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Abstract: The cationic ring-opening polymerization reaction of tetrahydrofuran at 20 ºC 

was catalyzed by H3PW12O40·13H2O as solid acid catalyst. The effect of the proportions of 

acetic anhydride and catalyst, reaction time and support on the polymerization reaction was 

investigated. It has been found that the yield and the viscosity of the polymer depend on 

the proportion of acetic anhydride, the presence of the latter in the reactant mixture being 

required for the ring-opening. The catalytic activity of the alumina-supported 

heteropolyacid results showed that Brønsted acid sites are more effective than Lewis ones 

for the cationic ring-opening polymerization.  
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__________________________________________________________________________________ 

1. Introduction 

Due to their high polarizability and flexibility, polyethers constitute a very important soft segment 

for producing thermoplastic elastomers such as polyesters (Hytrel®) and polyurethanes (Spandex). 

They represent a key ingredient in the production of a variety of elastomeric products. Therefore, they 

have been the subject of a large number of papers [1–5]. The polymerization for their production is 

initiated by electrophilic agents such as Brønsted acids (HCl, H2SO4, HClO4, etc.) and Lewis acids 

(AlCl3, BF3.OEt2, TiCl4, etc.). However, the protonic acid catalysts used are very noxious and 

corrosive. As for Lewis acids, it is known that their use requires large amounts to achieve acceptable 

yields of polymers. Increasing environmental concerns in recent years have resulted in a demand for 
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more effective catalytic processes. In this regard, studies have been carried out on the development of 

solid acids to replace aggressive and dangerous homogeneous acids to overcome the problems of 

separating the catalyst from the products and the disposal of solid/liquid wastes.  

Solid Brønsted acids with superacidic character, such as the Keggin-type heteropolyacids, are 

known as highly active catalysts [6–11]. Due to their strong acidity, these “superacids” catalyze 

various reactions much more effectively than the conventional protonic acids [12,13]. They have been 

found efficient for a variety of organic reactions [14–16]. In recent years, heteropolyacids have been 

used as catalysts to induce the polymerization of various monomers such as cyclic ethers, styrene, 

acetals, polyalcohols and lactones [17–20]. In our previous paper [21] we have reported the 

polymerization of tetrahydrofuran catalyzed by a series of heteropolyanions and initiated by acetic 

anhydride (AA). It was shown that 12-tungstophosphoric acid (12-HPW, H3PW12O40.13H2O) was the 

best catalyst among the series of heteropolyanion catalysts tested. This fact prompted us to investigate 

the cationic ring-opening polymerization of tetrahydrofuran (THF) by this efficient catalyst. The effect 

of AA proportion, reaction time, catalyst amount and support on the polymerization were investigated. 

2. Results and Discussion   

2.1. Catalyst characterization 

The identity of the synthesized H3PW12O40.13H2O was proven by comparison of its FTIR and 

thermogravimetric analysis data with those reported in literature [22]. The main characteristic bands of 

the Keggin structure are observed at 1,080–1,060 cm-1 (νas P-Oa), at 990–960 cm-1 (νas Mo-Od), at 

900–870 cm-1(νa Mo-Od-Mo), and at 810–760 cm-1
 (νas Mo-Oc-Mo). The number of hydrogen atoms 

and water molecules in the H3PW12O40·13H2O was determined by thermogravimetric analysis through 

the weight loss observed as the temperature is increased. Loss of crystallization water (13–14 H2O) 

was observed between 160 and 280 ºC. Loss of the ‘constitutional’ water molecules, i.e. the protons 

bound to the polyanion external oxygens, are (1.5 H2O) was observed above 350 ºC. This result is in 

agreement with published results [22]. 

Figure 1. 1H-NMR spectrum of poly(THF) in CD3OCD3. 
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2.2. Polymer characterization 

The polymerization of THF can be induced by Keggin-type heteropolyacids under mild conditions. 

As evidenced by 1H-NMR (Figure 1 and Table 1), the results showed that H3PW12O40·13H2O induced 

the polymerization of tetrahydrofuran. The number average molecular weight ( nM ) for the polymers 

can be calculated by integrating the repeat unit protons with the end-group protons on the basis of the 

integral data [23]: nM  = 102 + 72 n. It has been found that the values vary from 1,360 to 4,535 g/mol. 

Table 1. Chemical shift of polymer protons.  

 

The ring opening polymerization proceeds via a cationic mechanism (Scheme 1). In this mechanism 

we assume that the protons carried by the heteropolyacid induce the polymerization.  

Figure 2. Mechanism of THF ring opening followed by polymerization. 
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The first stage is the protonation of the acetic anhydride. The next stage is a nucleophilic attack of 

the oxygen of the THF on the carbocation of the chains in growth [24,25]. The presence of the acetate 

groups at the two ends of the chain was clearly identified by 1H-NMR, therefore the last stage must be 

a nucleophilic attack on the carbon located alpha to the positive charge bearing oxygen of the chains in 

growth by the oxygen of the acetic acid formed in the first stage from the protonation of acetic 

anhydride. 

2.3. Polymerization   

In order to investigate the activity of Brønsted solid acid catalyst, H3PW12O40·13H2O for the 

polymerization of cyclic ether, we have investigated the effect of the AA proportion, the amount of the 

catalyst, the polymerization reaction time and the support on the polymerization reaction  

2.3.1. Effect of AA proportion 

The results of THF polymerization induced by 0.1 g of 12-tungstophosphoric acid in bulk during 

1.5 h are reported in Figure 2 and Table 2. It can be seen from these results that the value of the 

conversion depends on the AA proportion. In fact, when the AA/THF volume ratio varies from 0 to 

0.25 the conversion increases from 0% to 60%, then after that it decreases. The decrease of the 

conversion at high AA proportions might be due to consumption of the heteropolyacid protons by the 

acetic anhydride leading to acetic acid (a weak acid). In fact, when the reaction was performed without 

the catalyst but with acetic acid, no polymer was obtained. It is also noteworthy that the 

polymerization does not occur in the absence of AA. The decrease of the conversion at high acetic 

anhydride proportions is due to an increase in the number of methyl groups at the extremities of the 

chains which blocks the polymer chain growth. 

Figure 3. Effect of AA proportion on the yield of poly(THF) catalyzed by 0.1 g of 

H3PW12O40·13H2O. Reaction conditions: T = 20 ºC; Reaction time = 1.5 h. 
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Table 2. Influence of the AA proportion on the intrinsic viscosity of poly(THF) catalyzed 

by 0.1g of H3PW12O40·13H2O. Reaction conditions: T = 20 ºC; Reaction time = 1.5 h. 

AA/THF (volume ratio)       [] (dL g-1) 

0.20                                   0.03899 

0.25                   0.03599 

0.30         0.03499 

0.40                   0.02600 

If one takes into account simultaneously the conversion and the viscosity, one can see from the 

Figure 2 and Table 2 that the volume ratio of AA/THF equal to 0.2 is the optimum for the synthesis of 

poly(THF). In fact, when this later was performed with this ratio, the conversion is higher and the 

viscosity is the highest. This result has prompted us to select this ratio to study the effect of the 

reaction time, the catalyst amount and the catalyst support on the polymerization. 

2.3.2. Effect of reaction time 

The result of the reaction time effect is depicted in Figure 3. It can be seen from the figure that the 

conversion increases with time up to two hours, then after the conversion remained almost stable with 

a conversion about 63%.   

Figure 4. Influence of the reaction time on the conversion of THF catalyzed by 0.1 g of 

H3PW12O40·13H2O. Reaction conditions: T = 20 ºC; AA/THF (volume ratio) = 0.2. 
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2.3.3. Effect of amount of catalyst 

Figure 4 illustrates the results of the effect of the amount of the catalyst on the polymerization. It 

can be seen from this figure that the conversion increases as the amount of H3PW12O40·13H2O 

increases. This is probably the result of an increase in the number of initiating active sites responsible 

for inducing polymerization, which is proportional to the amount of catalyst used in the reaction. It can 

be seen also from this figure that when the amount of the catalyst increases, the conversion increases, 

whereas the intrinsic viscosity of the Poly(THF) decreases. In fact, when the amount of catalyst was 

varied from 0.025 g to 0.2 g, the conversion increased from 27.4% to 70.1% whereas the intrinsic 
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viscosity decreased from 0.056 to 0.030 dL/g. It can be seen from Figure 4, that at higher amounts of 

catalyst, the conversion decreases slightly. The decrease of the intrinsic viscosity with increasing the 

catalyst amount can be explained by the fact that the monomer to initiator ratio is altered, i.e, fewer 

monomer units are available per propagating polymer. The number of initiating active centers 

responsible of inducing polymerization is prorate to the catalyst amount used in the reaction. Similar 

results were obtained by Yahiaoui et al. [26] in the polymerization of cyclohexene oxide by a 

montmorillonite sheet silicate clay, exchanged with proton, H-Maghnite (Brønsted solid acid 

catalysts). Like the molecular weight, the Tm decreases with the increase of the amount of catalyst 

(Figure 5).   

Figure 5. Effect of the amount of the catalyst on the conversion and on the intrinsic 

viscosity of the Poly(THF). Reaction conditions: T = 20 ºC; AA/THF  

(volume ratio) = 0.2. 
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Figure 6. Effect the amount of the catalyst on the Tm of poly(THF). Reaction 

conditions: T = 20 ºC; AA/THF (volume ratio) = 0.2. 
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2.3.4. Effect of the support (Al2O3) 

The effect of the support was investigated using alumina as a support (Figure 6). The 

polymerization reactions were performed using various amounts of catalysts. By comparison of 

conversion values obtained on the unsupported and the alumina-supported heteropolyacid, it can be 

seen that the unsupported heteropolyacid is more active than the supported ones for all the amounts of 

catalysts tested. This results might be explained by the fact that in the alumina supported catalyst a 

certain number of protons are trapped through an heteropolyacid-support interaction and the number of 

Brønsted-acid sites decreases, inducing the decreases of the Brønsted-acid character leading to a 

decrease of the conversion [11,27,28]. 

Figure 7. Values of the conversion obtained with the unsupported and the alumina-

supported catalysts. Reaction conditions: T = 20 ºC; AA/THF (volume ratio) = 0.2. 
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3. Experimental  

3.1. Preparation of the catalyst 

H3PW12O40·13H2O was prepared according to the method described in the literature [29]. The 

alumina supported heteropolyacid was prepared by incipient-wetness of impregnation of γ-Al2O3 with 

aqueous solution of H3PW12O40·13H2O with concentration high enough to avoid its degradation [30].  

3.2. Catalyst characterization   

The Keggin structure of 12-tungstophosphoric acid H3PW12O40·13H2O was characterized by 

infrared (IR) spectroscopy. IR spectra were recorded with an infrared spectrometer GENESIS II-FTIR 

(4000–400 cm-1) as KBr pellets. The number of protons was checked by means of thermogravimetris 

analysis (TGA) carried out on a Perkin-Elmer TGA/DSC instrument with a heating rate of 5 ºC/min in 

flowing N2. 
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3.3. Polymerization procedure and polymer characterization 

THF polymerization experiments were carried out in a stirred flask at 20 ºC. Typically, a fixed 

amount of catalyst was added to the mixture of THF (10 mL) and acetic anhydride (2 mL) under 

stirring. Polymerization was terminated with the addition of saturated NaOH aqueous solution and then 

stirred for 5 min. At the end of the reaction, the precipitated polymer was filtered off, and then 

dissolved in butanone. After removing the catalyst by filtration, the polymer was precipitated in 

methanol for characterization and viscosimetric measurements. Intrinsic viscosity ([]) of 

poly(THF) obtained were measured in tetrahydrofuran solution at 25 ºC by using a Ubbelohde 

type viscometer. 1H-NMR spectra were recorded on a Bruker Avance 400 MHz spectrophotometer 

using 5 mm NMR tubes and deuterated acetone-D6 as solvent. 

4. Conclusion 

Bulk polymerization of THF was performed using H3PW12O40·13H2O as a solid acid catalyst. The 

effects of acetic anhydride concentration and catalyst amount were investigated. An increase in the AA 

and catalyst amounts led to a decrease in the viscosity of poly(THF). In the absence of AA, THF does 

not polymerize. The use of H3PW12O40 as a solid acid catalyst represents a more environmentally 

friendly alternative for the polymerization process. Such a catalyst offers many advantages compared 

to classical homogeneous catalysts: milder reaction conditions, easier separation of the catalyst from 

the reaction mixture by filtration, and its possible regeneration and reuse, reducing the production of 

waste and thus harm to the environment 
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