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Abstract: During a synthesis of coumarins to obtain new candidates for treating 

Alzheimer’s Disease (AD), an unusual rearrangement of a benzopyran group to a 

benzofuran group occurred, offering a novel synthesis pathway of these benzofuran 

derivatives. The possible mechanism of the novel rearrangement was also discussed. All of 

the benzofuran derivatives have weak anti-AChE activities compared with the reference 

compound, donepezil. 
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1. Introduction  

Benzofuran derivatives are a major group of biologically active heterocycles, which are usually 

important constituents of plant extracts used in medicinal chemistry for their various biological 

activities [1-4]. Due to their diverse activities, much attention has been paid to synthetic strategies to 

access these systems, and a number of methods have been developed [5-7], but a method involving the 

rearrangement from a benzopyran group to a benzofuran group has not been reported before. More 

interesting to us, studies have shown that some of benzofuran derivatives such as donepezil [8] were 

able to inhibit acetylcholinesterase (AChE), or had the capability of reducing aggregated beta-amyloid 
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(Aβ) in the brain [9,10]. This prompted us to continued synthesizing benzofuran derivatives through 

the rearrangement of coumarins to expand our efforts on developing novel AChE inhibitors for treating 

Alzheimer’s disease (AD). 

As we know, AChE and toxic Aβ are the main medication targets for treating AD so far, so dual 

binding AChE inhibitors [11], which can not only facilitate cholinergic transmission but also interfere 

with AD pathogenesis [12,13], namely the synthesis, deposition and aggregation of toxic Aβ in brain 

areas, have become the leading strategy for the development of anti-AD agents [14-17]. Hence 

developing novel dual binding AChE inhibitors is our particular interest and as part of our research 

program on naturally occurring biological coumarins [18-20], a series of novel coumarin derivatives 

has already been designed and synthesized aiming at AChE inhibitory activity [21]. As the extension 

of our efforts on developing new AChE inhibitors based on the coumarins, a novel series of derivatives 

were designed (Figure 1), but surprisingly, we did not obtain the target compounds during synthesis 

but rather an unusual rearrangement of the benzopyran group to a benzofuran group occurred instead, 

which offered a new synthetic pathway of benzofuran derivatives not reported before. Here, the details 

of the new rearrangement as well as the pharmacological characteristics of the new benzofuran 

derivatives obtained through this rearrangement are discussed. 

Figure 1. Design strategy of the target compounds. 
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2. Results and Discussion 

2.1. Chemistry 

The synthesis of the benzofuran derivatives is shown in Scheme 1. The key intermediate 4-

hydroxy-6-methylcoumarin (B) was prepared from p-cresol and malonic acid using ZnCl2 as the 

catalyst in POCl3 and the mixture was stirred at 60 °C for 24 h to give B. Then B was treated with 

POCl3 at reflux for 0.5 h to give 4-chloro-6-methylcoumarin (C). 4-morpholino-6-methylcoumarin (D) 

was obtained through the reaction between C and morpholine under reflux for 12 h. Compound D was 

brominated with NBS using BPO as the initiator to give 3-bromo-6-methyl-4-morpholinocoumarin (E) 

and not the expected 6-(bromomethyl)-4-morpholinocoumarin. Finally, E reacted with the 

corresponding piperazine substituents [22] and the rearranged compounds A1-A5 were obtained.  
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Scheme 1. The preparation of the target compounds. 
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Compounds R Compounds R 
A1 H A4 p-CH3 
A2 o-CH3 A5 p-OCH3 
A3 p-Cl   

Reagents and conditions: (a) p-cresol, ZnCl2, malonic acid, POCl3, 24 h, 60 °C; (b) POCl3, 
triethylamine, 0.5 h, reflux; (c) K2CO3, morpholine, acetone 12 h, reflux; (d) NBS, BPO, CCl4 
under nitrogen, 8 h, reflux; (e) substituted phenylpiperazine derivatives, potassium carbonate,  
15 mL acetone, 15 mL ethanol, 48 h, reflux. 

The structures of the target compounds were elucidated by 1H-NMR, IR and ESI-MS. In order to 

confirm their chemical structures, one of the target compounds, A1, was further identified by single 

crystal X-ray diffraction (Figure 2).  

Figure 2. The X-ray diffraction structure of compound A1. 
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Through analyzing its chemical spectral data, the structure of D was identified as 6-methyl-4- 

morpholinocoumarin and that of E as 3-bromo-6-methyl-4- morpholinocoumarin and not the expected 

6-(bromomethyl)-4-morpholinocoumarin, but A1 was identified as (4-phenylpiperazin-1-yl) (5-

methyl-3-morpholino-benzofuran-2-yl) methanone, so it can be concluded that the rearrangement 

should  have occured in the step of synthesizing A from E. A possible mechanism of this 

transformation (shown in Scheme 2) is also discussed below. As to the position of bromination, after 

comparing the structure of D with the coumarin derivatives synthesized before [21], it can be noticed 

that the main difference between them was the substituents on the 4-position of the coumarin group, 

which was a basic morpholino group in D, while in the coumarin derivatives synthesized before it was 

a methyl, methoxy or chloro group, so the substituents on the 4-position of the coumarin group should 

be taken into account during the study of the position of bromination.. 

Scheme 2. A possible mechanism of the rearrangement.  
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2.2. Anti-AChE testing 

To determine the therapeutic potency of the benzofuran derivatives A1-A5 for treating AD, their 

anti-AChE activities were assayed according to Ellmann’s method [23], utilizing freshly prepared 

AChE from rats brain homogenate and donepezil as the reference compound. Inhibition of AChE 

activities of them was shown in Table 1.  

Table 1. Inhibition of AChE activities of the synthesized compounds. 

Compound 
AChE inhibition 
(IC50, μmol/L) a 

Compound 
AChE inhibition 
(IC50, μmol/L) a 

A1 45 ± 0. 3 A4 11 ± 0.2 
A2 32 ± 0.1 A5 21 ± 0.1 
A3 73 ± 0. 2 donepezil 0.11 ± 0.01 

a Data are means ± standard deviation of three independent experiments. 
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In general, the data in Table 1 clearly shows that all of these compounds exhibited moderate 

inhibition activities toward the cholinesterase. Among them compound A4 (4-(p-tolylpiperazin-1-yl) 

(5-methyl-3-morpholinobenzofuran-2-yl) methanone showed the best AChE inhibitory activity with 

the IC50 value of 11 μmol/L.  

3. Conclusions 

By linking a substituted phenylpiperazine moiety to the benzofuran backbone conformationally 

restricted derivatives that are as potential inhibitors of AChE for treating AD were synthesized. An 

unusual rearrangement from a benzopyran group to a benzofuran group occurred. The rearrangement 

ocurred under moderate conditions and offers a facile and practical preparation of biologically active 

benzofuran derivatives, so it may be worthwhile for developing potential AChE inhibitors through the 

rearrangement of benzopyran rings to benzofuran derivatives under mild conditions. 

4. Experimental  

4.1. General 

Reaction progress was monitored using thin layer chromatography (TLC) on precoated Merck silica 

gel Kiesegel 60 F254 plates and the spots were detected under UV light (254 nm). Flash 

chromatography was performed with 230–400 mesh silica gel. The IR spectra were measured on a 

Jasco FT/IR-430 spectrophotometer. Melting points (mp) were obtained on a B-540 Buchi melting-

point apparatus and are uncorrected. The 1H-NMR spectra were recorded on a 500 MHz Bruker 

spectrometer. The chemical shifts are reported downfield in ppm relative to internal TMS, and 

coupling constants are reported in Hertz (Hz). Mass spectra were run on a HP 5989A electrospray 

ionization mass spectrometer spectrometer. The mass spectra analysis is reported as m/z values. 

4.2. 4-Chloro-6-methylcoumarin (C)  

Compound B (0.005 mol) and triethylamine (0.005 mol) were added to POCl3 (5 mL). The mixture 

was refluxed for 30 min, and poured into water. Then the solution was extracted with methylene 

chloride. The methylene chloride layer was dried with anhydrous Na2SO4 and evaporated under 

reduced pressure. Flash chromatography (cyclohexane-acetone = 10:1) was performed to give C 0.8 g 

(yield 82.3%); 1H-NMR (CDCl3) δ: 7.56 (d, 1H, H-5, J = 2.1 Hz), 7.26 (dd, 1H, H-7, J = 2.1 Hz,  

8.7 Hz), 7.28 (d, 1H, H-8, J = 8.7 Hz), 6.53 (s, 1H, H-3), 2.39 (s, 3H, 6-CH3). 

4.3. 6-Methyl-4-morpholinocoumarin (D)  

C (0.01 mol), K2CO3 (0.02 mol) and morpholine (0.01 mol) were dissolved in acetone (50 mL), 

then the mixture was refluxed for 12 h., after which the reaction mixture was filtered and the filtrate 

was evaporated under reduced pressure. Flash chromatography (cyclohexane-acetone = 10:1) was 

performed to give D 0.97 g (yield 75.6%); 1H-NMR (CDCl3) δ: 7.36 (d, 1H, H-5, J = 1.9 Hz), 7.31 

(dd, 1H, H-7, J = 1.9 Hz, 8.5 Hz), 7.24 (d, 1H, H-8, J = 8.5 Hz), 5.73 (s, 1H, H-3), 3.24 [m, 4H, 

N1(CH2)2], 3.94 [m, 4H, (CH2)2O], 2.41 (s, 3H, 6-CH3). 
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4.4. 3-Bromo-6-methyl-4-morpholinocoumarin (E)  

D (0.003 mol) were added to anhydrous CCl4 (34 mL) with the reaction system protected by N2. 

The mixture was refluxed for 0.5 h, then 1-bromopyrrolidine- 2, 5- dione (NBS, 0.0028 mol) and 

methyl benzoperoxoate (BPO, 100 mg) were added to the reaction mixture. After the reaction refluxed 

for 5 h, additional BPO (100 mg) was added again, and the reaction continued for 3 h. Then the 

reaction mixture was cooled down to room temperature and filtered. The filtrate was evaporated under 

reduced pressure. Flash chromatography (cyclohexane-acetone = 5:1) was performed to give E 0.32 g 

(yield 59.6%); 1H-NMR (CDCl3) δ: 7.36 (m, 1H, H-9), 7.34 (dd, 1H, H-7, J = 1.9 Hz, 8.4 Hz), 7.24 (d, 

1H, H - 6, J = 8.4 Hz), 3.54 [m, 4H, N1(CH2)2], 3.93 [m, 4H, (CH2)2O], 2.44 (s, 3H, 10-CH3).
 13C-

NMR (CDCl3): 169.3 (C-3); 157.2 (C-1); 149.8 (C-8); 136.2 (C-5); 132.3 (C-6); 127.7 (C-4); 117.3 

(C-7); 114.9 (C-9); 75.8 (C-2); 67.7(C-11 and C-12); 48.9 (C-10 and C-13); 22.3 (CH3). ESI-MS: 

325.3 ([M+H]+). 

4.5. General synthetic procedure for target compounds A  

E (1 mmol) was added to a mixture of acetone (15 mL) and ethanol (15 mL) containing a 

substituted piperazine derivative (1 mmol) and potassium carbonate (2 mmol). The mixture was 

refluxed for 48 h and the reaction mixture was evaporated. Flash chromatography was performed to 

afford the target compounds that were further purified by recrystallization from ethanol. 

 

(5-Methyl-3-morpholinobenzofuran-2-yl)-(4-phenylpiperazin-1-yl) methanone (A1) Yield 49%; 

colorless powder; mp 131–133 °C; IR (KBr) ν cm−1: 3449, 2826, 1620, 1598, 1464, 1338, 1260, 1200, 

1021, 902. 1H-NMR (CDCl3) δ: 7.58 (s, 1H, H-9), 7.44 (m, 1H, H-7), 7.22~7.28 (m, 3H, Ph, H - 6), 

6.82~7.00 (m, 3H, Ph), 3.61~3.84 (m, 8H, CH2-15, CH2-18, O(CH2)2), 3.15~3.20 (m, 8H, CH2-11, 

CH2-14, CH2-16, CH2-17), 2.42 (s, 3H, CH3-10); ESI-MS: 406.2 ([M+H]+). CCDC number 740474 

contains the supplementary crystallographic data for this compound. These data can be obtained free 

of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. Empirical formula, C24H27N3O3; molecular weight, 405.49; 

crystal dimensions, 0.40  0.34  0.25 mm; Orthorhombic, Pbca; a = 15.385 (2) Å, b = 7.301 (2) Å, c 

= 37.579 (3) Å; α = 90.00°, β = 90.00°, γ = 90.00°; V = 4221.3 (14) Å3; Z = 8; Dx = 1.276 Mg· m-3; 

R1 = 0.0546; ωR2 = 0.1205; GOOF = 1.055;  = 1.71-25.01°;  = 0.085 mm-1; T = 298(2)K. 

(4-o-Tolylpiperazin-1-yl)-(5-methyl-3-morpholinobenzofuran-2-yl) methanone (A2) Yield 43%; 

colorless powder; mp 122–125 °C; IR (KBr) ν cm−1: 3424, 2954, 1617, 1518, 1385, 1259, 1158, 802; 
1H-NMR (CDCl3) δ: 7.42 (s, 1H, H-9), 7.37 (m, 1H, H-7), 7.17 (m, 1H, H-6), 7.08~7.10 (m, 2H, Ph), 

6.85~6.87 (m, 2H, Ph), 3.86~3.95 [m, 8H, CH2-15, CH2-18, O(CH2)2], 3.19~3.29 (m, 8H, CH2-11, 

CH2-14, CH2-16, CH2-17), 2.42 (s, 3H, CH3-10), 2.42 (s, 3H, CH3). ESI-MS: 420.2 ([M+H]+). 

 

(4-(4-Chlorophenyl)piperazin-1-yl)-(5-methyl-3-morpholinobenzofuran-2-yl) methanone (A3) Yield 

42%; colorless powder; mp 128–130 °C; IR (KBr) ν cm−1: 2955, 2862, 1620, 1593, 1499, 1387, 1259, 

1231, 813. 1H-NMR (CDCl3) δ: 7.43 (s, 1H, H-9), 7.29 (m, 1H, H-7), 7.19~7.24 (m, 3H, Ph, H-6), 
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6.85~6.87 (m, 2H, Ph), 3.73~3.88 [m, 8H, CH2-15, CH2-18, O(CH2)2], 3.21~3.29 (m, 8H, CH2-11, 

CH2-14, CH2-16, CH2-17), 2.42 (m, 3H, CH3). ESI-MS: 440.1 ([M+H]+). 

(4-p-Tolylpiperazin-1-yl)-(5-methyl-3-morpholinobenzofuran-2-yl) methanone (A4) Yield 43%; 

colorless powder; mp 122–125 °C; IR (KBr) ν cm−1: 2968, 2832, 1623, 1597, 1494, 1270, 1200, 1024, 

917, 768; 1H-NMR (CDCl3) δ: 7.42 (s, 1H, H-9), 7.30 (m, 1H, H-7), 7.16~7.21 (m, 3H, Ph, H-6), 

7.01~7.04 (m, 2H, Ph), 3.70~3.90 [m, 8H, CH2-15, CH2-18, O(CH2)2], 2.96~3.31 (m, 8H, CH2-11, 

CH2-14, CH2-16, CH2-17), 2.45 (s, 3H, CH3-10), 2.34 (s, 3H, CH3). ESI-MS: 420.2 ([M+H]+). 

(4-(4-Methoxyphenyl)piperazin-1-yl) (5-methyl-3-morpholinobenzofuran-2-yl) methanone (A5) Yield 

39%; colorless powder; mp161–163 °C; IR (KBr) ν cm−1: 2914, 2828, 1619, 1514, 1461, 1228, 1157, 

816. 1H-NMR (CDCl3) δ: 7.42 (s, 1H, H-9), 7.29 (m, 1H, H-7), 7.17 (m, 1H, H-6), 6.91 (m, 2H, Ph), 

6.85~6.87 (m, 2H, Ph), 3.86~3.95 [m, 8H, CH2- 15, CH2-18, O(CH2)2], 3.12~3.29 (m, 8H, CH2-11, 

CH2-14, CH2-16, CH2-17), 3.77 (s, 3H, OCH3), 2.42 (m, 3H, CH3-10). ESI-MS: 436.2 ([M+H]+). 

4.6. In vitro AChE inhibition assay  

AChE activity was measured in duplicate by the spectrophotometric method reported by  

Ellman et al. [23] with some modifications, mainly involving the source of the enzyme and the 

reference compound. Rat brain homogenate was used as the enzyme source. The whole brain except 

for the cerebellum was homogenized in nine volumes of 100 mM sodium phosphate buffer (pH 7.0). 

The test compounds were dissolved in dimethyl sulphoxide (DMSO). The AChE activity was 

expressed as a change in OD at 412 nm. 
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