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Abstract: Reproductive toxicity is an important regulatory endpoint, which is required in 
registration procedures of chemicals used for different purposes (for example pesticides). 
The in vivo  tests are expensive, time consuming and require large numbers of animals, 
which must be sacrificed. Therefore an effort is ongoing to develop alternative In vitro and 
in silico  methods to evaluate reproductive toxicity. In this review we describe some 
modeling approaches. In the first example we describe the CAESAR model for prediction 
of reproductive toxicity; the second example shows a classification model for endocrine 
disruption potential based on counter propagation artificial neural networks; the third 
example shows a modeling of relative binding affinity to rat estrogen receptor, and the 
fourth one shows a receptor dependent modeling experiment. 

Keywords: reproductive toxicity; modeling; CAESAR program; counter propagation 
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1. Introduction  

The term reproductive toxicity indicates anything disturbing the reproductive process of organisms. 
It includes adverse effects on the reproductive ability of individuals such as alternation of sexual 
organs and behavior, and the developmental toxicity of offspring. Different experimental methods, 
which are available for assessing of the reproductive toxicity, are standardized and described in 
guidelines issued from different agencies. The OECD library reports several tests related to 
reproductive toxicity. The documents OECD TG 422 and TG 421 describe the screening test, which 
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can be used to get initial information on reproductive or developmental toxicity and can be used at an 
early stage of assessing of chemicals [1,2]. It does not provide the complete information on 
developmental toxicity of tested chemicals, what means that negative results do not necessarily 
indicate the safety of a chemical. On the other hand, any positive results are useful for initial hazard 
assessment and the priority setting for further testing. More informative are one-generation and two-
generation tests, which are described in documents TG 415 and TG 416, respectively [3,4]. The tests 
provide the general information about the functioning of reproductive systems of males and females 
including information on gonadal function, the oestrus cycle, mating behaviour, conception, gestation, 
parturition, lactation, and weaning. The tests also provide the information about effects on growth and 
development of offspring. For specific functional deficiency furher tests are available like 
Developmental Neurotoxicity Study [5], Uterotropfic Bioassays for (anti) Estrogenic Effects [6], and 
Hersberger Bioassay for (anti) Androgenic Effects [7]. 

The tests are among the most expensive ones and require sacrifice of a large number of animals, 
therefore there considerable interest and efforts have been invested into developing alternative In vitro 
and in silico  methods [8-16]. Quantification of endpoints represents a problem in evaluation of 
reproductive toxicology. The OECD documents TG 421, TG 422, and TG 414 describe the 
experimental conditions for animal tratment and evaluation of reproductive toxicity effects. The 
clinical observations are often given in descriptive form, for example, when the target organs of 
sacrificed animals are examined on histopatology, or, the data are given in tabular form as numbers of 
dead offspring, body weight, mating behaviour, the animals showing intoxication, etc. For in silico  
modeling purposes all the data must be expressed in numerical form, which enables the treatment with 
standard statistical tools. On the other hand, for the regulatory purposes the results are used in 
classification schems. The United Nations (UN) Globaly Harmonized System of Classification and 
Labeling of Chemicals (GHS UN2003) provides a classification scheme where chemicals are classified 
into one of two categories (1, 1A, 1B, and 2). Category 1 defines substances, which are known or 
presumed human reproductive toxicants. In the category 1A are substances that are known to have 
produced an adverse effect on reproductive ability or capacity or on development in human. The 
classification is based on evidences on humans. In the category 1B are subatances that are presumed to 
produce an adverse  effect on reproductive ability or capacity or on development in human. The 
classification is based on evidences from animal experiments. To category 2 belong substances that are 
suspected to be human reproductive or developmental toxicants. For these compounds there is some 
evidence from human or experimental animals, however, the evidence is not sufficiently convincing to 
place the substance in category 1. The EU Member Countries use the classification system described 
in Annex VI to Commision Directive 2001/59/EC (Anon 2001). The reproductive toxicity assigned to 
chemicals harmful to fertility and developmental processes is divided into three categories with respect 
to the level of risk.  Category 1 includes substances that are known to impair fertility in humans and 
that are known to cause developmental toxicity in humans. They are placed into this category if there 
is sufficient evidence of their toxicity. Category 2 comprises substances which should be regarded as if 
they impair fertility in humans or cause developmental harm in humans. They are assigned to this 
category if there is sufficient evidence on their toxicity, generally on the basis of animal experiments. 
Category 3 includes substances that cause concern for human fertility or may have developmental 
toxic effects. They are placed into this category generally on the basis of results of animal studies, 
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however, the evidence is insufficient to place them in categories 1 or 2. The FDA has a classification 
system with five categories; category A means negative human studies, category B means negative 
animal studies and no human studies executed or positive animal studies and negative human studies, 
category C means positive animal studies and no human studies or no studies at all. Category D means 
positive human studies, and category X means animal or human studies show abnormalities and/or 
evidence of foetal risk based on human experience. 

It is clear that the data of such a structure are poorly suitable for QSAR modeling. In the sections 
that follow we present some strategies for approaching this problem. In Section 3 we present four 
examples in more details. First, we present the CAESAR model for prediction of reproductive toxicity. 
Second, we show the classification model for endocrine disruptors, third, we show an example of 
modeling of estrogen binding affinity, and fourth, we show an example where the information on 
estrogen receptors is a part of modeling. 

2. Modeling Strategies  

There are several ways to model reproductive toxicity using (Q)SAR methodology. In the SAR 
approach one is focused on chemical structures having in mind chemical categories and similarity 
among molecules. An OECD definition of a chemical category reads: : “A chemical category is a 
group of chemicals whose physicochemical and toxicological properties are likely to be similar or 
follow a regular pattern as a result of structural similarity….” [8]. A categorisation can be done by 
experts (read across) or by using of computer classification algorithms. Another way is the standard 
QSAR approach where the models are built on a clearly defined activity related to a specific target, 
which are related to developmental toxicity. The basic properties are related to transport and 
distribution of substances like bariers for transport from blood to testis, placenta, brain, breast milk, 
etc. Often studied properties are binding affinities to sex hormone receptors (estrogen receptors, 
androgen receptors) and for thyroid hormone receptors. A review over current status of structural 
based methods for estimation of reproductive toxicity is reported in [9]. The report includes among 
others the information on training sets for DEREK, TOPKAT, MC4PC, PASS, HazardExpert, OSIRIS 
property explorer, and OECD (Q)SAR Application Toolbox. Most of the QSAR models, which are 
focused on specific target, have been developed for estrogen receptors. In [10] authors applied three 
methods, decision tree, and learning vector quantization and, for classification of 311 compounds as 
active or inactive for estrogen receptor. Structures were described with DRAGON descriptors. Authors 
report the best results for the k-nearest neighbour method. In [11] the authors propose a two-descriptor 
model for classification of compounds as estrogenically active or non-active compounds. The model is 
commented in terms of OECD principles for validation of QSAR models used for regulatory purposes 
[12]. In [13] the authors applied different chemometrical tools to analyse the endocrine activity of over 
11,000 compounds. The model described in [14] was made on the basis of FDA/TERIS data base, 
which consists of 292 structurally and chemically diverse drug-like compounds. The authors applied 
logistic regression and CART modelling techniques for classification of compounds into two clases 
(toxicants, non-toxicants). Average sensitivity, specificity and accuracy for several tests are at about 
60% for all three statistical parameters. The most important physico-chemical descriptors involved in 
the logistic models were: density, log P and molecular weight and in CART models: log P, HOMO 
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energy, LUMO energy, hydrogen acceptor, hydrogen donor, and molar refractivity. In [15] a set of 27 
conazoles was investigated with hierarchical clustering, principal component method and Kohonen 
networks. On the basis of cluster pattern analysis a classification was proposed for some conazoles. In 
[16,17] authors report In vitro and in silico approaches to the developmental and reproductive toxicity 
including the endocrine disruption. In [18] a data set of brominated compounds was examined with 
QSAR methods for their In vitro potency. In [19] 200 structurally diverse chemicals were categorized 
with decision trees and support vector machine techniques with respect to their androgen receptor 
binding affinity. Report [20] focuses on screening of 57,014 EINECS chemicals investigating 
teratogenic endpoints with data obtained from animal experiments, clinical data and epidemiological 
studies. A competitive binding to thyroid hormone transport protein transthyretin was studied on a set 
of fluorinated compounds in reference [21]. In [22] the common reactivity pattern approach 
(COREPA) was applied to study the relative binding affinity to estrogen receptor. In [23] 3D-QSAR 
models for three receptors, which mediate the endocrine disruption, are presented. In [24] the authors 
used principal component analysis to compress three estrogen activities into a single variable called 
Estrogen Activity Index, which was further used for QSAR modelling. The three activities resulted 
from receptor binding affinity assay, receptor gene assay and the cell proliferation assay. In [25] the 
authors report a model for estrogen receptor binding affinity developed in terms of OECD principles. 
A comparison of three different non-linear classification methods (least-square support vector 
machine, counter-propagation artificial neural network, and k nearest neighbour) for classification of 
estrogen-like chemicals is carried out in [26] using external validation set of 87 chemicals (prediction 
set) not included in the training set (232 chemicals). In [27] a review of some recent advances in the 
use of machine learning techniques in modeling estrogen-like chemicals is given. The authors discuss 
on the advantages and disadvantages of the machine learning algorithms and on the importance of the 
validation and performance assessment of the models and their applicability domains. In [28] two-step 
model for prediction of estrogen receptor binding affinity is presented. In [29] a virtual test kits for 
predicting harmful effects triggered by chemicals is presented. An overview of in silico  methods in 
modelling of endocrine disruption is given in [30]. Different authors discussed the mechanisms of 
endocrine disruptions, the pharmacokinetic of compounds related to endocrine disruption, and discuss 
different QSAR models for assessing the endocrine disruption. A survey of (Q)SAR models, which are 
important in chemical regulation, is given in [31]. Its authors discussed the advantages and 
disadvantages of models, which are built on data sets of congeneric compounds, or on broader sets of 
non-congeneric compounds. 

3. Examples 

3.1. Prediction of Developmental Toxicity with CAESAR Model  

Recently adopted European Chemical Regulation (REACH) envisages the wide use of computer 
assisted models for evaluation of chemical properties to replace in vivo and In vitro testing. Within the 
EU supported project CAESAR (Computer Assisted Evaluation of Substances According to 
Evaluation) the models for five regulatory ednpoints were developed and made publically available via 
the Internet [32] together with comments to five OECD principles for validation of (Q)SAR models 
used for regulatory purposes. The five regulatory endpoints are: bioconcentration factor, skin 
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sensitization, mutagenicity, carcinogenicity, and developmental toxicity. The model for developmental 
toxicity was built on the data set of 292 compounds [14] described with 13 descriptors. In the 
CAESAR model a compound is classified as non-toxic if a compound is classified under FDA scheme 
to categories A or B and as toxic if it is classified to the categories C, D, or X. The classification result 
expressed as a binary value can not be directly used for categorisation of a chemical; rather it is an 
evidence, which can be used in the early stage of hazard assessment. Beside this result the model 
provides the structure of six compounds, which are the most similar to investigated compound. The 
training set consists of only 293 compounds and it is unlikely that an arbitrary compound hits close to 
a structure from the training set. However, the training set consists of very diverse compounds and 
therefore the prediction may have general validity. 

Table 1 shows an example of predicting the developmental toxicity for four PAH compounds. 
Anthracene and fluoranthene are classified as toxicant, fluorene and triphenylene as non-toxicant. 
Additional information provided by the model is that the descriptors of triphenylene are out of model's 
descriptor range. For each prediction the program displays the six most similar compounds from the 
data base. Comparing the sets for anthracene and fluorene in the Table 1 one can see that four 
compounds are the same. In fluorene the non-toxic diphenylhydramine and toxic alprazolam are 
replaced with toxic imipramine and amitriptyline. Predictions for fluoranthene and triphenylene are 
toxic and non-toxic, respectively. In the set of six closest compounds four compounds are toxic and two 
are non-toxic. It is not straightforward to justify the predictions only by looking at the set of most similar 
compounds. Nevertheless, the insight into the pool of compounds that represent the source of information 
for the model prediction may be of great help to the user who is assessing an unknown chemical. 

Table 1. Predictions of developmental toxicit for four PAH compounds using he CAESAR 
model. For each compound the table shows similarity indices to six most similar structures 
of training set. (T - toxic, NT - non-toxic). 

 Anthracene Fluorene Fluoranthene Triphenylene
Prediction Tox. NON-Tox. Tox. NON-Tox. 
Phenyltoloxamine T 0.954 0.962   
Aminacrine NT 0.949 0.948 0.920  
Diphenylhydramine NT 0.948    
Alprazolam T 0.942  0.927  
Promethazine T 0.940 0.962   
Dotheipin T 0.936 0.957   
Imipramine T  0.954   
Amitriptyline T  0.946   
Chlorotrianisene T   0.929 0.951 
Phenolphthalein T   0.925 0.947 
Clomiphene T   0.915 0.952 
Clotrimazole NT   0.911 0.964 
Diphenadione T    0.943 
Loperamide NT    0.918 

 



Molecules 2010, 15                            
 

 

1992

3.2. Counter Propagation Models for Categorization of Endocrine Disrupters 

The present study grounds on a data set of 146 compounds selected from 553 chemicals suspected 
to act as endocrine disrupters [33,34]. For modeling purposes the chemicals were categorized into  
four classes:  

1. E: Endocrine disruptor—At least one study provides evidence of endocrine disruption in  
intact organism. 
2. P: Potential Endocrine disruptor – In vitro  data indicated potential endocrine disruption in  
intact organisms. 
3. U: Nonendocrine disruptor – No certain evidence for non-ED. Category 3B – Some evidence are 
available, but the evidence is insufficient for identification. 
4. N: Certain evidence for non-ED. 

The structures were described with a pool of 267 structural descriptors, including log P values. The 
Counter Propagation Neural Network (CP NN) was applied for modeling - method, which is often 
used in QSAR modeling particular for constructing  of classification models [35,36]. It is a 
generalization of Kohonen artificial neural networks or Self Organizing Maps (SOM). Its architecture 
represents a network of neurons organized in 2D lattice. The training is a mapping from 
multidimensional descriptor space into the lattice in a way that at the end the similar objects are 
located close to each other. In SOM only the descriptors take part in the training while in the CP NN 
also propery values participate in the training. The modeling was performed for three cases, fist, all 
descriptors were taken into account, second, 51 descriptors were selected with the SOM method and 
third, 43 descriptors were selected on the same way [34]. In the classification problem the selection of 
the treshold for class indicating variable is essential. In the study the tresholds were optimized 
respecting the maximal number of correct answers. The confusion tables, which show numbers of 
correctly classified and misclassified structures, for selected models is shown in Figure 1. A basic 
problem occuring in the modeling is how to discriminate between structurally similar compounds, which 
belong to different classes. In our data set there are five PCB derivatives: 2,2',3,3',4,4'-
hexachlorobiphenyl classified as U, 2,2',3,3',6,6'-hexachlorobiphenyl classified as P, 2,2',4,4',5,5'-
hexachlorobiphenyl classified as E, 2,3,3',4,4',5-hexachlorobiphenyl classified as P, 3,3',4,4',5,5'-
hexachlorobiphenyl classified as E. In the learning procedure the CP NN was not able to recognize the 
differences in the structures causing an error in the models. However, the developed classification 
model represents a tool for a preliminary assessment of potential endocrine disrupters. It is aimed to 
help the assessors to make the priority list for a large amount of chemicals that have to be tested with 
more expensive in vitro and in vivo methods. 
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Figure 1. Confusion tables for different models (From [34] with permission). 

 
 
3.3. QSAR Modeling of Relative Binding Affinity to Rat Estrogen Receptor 
 

As the next example we present models based on the data set of 132 compounds with their relative 
binding affinities (RBA) to rats' uterine estrogen receptor. The data, i.e., the structures and the RBA 
values were collected from literature [37]. Molecular structures were described with 280 descriptors 
classified as constitutional, topological, geometrical, electrostatic, and quantum-chemical descriptors 
obtaining after optimization of structures. The octanol/water partition coefficient (log P) was added to 
the pool of descriptors. In reports [38,39] authors compared the results of three methods, Partial Least 
Square-Regression (PLS-R), CP NN and Error Back Propagation Neural Network (EBP NN). In the 
application of both kind of neural networks, the CP NN and the EB NN, initially the model was built 
using all the computed descriptors and validated with the leave-one-out procedure. Genetic algorithms 
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have been used to successfully select the relevant descriptors. The high positive coefficient for log P 
and the corresponding negative contribution from the absolute number of oxygen atoms suggests that 
the polarity of the sample is involved in modulating the binding of the endocrine disrupter to the 
receptor site: specifically, less polar molecules, characterized by a high log P and by a small number of 
oxygen atoms, are supposed to be more favored with respect to highly polar ligands. A significant 
positive correlation is observed between the dependent variable and the final heat of formation of the 
molecule, the energy of the HOMO-1 and the maximum total interaction for a C-C bond. This issue 
suggests that probably the binding of the ligand to the receptor site involves a certain degree of 
electron transfer. High HOMO-1 energy (the second highest energy of valence electron) indicates that 
less bound valence electrons enhance the ligand-protein complex formation. On the other hand, the van 
der Waals interactions, which are present and important for the binding mechanism, are accounted for 
by the polarity terms described before. The best overall regression model was found to be a 50-10-1 
network (521 weighted connections including bias nodes) trained for 2500 epochs with learning rate η 
= 0.15 and momentum μ = 0.15. This optimal BP NN model performed better that the PLS-R or CP-
ANN models, with the R2 = 0.92 and Q2 = 0.71.  
 
3.4. Receptor Dependent Models 
 

The study was performed on two data sets, both reporting the binding affinities toward natural 
ligand 17β-estradiol for human ER-alpha and ER-beta. The first set ('Kuiper dataset') consists of 60 
chemicals including environmental estrogenic compounds and phytoestrogens (40]. The second set 
('Harris dataset') contains some new compounds, in addition to those from 'Kuiper dataset'. The 
reported affinities for both sets are not the same, however, a correlation between them exists [41]. The 
main goal of studies decribed reported in [42, 43] was to compare how the inclusion of the information 
on receptor influences the modeling results. In the first case the molecular structures were optimized in 
vacuo using Merck Molecular Force Field method followed by semi-empirical AM1 optimization. In 
the second case the structures were optimized in a docking procedure, having considered a 3D 
structure of the receptor as known from the PDB database. A pool of 278 descriptors was calculated 
with CODESSA software. CP NN technique was used to build classification models and models for 
prediction of affinity. All the models were optimised for the model parameters and for the selection of 
descriptors with internal test set and validated by the external validation set of compounds. We analyse 
the selected descriptors and try to interpret them regarding the selectivity between the ER-alpha and 
ER-beta receptors as predicted by the two models. Common variables for alpha and beta receptor 
models in the first approach with the receptor-independent ligand conformations are: Relative number 
of N atoms, Kier Shape index-2, Minimum and Average electrophilic Reactivity index for C atom, 
descriptors related to H-donors and H- bonding surface area, HDCA H-donors charged surface area, 
HBCA H-bonding charged surface area, and Principal moment of Inertia. There is also a series of 
variables chosen specifically for alpha and beta models, but they appear close to each other in the 
Kohonen map, what means that they are similar and they aren’t receptor subtype specific. The 
variables specific for ER-alpha model are the following: descriptors for the polar interaction between 
molecules and functional group portions, such as CPSA variables, PPSA-1, Partial Positive Surface 
Area (sum of surface area on positive parts of molecule) and PPSA-2, and Total charge weighted 
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CPSA. Additionally, the LUMO+1 energy, second lowest unoccupied molecular level is also specific 
for alpha receptor. It is interesting that among them there are the following variables: Number of S 
atoms and Relative number of S atom, and HOMO Energy. In the map describing the distribution of 
variables the variables “No. of S atoms” and “relative No. of S atoms”, are located in the area where 
there is no similar descriptor selected for alpha receptor; those two descriptors seem to influence the 
beta model only. The descriptors characterizing polar interactions may be useful to discriminate 
between structurally different chemical compounds that bind to the ER-alpha and ER-beta with 
specific interaction not only dependent on the binding pocket residues and bonds but also on the 
interactions around the pocket that are able to modify the size of the cavity and the affinity of the 
ligand for the receptor. Several studies referred the shape, dimension, and polar interaction as 
parameters to define the selectiveness of receptors for alpha or beta subtype. From our study we can 
conclude that one can not obtain a common, well selective model for ER-alpha and ER-beta binding 
affinities. It is better to have two separate models and apply them sequentially for the determination of 
ER-alpha and ER-beta binding affinities of unknown compounds. Obviously, besides few common 
influential descriptors, different descriptors are important for describing structure-property 
relationships of different receptor types.  

The comparison of the prediction results of the two approaches described in [42,43], with or 
without inclusion of the information on the receptor structure, demonstrates that there is no significant 
difference in the predictive ability of the obtained models. Although one would expect that the 
information about the ligand conformation in the host protein binding site would improve the model 
quality, obviously this improvement did not exceed the inherent error of the modeling methodology 
itself. The error introduced by inaccurate conformation seems to be compensated by the optimisation 
of model parameters and variable selection procedure. See Table 2 for details. 

 
Table 2. Performance values summary for receptor dependent and receptor independent approach. 

Performances Receptor Independent Approach Receptor Dependent Approach

Approach Model ER-α ER- β ER-α ER-β 
Var A* Var R** Var A* Var R** Var A* VarR** VarA* VarR**

Training 
& Test Set 

Classification 
Error (%) 7 0 7 0 5 0 12 2 

RMS Error of 
Predictions of 

Active Compounds 
0.61 0.17 0.41 0.24 1.61 0.36 1.79 0.85 

External 
Set  

Classification 
Error (%) 0 0 0 0 0 18 0 0 

RMS Error of 
Predictions of 

Active Compounds 
2.43 2.20 2.34 1.33 2.12 5.14 2.83 1.86 

* All variables included in the model. 
**Reduced set of selected variables included in the model. 
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4. Conclusions  

Reproductive toxicity is an important regulatory endpoint. Different regulatory agencies have 
defined classification schemes where the compounds are grouped according to their harm to human or 
wildlife. The classification is usually performed by experts on the basis of different scientific 
evidences. In this overview we report on some strategies for modelling potential reproductive toxicity. 
As first example we present the CAESAR model, which was recently placed on the Internet. Within 
the CAESAR project, a data mining approach has been employed using a highly verified set of 
compounds (all chemical structures have been double-checked, and experimental data verified in case 
of some unusual finding, compared to similar compounds), and adopting a wide series of chemical 
descriptors, reduced to the most influential ones in the modelling optimisation procedure. Different 
algorithms have been applied for modeling, resulting in a series of models and one with optimal 
performance has been implemented. The predicted value expressed in binary form (toxic/non-toxic) 
represents evidence, which can be used in early stage of hazard assessment of chemicals. In further 
examples we select the mechanism, i.e., the binding to estrogen receptor. Such models are more 
specific and the reliable predictions within assessed confidential limits could be made. The drawback 
of these models is in their applicability for everyday regulatory use. Specific software and expert 
knowledge is required what is sometimes not available in regulatory entities. A further problem is 
usually caused by an imbalanced distribution of compounds in different classes. The chemicals may 
cause harm due to different mechanisms and at the end they are classified in the same class. This 
means that a general classification model indeed includes many different structure-toxicity 
relationships. Unfortunately, the data sets, which are used for training of models, are rather limited. 
Usually, more data is available for positive (toxic) compounds than for negative ones what means that 
the structural domain of negatives is smaller than for positives.  
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