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Abstract: In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA) 
and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide 
dosage, reaction time and initial pH value were investigated in batch experiments and a 
plausible mechanism was proposed. The results showed that LA decarboxylation over 
cupric oxides at around 300 °C under acidic conditions produced the highest yield of 
butanone (67.5%). In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, 
XPS and H2-TPR techniques was applied to examine their molecular surfaces and their 
effects on the reaction process. 
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1. Inroduction 

In recent decades, the demand for natural resources has been increasing at an amazing rate, yet 
fossil fuel sources are on course to be depleted rapidly, while environmental pollution and severe 
climate changes due to over-exploitation and over-use of fossil fuels gradually become more serious 
issues. Thus, renewable chemical/energy resources should be urgently developed. Levulinic acid, a 
short chain fatty acid, is a product of acidic hydrolysis of biomass (such as cellulose and starch) and 
also one of the extracts from black liquor from paper-making processes [1]. It is a new platform 
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chemical with various potential uses, such as textile dye, antifreeze, animal feed, coating material, 
solvent, food flavoring agent, pharmaceutical compounds and resin, etc [2-4]. 

Scheme 1. The conversion process of biomass → carbohydrates → fuels. 
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The reactivity of levulinic acid lies in its molecular structure that contains a carbonyl group and a 
carboxyl group. Levulinic acid can be hydrogenated to γ-valerolactone [5] and decarboxylated to 
2-butanone (methyl ethyl ketone). Butanone is an essential component of the distillate (alcohol oil) 
derived from the destructive distillation of wood. In industry, it is the product of the dehydrogenation 
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of sec-butanol and the aqueous oxidation of butene. It is also produced from methyl formate which 
reacts with ethylene and carbon monoxide in the presence of a rhodium catalyst with an ionic iodide as 
promotor, as reported by Mathe [6]. Butanone is usually used as a solvent in organic synthesis, and it 
can be converted through Baeyer-Villiger oxidation to ethyl acetate [7] which is further reduced to 
ethanol. Besides, butanone can also be hydrogenated to butanol [8,9], which is a cleaner and superior 
fuel to ethanol with octane numbers of 113 and 94 as compared with the 111 and 94 of ethanol [10]. 
Thus, decarboxylation of levulinic acid to produce butanone might be one of the key conversion steps 
from biomass-derived carbohydrates to versatile fuels (Scheme 1). 

Decarboxylation of organic molecules refers to the removal of a carboxyl group from its chemical 
structure, further replaced by a hydrogen atom. Oxidative decarboxylation of carboxylic acids and 
their derivatives has been extensively studied over various oxidants involving supported manganese(Ш) 
porphyrin [11], manganese (III) Schiff base complexes [12], active hydroxyl radicals (•OH) [13], 
peroxyl radicals [14] and silver(I)/peroxydisulfate [15], etc. Thermal decarboxylations of 
perfluoropolyether salts [16], iron hydroxide cetylsulfonyl acetate [17] and tryptophan [18] have 
generally received a good deal of attention. Moreover, photolytic decarboxylation (PD) is important in 
several areas of study and still an area of active research interest. It was commonly used to prepare 
radical intermediates and organic compounds and also applied in pharmaceuticals and agriculture. 
Farhadi et al. found that α-arylcarboxylic acids were converted into the corresponding aldehydes and 
ketones selectively by HgF2 under photoirradiation conditions in the presence of oxygen gas [19]. 

To date, efficient and clean methods for decarboxylation of LA have not been previously 
investigated. Chum [20] explored the photoelectrochemical reaction of levulinic acid on undoped 
platinized n-TiO2 powders, leading to 2-butanone, propionic acid, acetic acid, acetone and 
acetaldehyde as major products. Even under the most compatible conditions designed, the butanone 
yield was not satisfactory. In this paper, we report for the first time that LA decarboxylation is 
catalyzed by CuO and a pathway is proposed for the conversion of LA to butanone. 

2. Results and Discussion 

2.1. Surface structures of CuO(I) and CuO(II) with different surface roughness (Rms)  

CuO(I) was prepared by precipitation of copper nitrate [Cu(NO3)2] solution with sodium hydroxide 
(NaOH), CuO(II) was prepared by mixing stoichiometric amounts of oxalic acid and copper acetate in 
distilled water. The surface roughness (Rms) of CuO(I) and CuO(II) was 123.32 nm and 40.75 nm, 
respectively. The thermal desorption of hydrogen (H2) adsorbed on CuO(I, II) was investigated first to 
determine their reduction temperatures. A color change from black (CuO) to dark yellow (Cu2O) to 
metallic-brown (Cu) was observed during their reduction process. The TPR profiles are illustrated in 
Figure 1 and both had two reduction peaks: the first one at about 300 °C and the second one at about 
450 °C, indicating the existence of two cupric oxide species. The reduction of isolated Cu2+ occurred 
by a two-step mechanism: 

Cu2+ 1/2H2 Cu+ H+

1/2H2Cu+ H+

+

+ +

+

Cu  
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The reduction of CuO took place in a one-step mechanism: 

CuO H2OH2+ +Cu  

Therefore, the former peak was assigned to the reduction of isolated Cu2+ to Cu+ and CuO to Cu, 
while the latter peak was attributed to the subsequent reduction of Cu+ to Cu. By comparing the area of 
two reduction peaks, we observed that the majority of copper was present as isolated Cu2+, since the 
areas of the two peaks were close. It was also indicated that Cu+ was more stable than Cu2+. The 
configuration of extra-nuclear electron of Cu was 1s(2)2s(2)2p(6)3s(2)3p(6)4s(1)3d(10). Consequently, 
the outer electronic configuration of Cu2+ and Cu+ were 3s(2)3p(6)3d(9) and 3s(2)3p(6)3d(10), 
respectively. Theoretically, 3d(10) is more stable than 3d(9). Moreover, it was related to the electron 
attraction ability of the atom core. Atomic power to attract electron in a molecule is relevant to the 
ratio of effective nuclear charges of ion and atomic radius, that is Z*/ri. The more highly oxidized the 
atom is, the more positive charge the atom has, the smaller the atomic radius is, the larger Z*/ri is, and 
the greater ability to attract electrons the atom has. Thus, Cu2+ was more effective in catalyzing the 
reaction than Cu+. When CuO(II) and Cu2O were separately used for oxidative decarboxylation of LA 
at 100 °C for 3 h, the yields of butanone were 0.54% and 0.07%, respectively. 

Figure 1. Temperature programmed reduction profiles of CuO(I, II). 
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Figure 2 shows the AFM images of two CuO samples which had different surface morphologies. 
One can observe that the surface of CuO(І) was constituted by uniformly distributed particles (Figure 
2a). The surface of CuO(II) seen in Figure 2b was almost entirely composed of agglomerated 
nanosized grains. The micro-sized agglomerates of nano-sized granules could be regarded as the 
micro-and nano-scale (namely dual-scale) structure. The surface roughness (Rms) of CuO (I) and CuO 
(II) was 123.32 nm and 40.75 nm, respectively. This could be attributed to the preparation of CuO (II) 
that oxalic acid and copper acetate were separately grinded first.  

The surface structures of two CuO samples were characterized by XPS and the corresponding 
survey spectra were shown in Figure 3. All the binding energies were referenced to C 1s peak at  
284.6 eV. It could be seen that the surfaces of these two CuO samples were similar. Different elements, 
essentially carbon, oxygen and copper existed [21,22]. The O 1s core-levels revealed the presence of 
two components at 529.71 eV and 530.89 eV in Figure 4a and 529.62 eV and 531.22 eV in Figure 4b, 
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both of which corresponded to CuO and Cu(OH)2. The peak shape indicated that the Cu 2p/3 spectrum 
of two CuO samples looked similar (Figure 5). The Cu 2p3/2 core-level peak at 933.30 eV could be 
assigned to CuO and 940.48–943.39 eV was correlated to Cu(OH)2, and the Cu 2p1/2 core-level peak 
at 953.30 eV and 961.96 eV, respectively. 

Figure 2. AFM images of two CuO samples [a: CuO(I); b: CuO(II)]. 
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Figure 3. XPS survey spectrum of two CuO samples [a: CuO(I); b: CuO(II)] 
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Figure 4. XPS spectra of O 1s peaks of two CuO samples [a: CuO(I); b: CuO(II)]. 
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Figure 5. XPS spectra at Cu 2P/3 peaks of two CuO samples [a: CuO(I); b: CuO(II)]. 
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The XRD patterns of two CuO samples are shown in Figure 6. The patterns showed two strong 
peaks at 2θ = 35.5° and 38.6° corresponding to (002) and (111) planes of monoclinic CuO, 
respectively [21,23]. The peaks only corresponding to cupric oxides were observed in Figure 6a and 
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Figure 6b. It showed that single phase CuO was formed in samples of CuO(I) and CuO(II). However, 
the peak intensity of CuO(І) in Figure 6a was higher than those in Figure 6b, which indicated that the 
crystallinity of CuO(І) was higher than that of CuO(II). 

Figure 6. The X-Ray Diffraction spectrum of two CuO samples [a: CuO(I); b: CuO(II)]. 
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The grain size of CuO can be roughly estimated by using Scherrer’s formula, D = kλ/βcosθ, where β 
is the full width half maximum (FWHM) of the strongest diffraction peak, θ is the diffraction angle, λ 
is the X-ray wavelength (0.14506 nm), and k (~0.89) is Scherrer’s constant. The crystallite sizes of 
CuO(I) and CuO(II) were 442 nm and 169 nm, respectively.  

2.2. Decarboxylation of levulinic acid to butanone catalyzed by CuO(I) and CuO(II) 

The LA decarboxylation experiments using these two CuO samples were carried out at 300 °C at 
pH 7.0. To determine the effect of CuO(I, II) dosages on LA decarboxylation, mass ratios of LA/CuO 
ranging from 0% to 100% were examined. As seen from Figure 7, increasing both CuO dosages had a 
positive effect on the reaction that butanone yields increased as the dosage of two CuO samples 
increased. From 0% to 40%, the yields of butanone increased sharply and reached about 58.2% 
[CuO(II)] and 48.3% [CuO(I)], respectively. With further increases in CuO dosage, the yields leveled 
off. We observed that the grain size of CuO(II) was smaller but the butanone yields from 
decarboxylation of LA by CuO(II) were higher than that by CuO(I). It seemed that the decrease in 
crystallinity made the CuO(II) more accessible to LA decarboxylation. 

The effect of reaction time from 0.5 h to 9 h on LA decarboxyaltion by CuO(I) and CuO(II) was 
then investigated. It can be seen from Figure 8A that butanone yields and LA conversions by CuO(II) 
were higher than that by CuO(I). During first 2 h, LA conversions reached about 97.6% and 100%, 
respectively. As the reaction time increased to 9 h, no distinct changes were observed. It indicated that 
the reaction was almost completed within 2 h. 
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Figure 7. Effect of dosage of two CuO samples on LA decarboxylation. 
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Figure 8. Effect of reaction time (A), initial pH value (B) on LA decarboxylation. 
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The initial pH value of the reaction solution played a significant role on the reaction. Experiments 
were carried out at initial pH values ranging from 3.2 to 12. In Figure 8B, at pH ≤ 7.0, LA conversion 
by CuO(II) was about 100%. With the increase of pH value, it decreased to about 92%. Not much 
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seemed to have changed regarding acetone yields, which fluctuated between 16.7% and 18.5%. CuO(I) 
was also used as oxidant for LA decarboxylation at pH of 3.2 for a comparison, but butanone yield, 
acetone yield and LA conversion were all lower than that seen with CuO(II). The pH dependence was 
similar to that obtained by Chum [20] for the photoelectrochemical reaction of levulinic acid, in which 
the optimum pH for LA decarboxylation was 4.0. In our experiments, the maximum butanone yield 
(67.5%) occurred at pH 3.2. It was the lowest pH value as levulinic acid was just mixed with KH2PO4. 
According to the results, acidic pH was more favorable to LA decarboxylation than neutral and 
alkaline pH values. The higher butanone yields at lower pHs were in agreement with the fact that CuO 
should be more easily dissolved in acidic systems. 

After the experiments, the precipitate was filtered and washed with de-ionized water and then dried 
in an oven to give a reddish solid that was subsequently examined by XRD. As seen in Figure 9, the 
peaks corresponding to CuO(II) in Figure 6 disappeared and peaks corresponding to Cu appeared 
instead [24]. Thus, we can conclude that CuO was completely reduced to Cu at 300 °C. 

Based on the TPR profiles of CuO(I, II), the precipitate after the experiments should be a mixture of 
Cu and Cu2O (in a high proportion). But Figure 9 only showed the peaks corresponding to Cu. Thus, 
how Cu2O changed into Cu in this reaction needs further study. Besides, the temperature of 300 °C 
seemed extreme. The search for milder reactive conditions together with high catalytic efficiency is 
imperative for potential industrial applications and a meaningful organic synthesis method. It was 
reported that TPR peak temperatures of CuO/CeO2 catalyst [25], CuO/Al2O3 catalysts [26] and 
copper-exchanged mordenites (CuMOR) [27], etc. were much lower than that of pure CuO. One can 
extrapolate that LA may be decarboxylated at lower temperatures using these CuO-modified catalysts 
and this is under study. 

Figure 9. The X-Ray diffraction spectrum of the precipitate after the reactions. 
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2.3. Reaction pathway for LA decarboxylation by CuO 

According to the experimental analysis by HS-GC-MS shown in Figure 10A and by ion 
chromatography in Figure 10B, LA could be oxidatively decarboxylated to butanone by CuO(I, II) and 
heat treatment. The oxidative decarboxylation of LA is given by eq. 1. From the butanone yields and 
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LA conversions at different Initial pH values as shown in Figure 8B, we may deduce that the 
mechanism of LA decarboxylation in acid solution is different from that in alkaline solution. Many 
organic compounds, such as ethyl stearate and ortho-substituted benzoic acids, etc. [28-30] are 
decarboxylated in free radical reactions. Our observations showed that butanone yields and LA 
conversions were higher under acidic conditions. In other words, the free radical reaction was much 
more compatible with LA decarboxylation under acidic pH. A plausible pathway as shown in Scheme 2 
is proposed to explain the experimental observations. We propose that it is the Cu(II) species which is 
the agent directly responsible for LA decarboxylation. The initial attack of Cu(II) is by addition of LA 
producing hydrogen bond, then the hydrogen atom transfers to a free hydrogen ion and meanwhile a 
Cu-oxygen bond is formed. The oxidation may occur via prior incorporation of LA into the Cu(II) 
species as a ligand followed by homolysis of the Cu-O bond. Then the acyloxy acyl radical 
(CH3COCH2CH2CO2•) is known to undergo a rapid fragmentation with liberation of carbon dioxide 
(CO2) and an alkyl radical (CH3COCH2CH2•). Butanone (CH3COCH2CH3) is then derived by 
hydrogen atom transfer to solvent (eq. 2). Cu)(II) was firstly reduced to Cu(I) followed in succession 
by a second reduction to the elemental form (Cu): 

Cu(II) 2H++++ Cu + 2CO22CH3COCH2CH2COOH (1)2CH3COCH2CH2  

CH3COCH2CH3H-Solv+ + SolvCH3COCH2CH2 (2)  

Figure 10. Head space - gas chromatogram (A) and Ion Chromatogram (B) of samples. 
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When the experiments were carried out in alkaline conditions, the covalent bond may be cleaved by 
a heterolysis process that is a two-step ionic decarboxylation as indicated in eq. 3. Levulinic acid is 
first dissociated into a carboxylic anion (CH3COCH2CH2CO2

−) which then undergoes a heterolytic 
cleavage of the alkyl-carbonyl bond and leads to the formation of an alkyl anion (CH3COCH2CH2

−) 
and CO2. The alkyl anion has strong basicity and it can combine with hydrogen ion to become 
2-butanone [31,32]. Acetic acid and acetone may be produced by breaking the C-C bond between the 
α-carbon and β-carbon because of the electron attraction effect of carboxyl and carbonyl group. 
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Scheme 2. The proposed reaction pathway for LA decarboxylation by CuO samples. 
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3. Experimental 

3.1. Preparation of CuO samples 

CuO(I) was prepared by precipitating copper nitrate [Cu(NO3)2] solution with sodium hydroxide 
(NaOH). The precipitate was washed with deionized water and then dried in a vacuum oven at 50 °C 
for 4 h. The dried sample was calcined in a muffle furnace at 800 °C for 2 h. CuO(II) was prepared by 
mixing stoichiometric amounts of oxalic acid and copper acetate in distilled water. The resultant blue 
solid (CuC2O4) was washed with deionized water and then dried in a vacuum oven at 70 °C for 4 h. 
The prepared sample was ground and subsequently calcined in a muffle furnace at 800 °C for 2 h. 
CuO(I) and CuO(II) were used in LA decarboxylation and further analyses. 
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3.2. Procedure for LA decarboxylation 

All experiments were carried out in a 4576-HP/HT Pressure Reactor (200 mL, Parr Instruments). 
Reaction solutions were obtained by adding levulinic acid (0.01 mol) into KH2PO4-NaOH (0.2 mol/L) 
solution and the initial pH of the reaction solution was adjusted with NaOH (0.2 mol/L). The total 
volume was 60 mL. Then a metal oxide or metal-oxides mixture was added into the prepared reaction 
solutions. After the reactions were completed, the samples were taken with 5 mL pipette and directly 
transferred to a 20 mL headspace vial for GS-GC detection. In view of the volatility of products, three 
samples were taken and the average value of the data was recorded. And the samples were filtered 
through a 0.25 μm membrane filter for ion chromatography detection. 

3.3. Head space – gas chromatography detection 

Head space (HSS 86.50)-gas chromatography (QP2010, Shimadzu Japan) (HS-GC) was used 
extensively in the separation and identification of mixtures of volatile compounds. LA decarboxylation 
samples were analyzed with a HS-GC using a DB-5 column (30 m × 0.25 mm i.d. × 0.25 μm film) at a 
column temperature of 120 °C, a flow rate of 4.7 mL/min and with a flame ionization detector at the 
temperature of 220 °C. The analysis was performed at 60 °C for 5-min. The component concentrations 
were calculated by the area normalization method. The sample vials was shaken for  
20 min at 75 °C. The temperatures of sampling probe and tube were 85 °C and 95 °C, respectively. 
Automatic sampling was employed. The sample analysis was confirmed by the head space-gas 
chromatograph-mass spectrometer technique (HS-GC-MS). Some samples were detected with a 
HS-GC-MS (Agilent 6890-5975) equipped with a DB-5 column (30 m × 0.25 mm i.d. × 0.25 μm film). 
The temperature program was used: 60 °C –(5 min) −10 °C/min −120 °C. The carrier gas was helium 
with a flow rate of 1.0 mL/min and the mass spectrometer used an electron impact (EI) ionization 
mode with 70 eV of electron energy. The HS-GC of samples shown in Figure 10A confirms that 
acetone and butanone were the gas products and the retention times were about 3.26 min and  
3.63 min, respectively. 

3.4. Ion chromatography detection 

Ion chromatography (ICS-3000, Dionex USA) was used for the analysis of levulinic acid in the 
aqueous phase to evaluate the conversion of levulinic acid. Liquid reactant after the reactions was 
filtered and diluted before testing. The analysis was conducted in an anion-exchange column 
(AS11-HC) with 2 mol/L NaOH leacheate in a conductivity cell of 35 °C. The flow rate was  
1.0 mL/min and the sample size was 50 μL. The calibration was performed using aqueous solutions. 
An ion chromatogram of a sample is shown in Figure 10B, where the LA peak was between 3.95 min 
and 4.06 min. 

3.5. X-ray diffraction analysis 

The grain size of CuO powders was characterized by X-ray diffraction (XRD) (D/max-IIIA, Rigaku, 
Japan) (40 kV, 40 mA) using the standard reflection mode with Cu/Ka (λ = 0.154056 nm) in the angle 
20° < 2θ < 70° and step angle was 0.02°. 
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3.6. Atomic force microscope measurement 

The surface morphologies of CuO powders were observed by atomic force microscope (AFM) 
(Nanoscope IIIa Scanning, Digital Instruments, USA) using tapping mode with an RTESP cantilever. 

3.7. X-ray photoelectron spectrometry 

To determine the surface compositions of CuO, X-ray photoelectron spectroscopy (XPS) was 
carried out with an Axis Ultra (DLD) spectrometer (Kratos, 5 mA, 15 KV) using Al Kα source and Mg 
Kα source. Binding energy was calibrated with hydrocarbon- contaminated C1s peak at 284.6 eV at 
ambient temperature. 

3.8. Temperature programmed reduction analysis 

The temperature programmed reduction (TPR) measurement of CuO powders was carried out using 
an AutoChem II 2920 Chemisorb system from room temperature to 500 °C at a heating rate of 
10 °C/min by flowing 50 mL/min of H2 (10 vol.%)/Ar. The amount of H2 uptake during the reduction 
was measured by a thermal conductivity detector (TCD). The water produced during the reduction was 
trapped in a 5Å molecular sieve column. 

4. Conclusions 

It is shown based on above discussions that butanone can be produced through oxidative 
decarboxylation of biomass–derived levulinic acid with CuO. CuO itself was reduced to its elemental 
form (Cu). The LA decarboxylation is the result of a combination of CuO’s oxidability, structure 
(transition metal with unoccupied orbital) and external conditions (temperature, pH, etc). An acidic 
system helped to facilitate the oxidative decarboxylation of LA. At pH 3.2, the butanone yield reaches 
67.5%. 
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