Synthesis of 2-(9,10-Dihydro-9,10-propanoanthracen-9-yl)-Nmethylethanamine via a [4+2] Cycloaddition

Usama Karama *, Adel Al-Saidey, Zeid Al-Othman and Abdel Rahman Almansour
Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh - 11451, Saudi Arabia

* Author to whom correspondence should be addressed; E-Mail: karama@ksu.edu.sa;

Fax: +9661-4675992.
Received: 19 May 2010; in revised form: 31 May 2010 / Accepted: 1 June 2010 /
Published: 9 June 2010

Abstract

The synthesis of the tetracyclic molecule 2-(9,10-dihydro-9,10-propano-anthracen-9-yl)- N-methylethanamine (2) as a homologue of the antidepressant $1-(9,10-$ dihydro-9,10-ethanoanthracen-9-yl)- N-methylmethaneamine (1) was described. The key intermediate 9 -(prop-2-en-1-yl)-9,10-dihydro-9,10-propanoanthracen-12-one (7) was successfully synthesized via a [4+2] cycloaddition of α-bromoacrolein and 9 -allylanthracene, followed by ring expansion and samarium diiodide deoxygenation.

Keywords: benzoctamine; homologue; antidepressant; ring expansion; cycloaddition

1. Introduction

Benzoctamine [1-(9,10-dihydro-9,10-ethanoanthracen-9-yl)-N-methylmethanamine, 1, Figure 1] was synthesized and developed into a clinically useful drug for the treatment of anxiety by the Ciba-Geigy research group [1]. The key step was [4+2] cycloaddition of ethylene on 9-anthracenecarboxaldehyde.

Studies on the structure-activity relationship (SAR) of this molecules led us recently [2] to synthesize the corresponding bishomobenzoctamine, 2-(9,10-dihydro-9,10-propanoanthracen-9-yl)-Nmethylethanamine (2, Figure 1) via a $[3+4]$ cycloaddition at $15-20^{\circ} \mathrm{C}[3]$.

Figure 1. Benzoctamine and bishomobenzoctamine.

Benzoctamine (1)

Bishomobenzoctamine (2)

It is assumed from molecular model studies that the ring folding angle in bishomobenzoctamine $\mathbf{2}$ is different from that of benzoctamine $\mathbf{1}$, and such a difference might be reflected in its pharmacological activities.

Scheme 1. Synthesis of compound 2. Reagents and conditions: a) Allylmagnesium bromide, THF, r.t., 8 h; $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{P}_{2} \mathrm{O}_{5}$, r.t., $6 \mathrm{~h}, 82 \%$; b) α-bromoacrolein, $80^{\circ} \mathrm{C}, 24 \mathrm{~h}, 68.6 \%$; c) $\mathrm{NaOH}, \mathrm{THF}$, r.t., 4 h, 60.5%; d) SmI_{2}, THF, r.t., 4 h, 56%; e) $85 \% \mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}, \mathrm{KOH}$, triethylene glycol, $150^{\circ} \mathrm{C}, 5 \mathrm{~h}, 200-220^{\circ} \mathrm{C}, 5 \mathrm{~h}, 57 \%$; f) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h} ;\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$, 4 h, r.t, 56%; g) $\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{OH}$, r.t., 4 h; NaBH_{4}, r.t, 6 h, 57%.

2. Results and Discussion

We outline herein a simple and flexible route to the corresponding bishomobenzoctamine 2 via a [4+2] cycloaddition [4] which tolerates a variety of functional groups and is not be sensitive to high temperatures. The key intermediate 9-(prop-2-en-1-yl)-9,10-dihydro-9,10-propanoanthracen-12-one (7) was easily synthesized in three steps starting from 9-allylanthracene (4) which was obtained by the reaction of anthrone $\mathbf{3}$ with allylmagnesium bromide followed by dehydration using $\mathrm{P}_{4} \mathrm{O}_{10}$ (Scheme 1).

The Diels-Alder reaction between compound 4 and α-bromoacrolein afforded the cycloadduct 5 . Treatment of 5 with 1 M aq NaOH resulted in transformation [5] into the ring expanded α-hydroxy ketone 6. Deoxygenation of 6 by samarium iodide led to the desired key intermediate ketone 7. Wolff-Kishner reduction of the ketone 7 gave the tetracyclic hydrocarbon 8, which was ozonolyzed to the crystalline aldehyde 9 . Reductive amination of the aldehyde $\mathbf{9}$ using a combination of commercially available solution of methylamine in methanol, titanium(IV) isopropoxide and sodium borohydride [6] afforded the bishomobenzoctamine 2.

3. Experimental

3.1. General

IR spectra were recorded on a Perkin-Elmer 883 spectrophotometer and peaks are expressed as v $\left(\mathrm{cm}^{-1}\right)$. NMR spectra were recorded on a JEOL ECP $400(400 \mathrm{MHz})$ instrument in CDCl_{3} and chemical shifts are expressed as $\delta \mathrm{ppm}$, and coupling constants (J) are given in Hertz. MS spectra and HRMS were performed at the Department of Organic Chemistry of the University of HannoverGermany using EI at 70 eV .

9-Allylanthracene (4). A solution of anthrone $3(5.01 \mathrm{~g}, 25.8 \mathrm{mmol})$ in anhydrous THF (100 mL) was slowly added to allylmagnesium bromide ($33 \mathrm{~mL}, 33 \mathrm{~mol}, 1 \mathrm{M}$ solution, Aldrich). The mixture was stirred for 8 h at room temperature. The reaction mixture was subsequently acidified with $10 \% \mathrm{HCl}$, the organic layer was separated, and the aqueous layer was extracted with ether ($2 \times 50 \mathrm{~mL}$). The combined organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. To the crude product was added 25 mL benzene, $6 \mathrm{~g} \mathrm{P} \mathrm{P}_{4} \mathrm{O}_{10}$ and stirred for 6 h at room temperature. The $\mathrm{P}_{4} \mathrm{O}_{10}$ was filtered off and the benzene was removed under vacuum. The crude product was purified by flash column chromatography (hexane-dichloromethene 1:1) to give $4(4.6 \mathrm{~g}, 82 \%)$ as a yellow solid, m.p. $46{ }^{\circ} \mathrm{C}$; IR (KBr): $v=3047,2945,1620,1444,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 4.37(\mathrm{~d} ; J=5.48 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-1$ '), 4.97 (dd; $\left.J=10.24,1.48 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.06(\mathrm{dd} ; J=16.84,1.48 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), 6.21-6.28 (m; $1 \mathrm{H}, \mathrm{H}-2$ '), $7.28-7.60\left(\mathrm{~m} ; 9 \mathrm{H}\right.$, aromatic -H); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 32.00,116.00,124.89,125.36,126.25,128.20$, $130.06,131.56,131.71,134.05,136.50 . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=218(100)\left[\mathrm{M}^{+}\right], 203$ (54), 191 (27), 176 (5), 165 (7); HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14}\left[\mathrm{M}^{+}\right]$218.1096, Found 218.1097.

12-Bromo-9-(prop-2-en-1-yl)-9,10-dihydro-9,10-ethanoanthracen-12-carbaldehyde (5). A mixture of 9-allylanthracene $(4,2.1 \mathrm{~g}, 9.65 \mathrm{mmol})$ and α-bromoacroline ($2.61 \mathrm{~g}, 19.3 \mathrm{mmol}$) in benzene (10 mL) was heated under reflux 24 h and allowed to cool to room temperature. The reaction mixture was concentrated and the crude product was purified by flash column chromatography on silica gel
(petroleum ether-ethyl acetate $30: 1$) to give $5(2.33 \mathrm{~g}, 68.6 \%)$ as a white solid, m.p. $145^{\circ} \mathrm{C}$; IR (KBr): $v=3070,2970,1716,1631,435,914,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 2.2(\mathrm{dd} ; J=14,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 3.01$ (dd; J = 14, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 3.43-3.49 (m, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.81-3.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{l}^{\prime}\right), 4.33$ (t ; $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), $5.27-5.31$ (m, 1H, H-3'), $5.44-5.49$ (m, 1H, H-3'), 5.95-6.05 (m; 1H, H-2'), $7.12-7.53\left(\mathrm{~m} ; 8 \mathrm{H}\right.$, aromatic-H), $9.35(\mathrm{~s} ; \mathrm{H}-\mathrm{C}=\mathrm{O}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 31.47,42.13,43.83,52.85,75.45$, $117.89,123.66,125.57,126.05,126.95,136.67,139.19,143.12,191.04 ;$ MS (EI) $m / z(\%)=352(23)$, 354 (24) [$\left.\mathrm{M}^{+}\right], 274$ (35), 273 (84), 272 (100), 219 (67), 218 (100), 215 (62), 204 (27), 203 (70), 202 (66), 191 (49), 178 (21), 165 (32); HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrO}, \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrO}\left[\mathrm{M}^{+}\right]$352.0465, Found 352.0463.

11-Hydroxy-9-(prop-2-en-1-yl)-9,10-dihydro-9,10-propanoanthracen-12-one (6). To a solution of the Diels-Alder adduct $5(2 \mathrm{~g}, 5.69 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added 1 M aqueous $\mathrm{NaOH}(21 \mathrm{~mL})$. The mixture was stirred at room temperature for 4 h , extracted with ether twice, washed with water, dried with MgSO_{4} and concentrated under vacuum. The crude product was purified by flash column chromatography on silica gel (petroleum ether-ethyl acetate $5: 1$) to give $6(1 \mathrm{~g}, 60.5 \%)$ as a white solid, m.p. $152{ }^{\circ} \mathrm{C}$; IR (KBr): $v=3512,3464,3022,2920,1701,1448,1350,1124,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ 2.79 (dd; $J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 3.15(\mathrm{dd} ; J=15.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 3.37-3.45$ (m; 1H, H-2'), $3.82-3.88$ (m; 1H, H-2'), 4.03 (d; J = $3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{O}$), 4.11 (d; $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 4.32 (dd; $J=6,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), $5.14-5.17$ (m; 1H, H-H-3'), $5.35-5.39$ (m; 1H, H-3'), $5.58-5.67$ (m; 1H, H-2'); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 32.55,43.50,50.24,50.32,84.23,119.25,126.09,126.49,126.75,127.57,134.96,140.25$, 143.88, 208.22; MS (EI) $\mathrm{m} / \mathrm{z}(\%)=290(48)\left[\mathrm{M}^{+}\right], 218(100), 217(71), 215(53), 203$ (67.77), $202(60)$, 191 (57), 178 (34), 152 (11); HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$290.1305, Found 290.1307.

9-(Prop-2-en-1-yl)-9,10-dihydro-9,10-propanoanthracen-12-one (7). To a solution of SmI_{2} (2.1 g , $5.2 \mathrm{mmol})$ in THF (2 mL) was added solution of compound $6(0.75 \mathrm{~g}, 2.6 \mathrm{mmol})$ in THF (6 mL). The mixture was stirred at room temperature for 4 h , hexane was added, the mixture was filtered concentrated under vacuum. The crude product was purified by flash column chromatography on silica gel (petroleum ether-ethyl acetate $5: 1$) to give $7(0.4 \mathrm{~g}, 56 \%)$ as a white solid, m.p. $128^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr})$: $v=3070,2912,1683,1475,1448,717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 2.61(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{H}-13), 2.75(\mathrm{~d} ; J=3.68 \mathrm{~Hz}, 2 \mathrm{H}$, H-11), 3. 25 (d; J = 5.84 Hz, 2H, H-1'), $4.27(\mathrm{t} ; J=3.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 5.15(\mathrm{dd} ; J=10.28,1.84 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.30$ (dd; $\left.J=17.6,1.84 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.69$ (m; 1H, H-2'), 7.20-7.23 (m; 8H, aromatic-H); ${ }^{13} \mathrm{C}-$ NMR $\delta 37.62,43.56,43.62,50.26,59.42,118.25$ 134.60, 124.98, 126.31, 126.91, 127.11, 134.60, 140.11, 142.01, 208.88; MS (EI) $m / z(\%)=274$ (100) [M $\left.{ }^{+}\right], 275$ (23), 231 (28), 217 (41), 216 (19), 215 (38), 203 (20), 202 (27), 191 (43), 189 (24); HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$274.1359, Found 274.1358 .

9-(Prop-2-en-1-yl)-9,10-dihydro-9,10-propanoanthracene (8). A mixture of ketone 7 (0.88 g , $3.21 \mathrm{mmol})$, $\mathrm{KOH}(0.72 \mathrm{~g}, 12.83 \mathrm{mmol})$, hydrazine hydrate ($2.285 \mathrm{~g}, 45.7 \mathrm{mmol}$) and triethyleneglycol $(4 \mathrm{~mL})$ was stirred at $150^{\circ} \mathrm{C}$ for 5 h . Then the water was removed by a Dean-Stark separator, and the reaction mixture was heated for a further 5 h to $200-210^{\circ} \mathrm{C}$. After cooling to room temperature, the reaction mixture was treated with dil. HCl (until $\mathrm{pH}=2$ was reached). The aqueous layer was extracted with toluene, and the combined organic phases were washed with brine, dried with MgSO_{4}
and concentrated under vacuum. The crude product was purified by flash column chromatography on silica gel (petroleum ether-ethyl acetate 5:1) to give $8(0.63 \mathrm{~g}, 57 \%)$ as a yellow oil. IR (CDCl_{3}): $v=3068,3016,2958,2926,1473,1452,752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 1.25-1.29(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{H}-12)$, $1.31(\mathrm{t} ; J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-13), 1.63(\mathrm{t} ; J=5.88,2 \mathrm{H}, \mathrm{H}-11), 3.19\left(\mathrm{t} ; J=2.58 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{l}^{\prime}\right), 3.99$ (t; $J=3.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 5.17\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{H}-\mathrm{3}^{\prime}\right), 5.27\left(\mathrm{~m} ; \mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.79\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.22-7.29$ (m; 8H, aromatic-H); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 23.53,29.86,39.22,39.39,45.71,46.70,117.42,124.45,126.08$, 126.32, 126.37, 136.70, 143.25, 143.94; MS (EI) $m / z(\%)=260(61)\left[\mathrm{M}^{+}\right], 232$ (19), 231 (42), 220 (27), 219 (85), 218 (55), 217 (53), 204 (18), 203 (53), 202 (60), 192 (29), 191 (100), 189 (61), 178 (44), 176 (15), 165 (36), 152 (16); HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20}\left[\mathrm{M}^{+}\right]$260.1563, Found 260.1565.

2-(9,10-Dihydro)-9,10-propanoanthracen-9-yl)ethanal (9). The tetracyclic alkene 8 ($0.3 \mathrm{~g}, 1.15 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 9 mL) and ozonolyzed at $-78^{\circ} \mathrm{C}$. After the reaction was complete (blue color), $\mathrm{Me}_{2} \mathrm{~S}$ (6 equiv.) was added, and the reaction mixture was stirred for a further 4 h while it warmed to room temperature, and the volatile components were removed under vacuum. The crude product was purified by flash column chromatography on silica gel (petroleum ether-ethyl acetate 15:1) to give $9(0.18 \mathrm{~g}, 60 \%)$ as a white solid, m.p. $94^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CDCl}_{3}\right): v=3064,3018,2931,2856,1728$, 1477, 1452, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 1.22-1.26(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{H}-12), 1.67$ (t; $\left.J=4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-13\right), 1.72-1.72$ (m; 2H, H-11), 2.81 (dd; $J=16.88,3.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 2.94 (dd; $J=16.88,2.96 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-11^{\prime}\right), 3.99(\mathrm{t} ; J=3.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 6.96-7.23\left(\mathrm{~m} ; 8 \mathrm{H}\right.$, aromatic-H), $10.14(\mathrm{~s} ; \mathrm{H}-\mathrm{C}=\mathrm{O}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta$ 22.10, 29.15, 37.84, 45.94, 46.53, 57.94, 126.08, 126.22, 126.37, 126.51, 142.59, 143.35, 202.48; MS (EI) $m / z(\%)=262(38)\left[\mathrm{M}^{+}\right], 234(37), 233(56), 220(44), 219(80), 218(67), 205(42), 204(26), 203(31)$, 202(32), 192(55), 191(100), 189(53), 178(44.85), 176(17), 165(33), 152(25); HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right] 262.1359$, Found 262.1358.

2-(9,10-dihydro-9,10-propanoanthracen-9-yl)-N-methylethanamine (2). Titanium(IV) isopropoxide $(0.1 \mathrm{~mL}, 0,25 \mathrm{mmol})$ was added to a commercially available solution of methylamine in methanol (2 M , $7.5 \mathrm{~mL})$ followed by the addition of the aldehyde $9(0.22 \mathrm{~mL}, 0.22 \mathrm{mmol})$. The reaction mixture was stirred at ambient temperature for 4 h , after which sodium borohydride ($7.7 \mathrm{mg}, 0.19 \mathrm{mmol}$) was added and the resulting mixture was further stirred for another period of 4 h . The reaction was then quenched by the addition of water $(0.1 \mathrm{~mL})$, the resulting inorganic precipitate was filtered and washed with diethyl ether $(2 \mathrm{~mL})$. The organic layer was separated and the aqueous part was further extracted with diethyl ether $(2 \times 4 \mathrm{~mL})$. The combined ether extracts were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Removal of the solvent under vacuum gave bishomobenzoctamine 2 in high purity ($0.04 \mathrm{~g}, 57 \%$) as a white viscous liquid. IR $\left(\mathrm{CDCl}_{3}\right): v=3448,3338,2962,2926,2852,1598,1475,1450,1261,1093,1020,800 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta 1.09(\mathrm{t} ; J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-13), 1.19-1.62(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 1 ', \mathrm{H} 11, \mathrm{H}-12), 2.24\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.51-2.28(\mathrm{~m} ;$ $\left.2 \mathrm{H}, \quad \mathrm{H}-2^{\prime}\right), 2.32(\mathrm{~s} ; \quad 1 \mathrm{H}, \mathrm{NH}), 3.97(\mathrm{t} ; \quad \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \quad \mathrm{H}-10)$, 7.19-7.40 (m; 8H, aromatic-H); MS (EI) $m / z(\%)=277$ (33) [M $\left.{ }^{+}\right], 262$ (33), 234 (16), 233 (26), 220(22), 219 (84), 218 (23), 205 (16), 203 (19), 202 (20), 192 (25), 191 (100), 189 (29), 178 (19); HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}\left[\mathrm{M}^{+}\right]$277.1829, Found 277.1830.

4. Conclusions

The above described sequence represents a successful seven-step synthesis of the bishomobenzoctamine 2. The key cyclization step was accomplished through cycloaddition of α-bromoacrolein on 9-allylanthracene.

Acknowledgements

Project was supported by King Saud University, Deanship of Scientific Research, and College of Science Research Center.

References

1 Wilhelm, M.; Schmidt, P. Synthese und Eigenschaften von 1-Aminoalkyl-dibenzo [b,c]bicycle[2.2.2]octadienen. Helv. Chim. Acta 1969, 52, 1385.
2 Karama, U.; Al-Saidey, A.; Almansour, A. Synthesis of Bishomobenzoctamine-2-(9,10-dihydro-9,10-propano anthracen-9-yl)-N-methylethanamine. J. Chem. Res. 2010, in press.
3 Hoffmann, H.M.R.; Karama, U. Synthesis of 9,10-Dihydro-9,10-propanoanthracen-12-ones Substituted at the Bridgehead. Chem. Ber. 1992, 125, 2803-2807.
4 Brocksom, T.J.; Nakamura, J.; Ferreira, M.L.; Brocksom, U. The Diels-Alder Reaction: an Update. J. Braz. Chem. Soc. 2001, 12, 597-622.
5 Corey, E.J.; Loh, T. Catalysis a Direct Enantioselective Diels-Alder Addition to Furan Provides a Direct Synthetic Route to Many Chiral Natural Products. Tetrahedron Lett. 1993, 34, 3979-3982.
6. Kumpaty, H.J.; Williamson, J.S.; Bhattacharyya, S. Synthesis of N-Methyl Secondary Amines. Synth. Commun. 2003, 33, 1411-1416.

Sample Availability: Samples of the compounds 2, 4-9 are available from the authors.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

