ }^{2} J_{\text {CF }} 21.9 \mathrm{~Hz}$), 126.4, 126.6, 126.7 (2xC), 127.3, 127.5, 127.8, 129.5, 129.6, 130.2, 131.3, $131.8\left(\mathrm{~d},{ }^{3} J_{\text {CF }} 8.3 \mathrm{~Hz}\right), 132.8,136.8,137.2\left(\mathrm{~d},{ }^{4} J_{\text {CF }} 3.4 \mathrm{~Hz}\right), 138.2,147.3,147.8,157.8,162.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}\right.$ 245.9 Hz); MS m/z (100, MH^{+}) 376; HRMS (ES): MH^{+}, found 376.1491. $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{FN}^{+}$requires 376.1502.

2-(4-Chlorophenyl)-3,4-diphenylquinoline (3c). A mixture of $\mathbf{1 c}(0.30 \mathrm{~g}, 0.75 \mathrm{mmol})$, phenylboronic acid $(0.23 \mathrm{~g}, 1.88 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.03 \mathrm{~g}, 0.04 \mathrm{mmol}), \mathrm{PCy}_{3}(0.02 \mathrm{~g}, 0.08 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.21 \mathrm{~g}, 1.50 \mathrm{mmol})$ in dioxane/water $(11 \mathrm{~mL})$ afforded (3c) as a solid $(0.18 \mathrm{~g}, 61 \%), \mathrm{mp} 148-151{ }^{\circ} \mathrm{C}$ (ethanol); $R_{f}\left(10 \%\right.$ ethyl acetate-hexane) $0.46 ; v_{\max }$ (neat) 833, 1014, 1093, 1347, 1482, 1546, $2926 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.85-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 2 \mathrm{H})$, 7.32 (d, J $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.24-7.28$ (m, 3H), 7.32 (d, J $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (t, J $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, J 7.5 $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 126.5,126.6$, 126.7, 126.8, 127.4, 127.6, 127.8, 127.9, 129.5, 129.7, 130.2, 131.2, 131.3, 132.7, 133.8, 136.7, 138.0, 139.6, 147.3, 147.9, 157.6; MS m/z (100, MH ${ }^{+}$) 392; HRMS (ES): MH^{+}, found 392.1200. $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}^{35} \mathrm{Cl}^{+}$requires 392.1206.

2-(4-Methoxyphenyl)-3,4-diphenylquinoline (3d). A mixture of $\mathbf{1 d}(0.30 \mathrm{~g}, 0.77 \mathrm{mmol})$, phenylboronic acid ($0.24 \mathrm{~g}, 1.93 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.03 \mathrm{~g}, 0.04 \mathrm{mmol}), \mathrm{PCy}_{3}(0.02 \mathrm{~g}, 0.08 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.21 \mathrm{~g}, 1.55 \mathrm{mmol})$ in dioxane/water $(20 \mathrm{~mL})$ afforded (3d) as a solid $(0.17 \mathrm{~g}, 58 \%), \mathrm{mp} 177-179{ }^{\circ} \mathrm{C}$ (ethanol); $R_{f}\left(30 \%\right.$ ethyl acetate/hexane) $0.79 ; v_{\max }$ (neat) $831,1026,1248,1514,1607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.76(\mathrm{~s}, 3 \mathrm{H}), 6.73(\mathrm{~d}, J 9.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.03(\mathrm{~m}, 3 \mathrm{H})$, $7.10-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J 8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{t}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.2,113.1,126.2$, 126.3, 126.5, 126.6, 127.2, 127.4, 127.7, 129.2, 129.6, 130.3, 131.3 ($2 x$ C), 132.8, 133.6, 137.0, 138.6, 147.3, 147.6, 158.4, 159.2; MS m/z (100, MH^{+}) 388; HRMS (ES): MH^{+}, found 388.1711. $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}^{+}$ requires 388.1701 .

3,4-Bis(4-fluorophenyl)-2-phenylquinoline (3e). A mixture of 1a ($0.50 \mathrm{~g}, 1.37 \mathrm{mmol}$), 4fluorophenylboronic acid $(0.48 \mathrm{~g}, 3.42 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05 \mathrm{~g}, 0.07 \mathrm{mmol}), \mathrm{PCy} 3(0.04 \mathrm{~g}$, $0.14 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.38 \mathrm{~g}, 2.74 \mathrm{mmol})$ in dioxane/water (20 mL) afforded ($3 \mathbf{e}$) as a solid (0.39 g , 72%), mp 183-185 ${ }^{\circ} \mathrm{C}$ (ethanol); R_{f} (10% ethyl acetate/hexane) 0.27 ; $v_{\max }$ (neat) $839,1224,1487,1511$, $1605,3059 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.74(\mathrm{t}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.86(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dt}, J 1.2$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{td}, J 1.2$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dt}, J 1.5$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 114.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}} 21.4 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.4 \mathrm{~Hz}\right), 126.3,126.6,126.8,127.7,127.8$,
129.6, 129.8 (2 xC), 131.9 ($\mathrm{d},{ }^{3} J_{\mathrm{CF}} 8.3 \mathrm{~Hz}$), 132.1, $132.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.5 \mathrm{~Hz}\right.$), $132.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.3 \mathrm{~Hz}\right.$), 134.1 (d, ${ }^{4} J_{\text {CF }} 3.4 \mathrm{~Hz}$), $140.9,146.8,147.4,159.0,161.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 245.3 \mathrm{~Hz}\right), 162.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 245.9 \mathrm{~Hz}\right) ;$ MS m / z (100, MH^{+}) 394; HRMS (ES): MH^{+}, found 394.1389. $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}^{+}$requires 394.1407.

2,3,4-Tris(4-fluorophenyl)quinoline (3f). A mixture of $\mathbf{1 b}(0.20 \mathrm{~g}, 0.52 \mathrm{mmol})$, 4-fluorophenylboronic $\operatorname{acid}(0.18 \mathrm{~g}, 1.30 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.02 \mathrm{~g}, 0.03 \mathrm{mmol}), \mathrm{PCy}_{3}(0.01 \mathrm{~g}, 0.05 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.14 \mathrm{~g}, 1.04 \mathrm{mmol})$ in dioxane/water $(12 \mathrm{~mL})$ afforded (3f) as a solid $(0.153 \mathrm{~g}, 75 \%), \mathrm{mp} 158-163{ }^{\circ} \mathrm{C}$ (ethanol); R_{f} (10% ethyl acetate/hexane) 0.27 ; $v_{\text {max }}$ (neat) $833,1157,1219,1509,1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.75(\mathrm{t}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{t}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dt}, J 1.2$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J 1.2$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dt}, J 1.5$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J 8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $114.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.4 \mathrm{~Hz}, 2 \mathrm{xC}\right), 115.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.4 \mathrm{~Hz}\right), 126.3,126.6,126.9,129.7,129.8(2 \mathrm{xC}), 131.7$ (d, $\left.{ }^{3} J_{\mathrm{CF}} 8.3 \mathrm{~Hz}\right), 131.8,131.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.3 \mathrm{~Hz}\right), 132.0,132.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.5 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.4 \mathrm{~Hz}\right), 134.0$ $\left(\mathrm{d},{ }^{4} J_{\text {CF }} 3.5 \mathrm{~Hz}\right), 136.9\left(\mathrm{~d},{ }^{4} J_{\text {CF }} 3.4 \mathrm{~Hz}\right), 157.8,161.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 245.6 \mathrm{~Hz}\right), 162.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 246.2 \mathrm{~Hz}\right), 162.5$ (d, ${ }^{1} J_{\text {CF }} 246.4 \mathrm{~Hz}$); MS m/z (100, MH^{+}) 412; HRMS (ES): MH^{+}, found 412.1314. $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}^{+}$requires 412.1313.

2-(4-Chlorophenyl)-3,4-bis(4-fluorophenyl)quinoline ($\mathbf{3 g}$). A mixture of $\mathbf{1 c}(0.30 \mathrm{~g}, 0.75 \mathrm{mmol})$, 4fluorophenylboronic acid $(0.26 \mathrm{~g}, 1.88 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.03 \mathrm{~g}, 0.04 \mathrm{mmol}), \mathrm{PCy} 3(0.02 \mathrm{~g}$, $0.08 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.21 \mathrm{~g}, 1.50 \mathrm{mmol})$ in dioxane $/$ water $(12 \mathrm{~mL})$ afforded $(3 \mathrm{~g})$ as a solid $(0.20 \mathrm{~g}$, 62%), mp 183-185 ${ }^{\circ} \mathrm{C}$ (ethanol); R_{f} (10% ethyl acetate/hexane) 0.29 ; $v_{\max }$ (neat) 832, 1093, 1157, 1223 , $1509,1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.72-6.85(\mathrm{~m}, 4 \mathrm{H}), 6.97-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J 9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J 9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{dt}, J 1.8$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J 0.9$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 114.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.3 \mathrm{~Hz}\right), 115.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.7 \mathrm{~Hz}\right), 126.3$, 126.6, 127.1, 128.1, 129.7, 129.8, $131.2(2 x C), 131.8\left(\mathrm{~d},{ }^{3} J_{\text {CF }} 8.0 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d},{ }^{4} J_{\text {CF }} 3.4 \mathrm{~Hz}\right), 132.8(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CF}} 8.1 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.5 \mathrm{~Hz}\right), 134.0,139.3,147.1,147.4,157.9,161.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 245.9 \mathrm{~Hz}\right), 162.0$ (d, ${ }^{1} J_{\text {CF }} 245.9 \mathrm{~Hz}$); MS m/z (100, MH ${ }^{+}$) 428; HRMS (ES): MH^{+}, found 428.0999. $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}^{35} \mathrm{Cl}^{+}$ requires 428.1018 .

3,4-Bis(4-fluorophenyl)-2-(4-methoxyphenyl)quinoline (3h). A mixture of $\mathbf{1 d}(0.30 \mathrm{~g}, 0.76 \mathrm{mmol})$, 4fluorophenylboronic acid $(0.27 \mathrm{~g}, 1.89 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.03 \mathrm{~g}, 0.04 \mathrm{mmol}), \mathrm{PCy} 3(0.02 \mathrm{~g}$, $0.08 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.21 \mathrm{~g}, 1.52 \mathrm{mmol})$ in dioxane/water $(12 \mathrm{~mL})$ afforded $(3 \mathrm{~h})$ as a solid $(0.20 \mathrm{~g}$, 62%), mp 169-182 ${ }^{\circ} \mathrm{C}$ (ethanol); R_{f} (30\% ethyl acetate/hexane) $0.79 ; v_{\text {max }}$ (neat) $829,1222,1251,1510$, $1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.76(\mathrm{~s}, 3 \mathrm{H}), 6.76(\mathrm{dd}, J 1.5$ and $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.84(\mathrm{dd}, J$ 5.4 and $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (t, J $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (dd, J 5.4 and $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (d, J $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.44(\mathrm{dt}, J 1.5$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H})$, (td, $J 0.9$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dt}, J 1.8$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J$ 0.6 and $7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.2,113.3,114.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.4 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}\right.$ $21.4 \mathrm{~Hz}), 126.3,126.4,126.6,129.5,129.7,131.3,131.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.3 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.4 \mathrm{~Hz}\right), 132.8$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CF}} 8.0 \mathrm{~Hz}\right), 133.3,134.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 3.7 \mathrm{~Hz}\right), 146.7,147.4,158.4,159.2(2 \mathrm{xC}), 161.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 245.6\right.$ Hz), $161.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 246.2 \mathrm{~Hz}\right)$; MS $\mathrm{m} / \mathrm{z}\left(100, \mathrm{MH}^{+}\right) 424 ; \mathrm{HRMS}(\mathrm{ES}): \mathrm{MH}^{+}$, found 424.1499 . $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}^{+}$requires 424.1513.

3.3. Synthesis of 2-aryl-4-chloro-3-(4-fluorophenyl)quinolines 2e-h. typical procedure

A mixture of 2-aryl-4-chloro-3-iodoquinoline 1 (1 equiv.), arylboronic acid (1.2 equiv.) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \%$ of $\mathbf{1})$ in DMF ($5 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1}$) in a two-necked flask equipped with a stirrer bar, rubber septum and a condenser was flushed with nitrogen gas. After 10 minutes $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ ($2 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1}$) was added and the mixture was flushed for additional 10 minutes with nitrogen gas. A balloon filled with nitrogen gas was connected to the top of the condenser and the mixture was heated with stirring at $80-90^{\circ} \mathrm{C}$ for 48 hours. The mixture was allowed to cool to room temperature and then quenched with ice-cold water. The product was extracted with chloroform and the combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered and then evaporated under reduced pressure. The residue was purified by column chromatography to afford the 2-aryl-4-chloro-3-(4-fluorophenyl)quinoline $\mathbf{2}$. The following products were prepared:

4-Chloro-3-(4-fluorophenyl)-2-phenylquinoline (2e). A mixture of 1a ($0.55 \mathrm{~g}, 1.50 \mathrm{mmol}$), 4fluorophenylboronic acid $(0.25 \mathrm{~g}, 1.81 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.09 \mathrm{~g}, 0.08 \mathrm{mmol})$, and $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ in DMF (8 mL) afforded (2e) as a solid ($0.30 \mathrm{~g}, 60 \%$), mp $147-149{ }^{\circ} \mathrm{C}$ (ethanol); $R_{f}(10 \%$ ethyl acetate/hexane) $0.42 ; v_{\max }$ (neat) $839,1157,12111,1337,1337,1475,1507,1565 ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.01(\mathrm{t}, \mathrm{J} 9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.67$ (dt, J 1.5 and $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.80(\mathrm{dt}, J 1.5$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J 2.4$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (dt, J 0.3 and $8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 115.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.7 \mathrm{~Hz}\right), 124.7,125.4,127.8,127.9$, 128.1, 129.7, 130.5, 132.0, 132.5 (d, ${ }^{3} J_{\text {CF }} 8.3 \mathrm{~Hz}$), 132.9 (d, ${ }^{4} J_{\text {CF }} 3.5 \mathrm{~Hz}$), 140.1, 142.1, 147.7, 159.2, $162.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 246.5 \mathrm{~Hz}\right.$); MS m/z (100, MH^{+}) 334; HRMS (ES): MH^{+}, found 334.0817. $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FN}^{35} \mathrm{Cl}^{+}$ requires 334.0799 .

4-Chloro-2,3-bis(4-fluorophenyl)quinoline (2f). A mixture of $\mathbf{1 b}(0.50 \mathrm{~g}, 1.30 \mathrm{mmol})$, 4fluorophenylboronic acid $(0.22 \mathrm{~g}, 1.56 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.08 \mathrm{~g}, 0.07 \mathrm{mmol})$, and $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.6 \mathrm{~mL})$ in DMF (7 mL) afforded (2 f) as a solid ($0.25 \mathrm{~g}, 55 \%$), mp 183-185 ${ }^{\circ} \mathrm{C}$ (ethanol); $R_{f}(10 \%$ ethyl acetate/hexane) 0.42 ; $v_{\max }$ (neat) $831,1158,1219,1337,1474,1509,1597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 6.92 (t, J $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.04(\mathrm{t}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (dd, J 5.4 and $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (dd, $J 5.4$ and $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (dt, $J 1.2$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (dt, $J 1.2$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.19 (dddd, $J 0.6,1.2$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H})$, (dddd, $J 0.6,1.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 114.9(\mathrm{~d}$, $\left.{ }^{2} J_{\text {CF }} 21.4 \mathrm{~Hz}\right), 115.3\left(\mathrm{~d},{ }^{2} J_{\text {CF }} 21.6 \mathrm{~Hz}\right), 124.7,125.4,127.9,129.8,130.6,131.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.3 \mathrm{~Hz}\right), 131.8$, $132.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.3 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.4 \mathrm{~Hz}\right), 136.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.4 \mathrm{~Hz}\right), 142.3,147.6,158.0,162.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}\right.$ 246.8 Hz), $162.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 247.0 \mathrm{~Hz}\right.$); MS m/z (100, MH^{+}) 352; HRMS (ES): MH^{+}, found 352.0709 . $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{~N}^{35} \mathrm{Cl}^{+}$requires 352.0705 .

4-Chloro-2-(4-chlorophenyl)-3-(4-fluorophenyl)quinoline (2g). A mixture of $\mathbf{1 c}(0.50 \mathrm{~g}, 1.25 \mathrm{mmol})$, 4-fluorophenylboronic acid ($0.21 \mathrm{~g}, 1.50 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.07 \mathrm{~g}, 0.07 \mathrm{mmol})$, and $2 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.5 \mathrm{~mL})$ in DMF (6.5 mL) afforded (2 g) as a solid ($0.28 \mathrm{~g}, 61 \%$), mp $168-171^{\circ} \mathrm{C}$ (ethanol); $R_{f}(10 \%$ ethyl acetate-hexane) $0.51 ; v_{\max }$ (neat) $827,1092,1341,1474,1509 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.04(\mathrm{t}, J 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.69(\mathrm{dt}, J 1.2$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dt}, J 1.2$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $J 0.6$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.31 (td, $J 0.9$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 115.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.6 \mathrm{~Hz}\right), 124.7,125.5,128.0,128.1,129.9,130.6,131.1,131.8,132.4,\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}\right.$
$8.3 \mathrm{~Hz}), 132.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.4 \mathrm{~Hz}\right), 134.4,138.6,142.3,147.7,157.8,162.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 246.45 \mathrm{~Hz}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (100, MH^{+}) 368 ; HRMS (ES): MH^{+}, found 368.0395. $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{FN}^{35} \mathrm{Cl}_{2}^{+}$requires 368.0409.

4-Chloro-3-(4-fluorophenyl)-2-(4-methoxyphenyl)quinoline (2h). A mixture of $\mathbf{1 d}(0.50 \mathrm{~g}, 1.26 \mathrm{mmol})$, 4-fluorophenylboronic acid ($0.21 \mathrm{~g}, 1.52 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.07 \mathrm{~g}, 0.06 \mathrm{mmol})$, and $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.5 \mathrm{~mL})$ in DMF (7 mL) afforded ($\mathbf{2 h}$) as a solid ($0.36 \mathrm{~g}, 79 \%$), mp $155-157{ }^{\circ} \mathrm{C}$ (ethanol); $R_{f}(10 \%$ ethyl acetate/hexane) $0.23 ; v_{\max }$ (neat) $828,1032,1175,1245,1337,1513,1607,2835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.76(\mathrm{dd}, J 2.1$ and $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.21$ (m, 2H), 7.28 (d, J 2.1 and $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 (dt, J 1.2 and $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (dt, J 1.2 and $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.19(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J 0.9$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.2,113.3$, $115.2\left(\mathrm{~d},{ }^{2} J_{\text {CF }} 21.4 \mathrm{~Hz}\right), 124.6,125.2,127.5,129.6,131.2,131.8,132.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.3 \mathrm{~Hz}\right), 133.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}\right.$ $3.4 \mathrm{~Hz}), 142.0,147.7,158.7,159.5,159.5,162.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 246.2 \mathrm{~Hz}\right)$; MS $m / \mathrm{z}\left(100, \mathrm{MH}^{+}\right) 364$; HRMS (ES): MH^{+}, found 364.0905. $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FNO}^{35} \mathrm{Cl}^{+}$requires 364.0904 .

3.4. Reaction of $2 e-h$ with aniline. typical procedure

A mixture of 2 (1 equiv.) and aniline (2.5 equiv.) was heated under reflux for 18 hours. The cooled mixture was quenched with ice-cold water and then extracted with chloroform. The combined organic phase was dried over MgSO_{4}, filtered and then evaporated under reduced pressure. The residue was purified by column chromatography to afford (4).

3-(4-Fluorophenyl)-2-phenyl-4-(phenylamino)quinoline (4a). A mixture of $\mathbf{2 e}(0.08 \mathrm{~g}, 0.24 \mathrm{mmol})$ and aniline ($0.06 \mathrm{~g}, 0.60 \mathrm{mmmol}$) afforded (4a) as a solid ($0.05 \mathrm{~g}, 53 \%$), mp $189-192{ }^{\circ} \mathrm{C}$ (ethanol); R_{f} (30% ethyl acetate/hexane) $0.64 ; v_{\max }$ (neat) $744,833,1213,1234,1372,1399,1490,1573,3393 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J 8.7 \mathrm{~Hz}, 3 \mathrm{H})$, $7.06-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dt}, J 1.5$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dt}, J$ 1.5 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.77(\mathrm{dd}, J 0.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J 0.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 116.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.3 \mathrm{~Hz}\right), 118.3,121.8,121.9,124.7,125.2,125.6,127.7,127.8,129.3$, $129.6,129.7,130.1,131.8\left(\mathrm{~d},{ }^{4} J_{\text {CF }} 3.8 \mathrm{~Hz}\right.$), 132.4 (d, ${ }^{3} J_{\text {CF }} 8.0 \mathrm{~Hz}$), 140.9, 145.0, 145.1, 148.6, 159.5, $162.2\left(\mathrm{~d},{ }^{1} J_{\text {CF }} 246.5 \mathrm{~Hz}\right.$); MS m/z (100, MH^{+}) 391; HRMS (ES): MH^{+}, found 391.1611. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{FN}_{2}{ }^{+}$ requires 391.1617 .

2,3-Bis(4-fluorophenyl)-4-(phenylamino)quinoline (4b). A mixture of $2 \mathbf{2 f}(0.05 \mathrm{~g}, 0.14 \mathrm{mmol}$) and aniline ($0.03 \mathrm{~g}, 0.35 \mathrm{mmol}$) afforded (4b) as a solid ($0.03 \mathrm{~g}, 52 \%$), mp $178-181^{\circ} \mathrm{C}$ (ethanol); R_{f} (30% ethyl acetate/hexane) $0.70 ; v_{\max }$ (neat) $748,758,834,946,1214,1232,1491,1509,1575,1599$, $3391 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.94-7.02 (m, 3H), 7.06-7.12 (m, 2H), 7.20 (t, J 7.8 Hz, 2H), 7.27-7.33 (m, 2H), 7.34 (dt, J 1.2 and $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (dt, J 1.5 and $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76 (dd, $J 0.6$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (dd, $J 0.6$ and 8.7 Hz , $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 114.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.4 \mathrm{~Hz}\right), 116.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.4 \mathrm{~Hz}\right), 118.3,121.7$, $122.0,124.4,125.2,125.6,129.3,129.7,130.0,131.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.7 \mathrm{~Hz}\right), 132.3(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CF}} 8.0 \mathrm{~Hz}\right), 136.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.2 \mathrm{~Hz}\right), 145.0,145.2,148.5,158.3,162.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 247.0 \mathrm{~Hz}\right), 162.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}\right.$ $246.2 \mathrm{~Hz})$; MS m/z (100, MH^{+}) 409; HRMS (ES): MH^{+}, found 409.1523. $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{2}{ }^{+}$requires 409.1516.

2-(4-Chlorophenyl)-3-(4-fluorophenyl)-4-(phenylamino)quinoline (4c). A mixture of $\mathbf{2 g}(0.10 \mathrm{~g}, 0.27$ $\mathrm{mmol})$ and aniline $(0.06 \mathrm{~g}, 0.66 \mathrm{mmol})$ afforded (4 c) as solid ($0.08 \mathrm{~g}, 69 \%$), mp $200-203{ }^{\circ} \mathrm{C}$ (ethanol); R_{f} (3:7, ethyl acetate/hexane) $0.74 ; v_{\max }$ (neat) $747,762,831,1091,1218,1400,1498,1569$, $3391 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J 9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J 8.4 \mathrm{~Hz}$, $3 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.36(\mathrm{dt}, J 1.5$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dt}, J 1.5$ and 7.7 Hz , $1 \mathrm{H}), 7.76(\mathrm{dd}, J 0.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 116.3(\mathrm{~d}$, ${ }^{2} J_{\text {CF }} 21.3 \mathrm{~Hz}$), $118.5,121.6,122.1,124.3,125.2,125.7,128.0,129.3,129.9,131.0,131.4\left(\mathrm{~d},{ }^{4} J_{\text {CF }} 3.8\right.$ Hz), 132.4 (d, ${ }^{3} J_{\text {CF }} 8.0 \mathrm{~Hz}$), 133.9, 139.1, 144.8 (2 xC), 145.4, 148.4, 158.1, 162.2 (d, ${ }^{1} J_{\text {CF }} 247.2 \mathrm{~Hz}$); $\mathrm{m} / \mathrm{z}\left(100, \mathrm{MH}^{+}\right) 425$; HRMS (ES): MH^{+}, found 425. 1313. $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{FN}_{2}{ }^{35} \mathrm{Cl}^{+}$requires 425. 1315.

3-(4-Fluorophenyl)-2-(4-methoxyphenyl)-4-(phenylamino)quinoline (4d). A mixture of 2 h (0.10 g , $0.28 \mathrm{mmol})$ and aniline $(0,07 \mathrm{~g}, 0.70 \mathrm{mmol})$ afforded (4 d) as a solid $(0.07 \mathrm{~g}, 61 \%), \mathrm{mp} 180-182{ }^{\circ} \mathrm{C}$ (ethanol); $R_{f}\left(30 \%\right.$ ethyl acetate/hexane) $0.57 ; v_{\max }$ (neat) 767, 834, 1026, 1214, 1243, 1399, 1492, $1508,1573,3388 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.77(\mathrm{~s}, 3 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.73-6.77(\mathrm{~m}, 4 \mathrm{H})$, $6.93-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J 8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dt}, J 1.2$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.65(\mathrm{dt}, J 1.5$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J 0.6$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J 0.6$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.2,113.2,116.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.4 \mathrm{~Hz}\right), 118.1,121.6,121.7$, 124.7, 125.2, 125.4, 129.2, 129.5, 130.0, 131.1, $132.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.4 \mathrm{~Hz}\right.$), 132.3 (d, ${ }^{3} J_{\mathrm{CF}} 8.0 \mathrm{~Hz}$), 133.3, $144.9,145.2,148.5,159.0,159.2,162.2$ (d, ${ }^{1} J_{\text {CF }} 246.2 \mathrm{~Hz}$); MS m/z (100, MH ${ }^{+}$) 421; HRMS (ES): MH^{+}, found 421.1722. $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{FO}^{+}$requires 421.1716.

3.5. Hydrolysis of 4 with acetic acid: typical procedure

A suspension of 2 (1 equiv.) in acetic acid-water ($5: 1, \mathrm{v} / \mathrm{v}$) was refluxed for 6 hours. The mixture was quenched with ice-cold water and the precipitate was filtered and recrystallized to afford 5 .

3-(4-Fluorophenyl)-2-phenylquinolin-4(1H)-one (5a). A suspension of $\mathbf{2 e}$ ($0.06 \mathrm{~g}, 0.18 \mathrm{mmol}$) in 5:1 acetic acid-water (10 mL) afforded (5a) as a solid $(0.04 \mathrm{~g}, 70 \%), \mathrm{mp} 340-342{ }^{\circ} \mathrm{C}$ (ethanol); $v_{\text {max }}$ (neat) 1213, 1352, 1495, 1251, 1552, 1624, $3095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) 6.78(\mathrm{t}, J 9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{dd}, J 6.0$ and $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 5 \mathrm{H}), 7.26(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (d, J $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.21(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 11.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$, DMSOd $\left._{6}\right) 114.2(\mathrm{~d}$, $\left.{ }^{2} J_{\text {CF }} 21.1 \mathrm{~Hz}\right), 118.5,119.8,123.2,125.0,125.7,128.1,129.0,129.6,131.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.4 \mathrm{~Hz}\right), 131.6$, $133.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.1 \mathrm{~Hz}\right), 135.4,139.9,148.6,161.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 242.8 \mathrm{~Hz}\right), 176.4$; MS m/z (100, MH ${ }^{+}$) 316; HRMS (ES): MH^{+}, found 316.1138. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FNO}^{+}$requires 316.1125 .

2,3-Bis(4-fluorophenyl)quinolin-4(1H)-one (5b). A suspension of $2 \mathbf{f}(0.06 \mathrm{~g}, 0.171 \mathrm{mmol})$ in acetic acid-water (10 mL) afforded $5 \mathbf{b}$ as a solid ($0.04 \mathrm{~g}, 70 \%$), mp $347-349^{\circ} \mathrm{C}$ (ethanol); $v_{\max }$ (neat) 829 , 1159, 1221, 1351, 1351, 1500, 1521, 1604, 1625, $3065 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) 7.01$ (t, J $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.041-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J 9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~d}, J 3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $8.15(\mathrm{~d}, J 9.0 \mathrm{~Hz}, 1 \mathrm{H}),, 11.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 114.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 20.8 \mathrm{~Hz}\right), 115.7$ $\left(\mathrm{d},{ }^{2} J_{\text {CF }} 21.6 \mathrm{~Hz}\right), 118.9,120.0,123.8,125.1,125.8,131.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.2 \mathrm{~Hz}\right), 132.3\left(\mathrm{~d},{ }^{4} J_{\text {CF }} 3.1 \mathrm{~Hz}\right.$), $132.3,132.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.6 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.0 \mathrm{~Hz}\right), 140.1,148.2,161.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 241.4 \mathrm{~Hz}\right), 162.7(\mathrm{~d}$,
${ }^{1} J_{\text {CF }} 245.0 \mathrm{~Hz}$), 175.8; MS m/z (100, MH^{+}) 334; HRMS (ES): MH^{+}, found 334.1046. $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{NO}^{+}$ requires 334.1043 .

2-(4-Chlorophenyl)-3-(4-fluorophenyl)quinolin-4(1H)-one (5c). A suspension of 2 g ($0.06 \mathrm{~g}, 0.172$ $\mathrm{mmol})$ in acetic acid-water (10 mL) afforded 5 c as a solid ($0.03 \mathrm{~g}, 55 \%$), mp $309-312{ }^{\circ} \mathrm{C}$ (ethanol); $v_{\max }$ (neat) $822,1091,1210,1350,1491,1519,1551,1600,1624,3089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}(300 \mathrm{MHz}$, DMSO-d ${ }_{6}$) 6.81 (t, J $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.02 (dd, J 6.0 and $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (d, J $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, J 9.0 $\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 11.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 114.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 21.1 \mathrm{~Hz}\right), 118.3,119.9,123.3,125.0,125.8,128.3,131.1$, $131.7,131.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.2 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.0 \mathrm{~Hz}\right), 133.9,134.8,139.8,147.2,161.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 243.1\right.$ Hz), 176.5; MS m/z (100, MH ${ }^{+}$) 350; HRMS (ES): MH^{+}, found $350.0748 . \mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{NO}^{35} \mathrm{Cl}^{+}$requires 350.0748 .

3-(4-Fluorophenyl)-2-(4-methoxyphenyl)quinolin-4(1H)-one (5d). A suspension of $\mathbf{2 h}(0.10 \mathrm{~g}, \mathrm{mmol})$ in acetic acid (5 mL) afforded ($5 \mathbf{d}$) as a solid ($0.05 \mathrm{~g}, 65 \%$), mp $375-377{ }^{\circ} \mathrm{C}$ (ethanol); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta_{\mathrm{H}}$ (300 MHz, DMSO-d d_{6}) 3.75 (s, 3H), 6.90 (d, J $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.98-7.11 (m, 4H), 7.23 (d, J 9.0 Hz, 2H), $7.34(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(1 \mathrm{H}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 11.78$ (br s, 1 H); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$, DMSO- d_{6}) 55.6, 113.9, 114.4 (d, ${ }^{2} J_{\mathrm{CF}} 21.1 \mathrm{~Hz}$), 118.8, 119.8, 123.5, $125.0,125.7,127.6,131.4,131.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3.4 \mathrm{~Hz}\right), 132.0,133.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 8.1 \mathrm{~Hz}\right), 140.1,148.8,161.2(\mathrm{~d}$, ${ }^{1} J_{\mathrm{CF}} 242.8 \mathrm{~Hz}$), 161.3, 175.3; MS m/z (100, MH ${ }^{+}$) 346; HRMS (ES): MH^{+}, found 346.1246. $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FNO}_{2}{ }^{+}$requires 346.1243.

4. Crystal Structure Solution and Refinement

X-ray quality crystals of the title compound $3 f$ were obtained by slow crystallization from ethanol solution. Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with graphite monochromated Mo K_{α} radiation ($50 \mathrm{kV}, 30 \mathrm{~mA}$) using the Bruker APEX 2 [30] data collection software. The collection method involved ω-scans of width 0.5° and 512×512 bit data frames. Data reduction was carried out using the program Bruker SAINT+ [31]. The crystal structure was solved by direct methods using Bruker SHELXTL [32]. Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F^{2} using SHELXTL. Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms. Diagrams and publication material were generated using SHELXTL, PLATON [33] and ORTEP-3 [34].

5. Conclusions

Overall, the results described in this investigation present another example showing the potential of 2-aryl-4-chloroquinolines in the synthesis of novel 2,3,4-trisubstituted quinolines and the 2,3-diarylquinolin- $4(1 \mathrm{H})$-ones with potential to serve as molecular organic materials in nanomaterials or as selective cyclooxygenase-1/-2 (COX-1/-2) inhibitors. Polyarylquinoline-based compounds constitute an important component in optoelectronic materials [24-26]. This moiety constitutes a π-conjugated bridge in nonlinear optical polymers [27] and also serves as electron-acceptor unit in carbazole-
quinoline and phenothiazine-quinoline copolymers and oligomers found to exhibit intramolecular charge transfer [28]. The 2,3,4-triarylquinoline derivatives prepared in this investigation can also serve as substrates for metalation with iridium, for example, to form cyclometalated iridium complexes with potential application in organic light-emitting diodes (OLEDs) [25,26] or novel red-emitting electrophosphorescent devices [29]. Studies are currently underway in our laboratory to investigate the biological and photophysical properties of the polysubstuituted quinolones and their quinoline derivatives.

Acknowledgements

The authors thank M.A. Fernandes and M. Stander of the University of the Witwatersrand and University of Stellenbosch for X-ray and mass spectral data, respectively. Financial support from the University of South Africa and the National Research Foundation (NRF) in South Africa is gratefully acknowledged.

References and Notes

1. Mphahlele, M.J.; Mtshemla, V. 2-Aryl-4-chloro-3-iodoquinolines as substrates for the synthesis of 2,3-diaryl-4-methoxyquinolines via palladium-catalyzed Suzuki-Miyaura cross-coupling with phenylboronic acid. J. Chem. Res. 2008, 437-440.
2. Tsvetkov, A.V.; Latyshev, G.V.; Lukashev, N.V.; Beletskaya, I.P. The successive substitution of halogens in 4-chloro-6-iodoquinoline by aryl groups in cross-coupling reactions with arylboronic acids. Tetrahedron Lett. 2002, 43, 7270.
3. Beletskaya, I.P.; Tsvetkov, A.V.; Latyshev, G.V.; Lukashev, N.V. Successive replacement of halogen atoms in 4,6-dihaloquinolines in cross-coupling reactions with arylboronic acids catalyzed by palladium and nickel complexes. Russ. J. Org. Chem. 2003, 39, 1660-1667.
4. Beletskaya, I.P.; Latyshev, A.V.; Tsvetkov, A.V.; Lukashev, N.V. The chemoselective alkynylation of dihaloquinolines by the Sonogashira-Hagihara reaction. Russ. Chem. Bull. 2004, 53, 189-193.
5. Reddy, E.A.; Islam, A.; Mukkanti, K.; Bandameedi, V.; Bhowmik, D.R.; Pal, M. Regioselective alkynylation followed by Suzuki coupling of 2,4-dichloroquinoline: synthesis of 2-alkynyl-4arylquinolines. Beil. J. Org. Chem. 2009, 5, 1-6.
6. Grushin, V.V.; Alper, H. Transformations of chloroarenes, catalyzed by transition-metal complexes. Chem. Rev. 1994, 94, 1047-1062.
7. Amatore, C.; Jutand, A. Mechanistic and kinetic studies of palladium catalytic systems. J. Organomet. Chem. 1999, 576, 254-278.
8. Haman, B.C.; Hartwig, J.F. Sterically hindered chelating alkyl phosphines provide large rate accelerations in palladium-catalyzed amination of aryl iodides, bromides, and chlorides, and the first amination of aryl tosylates. J. Am. Chem. Soc. 1998, 120, 7369-7370.
9. Itoh, T. Mase, T. Direct synthesis of hetero-biaryl compounds containing an unprotected NH_{2} group via Suzuki-Miyaura reaction. Tetrahedron Lett. 2005, 46, 3573-3577.
10. Ghodsi, R.; Zarghi, A.; Daraei, B.; Hedayati, M. Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. 2010, 18, 1029-1033.
11. Vu, A.T.; Cohn, S.T.; Manas, E.S.; Harris, W.A.; Mewshaw, R.E. ER β ligands. Part 4: Synthesis and structure-activity relationships of a series of 2-phenylquinoline derivatives. Bioorg. Med. Chem. Lett. 2005, 15, 4520-4525.
12. Rotzoll, S.; Willy, B.; Schönhaber, J.; Rominger, F.; Müller, T.J.J. Regiospecific threecomponent access to fluorescent 2,4-disubstituted quinolines via one-pot coupling-addition-cyclocondensation-sulfur extrusion sequence. Eur. J. Org. Chem. 2010, 3516-3524.
13. CCDC783993 contains the cif file and the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
14. Li, L.; Wuang, H.K.; Kou, S.C.; Lednicer, D.; Lin, C.M.; Hamel, E.; Lee, K.H. Antitumor agents. 150. $2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 5,6,7$-substituted 2-phenyl-4-quinolones and related compounds: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem. 1994, 37, 1126-1135.
15. Hajeri, M.; Peiller, E.; Beney, C.; Deka, D.; Lawson, M.A.; Dumontet, C.; Boumendjel, A. Antimitotic activity of 5-hydroxy-7-methoxy-2-phenyl-4-quinolones. J. Med. Chem. 2004, 47, 4964-4970.
16. Raynes, K.J.; Stocks, P.A.; O’Neill, P.M.; Park, B.K.; Ward, S.A. New 4-aminoquinoline Mannich base antimalarials. 1. Effect of an alkyl substituent in the 5'-position of the 4^{\prime} hydroxyanilino side chain. J. Med. Chem. 1999, 42, 2747-2751.
17. Solomon, R.V.; Puri, S.K.; Srivastava, K.; Katti, S.B. Design and synthesis of new antimalarial agents from 4-aminoquinoline. Bioorg. Med. Chem. 2005, 13, 2157-2165.
18. O’Neill, P.M.; Ward, S.A.; Berry, N.G.; Jeyadevan, J.P.; Biagini, G.A.; Asadollaly, E.; Park, B.K.; Bray, P.G. A medicinal chemistry perspective on 4 -aminoquinoline antimalarial drugs. Curr. Top. Med. Chem. 2006, 6, 479-507.
19. Green, N.; Hu, Y.; Janz, K.; Li, H-Q.; Kaila, N.; Guler, S.; Thomason, J.; Joseph-McCarthy, D.; Tam, S.Y.; Hotchandani, R.; Wu, J.; Huang, A.; Wang, Q.; Leung, L.; Pelker, J.; Marusic, S.; Hsu, S.; Telliez, J-B.; Hall, J.P.; Cuozzo, J.W.; Lin, L-L. Inhibitors of tumor progression loci-2 (Tpl2) kinase and tumor necrosis factor α (TNF- α) production: Selectivity and in vivo antiinflammatory activity of novel 8 -substituted-4-anilino-6-aminoquinoline-3-carbonitriles. J. Med. Chem. 2007, 50, 4728-4745.
20. Wright, G.C.; Watson, E.J.; Ebetino, F.F.; Lougheed, G.; Stevenson, B.F.; Winterstein, A.; Bickerton., R.K.; Halliday, R.P.; Pals, D.T. Synthesis and hypotensive properties of new 4aminoquinolines. J. Med. Chem. 1971, 14, 1060-1066.
21. Pinard, E.; Alanine, A.; Bourson, A.; Büttelmann, B.; Heitz, M-P.; Mutel, V.; Gill, R.; Trube, G.; Wyler, R. 4-Aminoquinolines as a novel class of NR1/2B subtype selective NMDA receptor antagonists. Bioorg. Med. Chem. Lett. 2002, 12, 2615-2619.
22. Mphahlele, M.J.; Nwamadi, M.S.; Mabeta, P. Synthesis and further studies of chemical transformation of the 2-aryl-3-halogenoquinolin-4(1H)-one derivatives. J. Heterocyclic Chem. 2006, 43, 255-260.
23. Zhao, T.; Xu, B. Palladium-catalyzed tandem amination reaction for the synthesis of 4quinolones. Org. Lett. 2010, 12, 212-215.
24. Wu, F-I.; Su, H-J.; Shu, C-F.; Luo, L.; Diau, W-G.; Cheng, C-H.; Duan, J-P.; Lee, G-H. Tuning the emission and morphology of cyclometalated iridium complexes and their applications to organic light-emitting diodes. J. Mater. Chem. 2005, 15, 1035-1042.
25. Chen, L.; You, H.; Yang, C.; Zhang, X.; Qin, J.; Ma, D. Tuning the saturated red emission: synthesis, electrochemistry and photophysics of 2-arylquinoline based iridium(III) complexes and their application in OLEDs. J. Mater. Chem. 2006, 16, 3332-3339.
26. Kimyonok, A.; Wang, X-Y.; Weck, M. Electroluminescent poly(quinoline)s and metalloquinolates. J. Macromol. Sci. Part C: Polym. Rev. 2006, 46, 47-77.
27. Jenekhe, S.A.; Lu, L.; Alam, M.M. New conjugated polymers with donor-acceptor architectures: synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules 2001, 34, 7315-7324.
28. Kim, M.H.; Jin, J-I.; Lee, C.J.; Kim, N.; Park, K.H. Synthesis and characterization of nonlinear optical polymers having quinoline-based chromophores. Bull. Korean Chem. Soc. 2002, 23, 964-970.
29. Seo, J.H.; Kim, K.K.; Kim, Y.K. New red electrophosphorescent organic light-emitting devices based on $\operatorname{Ir}($ III $)$ complex of 2,3,4-triphenylquinoline. Mol. Cryst. Liq. Cryst. 2008, 491, 194-202.
30. Bruker APEX2. Version 2009.1-0. Bruker AXS Inc.: Madison, WI, USA, 2005A.
31. Bruker SAINT+. Version 7.60A. (includes XPREP and SADABS) Bruker AXS Inc.: Madison, WI, USA, 2005B.
32. Bruker SHELXTL. Version 5.1. (includes XS, XL, XP, XSHELL) Bruker AXS Inc.: Madison, WI, USA, 1999.
33. Farrugia, L.J. XRDIFF: simulation of x-ray diffraction patterns. J. Appl. Cryst. 1997, 30, 565-566.
34. Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7-13.

Sample Availability: Samples of the compounds are available from the authors.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

