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Abstract: Plasmodium falciparum, Leishmania, Trypanosomes, are the causers of diseases 

such as malaria, leishmaniasis and African trypanosomiasis that nowadays are the most 

serious parasitic health problems worldwide. The great number of deaths and the few drugs 

available against these parasites, make necessary the search for new drugs. Some of these 

antiparasitic drugs also are GSK-3 inhibitors. GSKI-3 are candidates to develop drugs for 

the treatment of Alzheimer’s disease. In this work topological descriptors for a large series 

of 3,370 active/non-active compounds were initially calculated with the ModesLab 

software. Linear Discriminant Analysis was used to fit the classification function and it 

predicts heterogeneous series of compounds like paullones, indirubins, meridians, etc. This 

study thus provided a general evaluation of these types of molecules. 

Keywords: glycogen synthase kinase-3 (GSK-3) inhibitors; Alzheimer’s disease; 

Plasmodium falciparum; Trypanosoma brucei; Leishmania; QSAR 

 

1. Introduction 

Neurofibrillary tangles (NFTs) are one of the characteristic neuropathological lesions of 

Alzheimer’s disease (AD) [1] and other neurodegenerative processes such as frontotemporal dementia, 

Pick’s disease, progressive supranuclear palsy, and corticobasal degeneration [2]. 
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Alzheimer’s disease affects 5–10% of the population over 65 years of age. The dementia associated 

with AD results from the selective death of neurons, which is associated with several anatomo-

pathological hallmarks such as senile neuritic plaques and neurofibrillary tangles [3,4]. Three 

molecular actors clearly play a role in the development of AD: the amyloid β peptide (Aβ), presenilins-

1 and -2 and the microtubule-associated protein tau. 

Glycogen Synthase Kinase-3 (GSK-3) is a senile-threonine kinase ubiquitously expressed and 

involved in the regulation of many cell functions [5]. GSK-3 was originally identified as one of the 

five protein kinases that phosphorylate glycogen synthase [6], being implicated in type-2 diabetes [7]. 

GSK-3 is also known to phosphorylate the microtubule-associated protein tau in mammalian cell [8]. 

This hyperphosphorylation is an early event in neurodegenerative conditions, such as Alzheimer’s 

disease [9], also involved is a second kinase, called CDK-5 [10]. 

Two GSK-3 genes (α and β) have been cloned from vertebrates. The intrinsic biochemical 

properties of GSK-3 are also conserved, with greater differences between GSK-3α and GSK-3β than 

between species [11]. 

Interest in GSK-3 has grown far beyond glycogen metabolism during the past decade and GSK-3 is 

known to occupy a central stage in many cellular and physiological events, including Wnt and 

Hedgehog signaling, transcription, insulin action, cell-division cycle, response to DNA damage, cell 

death, cell survival, patterning and axial orientation during development, differentiation, neural 

functions, circadian rhythm and others. In 1988 Ishiguro et al. [12] isolated one enzyme when they 

were studying an extract of the brain, which showed the generation of paired helical filaments of Tau 

protein kinase, typical injury of Alzheimer’s disease. 

In this moment, there is an increasing interest in the evaluation of kinases from unicellular parasites 

and fungies as targets for potential new anti-parasitic drugs. The evolutionary difference between 

unicellular kinases and their human homologues might be sufficient to allow the design of parasite-

specific inhibitors. The Plasmodium falciparum genome contains 65 genes that encode kinases, 

including three forms of GSK-3. P. falciparum is one of the Plasmodium species that cause malaria in 

humans. It is transmitted by the female Anopheles mosquito. Malaria has the highest rates of 

complications and mortality; for example in 2006 it accounted for 91% of all 247 million human 

malaria infections (98% in Africa) and 90% of the deaths. 

Leishmania is a genus of trypanosome protozoa, and is the parasite responsible for the disease 

leishmaniasis. Leishmania commonly infects hyraxes, canids, rodents and humans; and currently 

affects 12 million people in the world. There are many drawbacks to current chemotherapy for 

leishmaniasis, including problems of low efficacy, severe toxic side effects, and emerging drug 

resistance [13-15]. 

Leishmania parasites posses a complex life cycle in which the parasite passes between the sandfly 

vector and the mammalian host, during which time the parasite oscillates between rapidly dividing and 

cell cycle-arrested forms. The cell cycle of Leishmania is closely regulated, as in other eukaryotes, and 

integrated with its differentiation between the various life cycle stages. 

Trypanosomes are a group of kinetoplastic protozoa distinguished by having only a single 

flagellum. All members are exclusively parasitic, found primary in insects. A few genera have life-

cycles involving a secondary host, which may be a vertebrate or a plant. These include several species 

that cause major diseases in humans. African Trypanosomiasis disease is caused by members of the 
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Trypanosma brucei complex, is a serious health threat. It is estimated that 300,000 to 500,000 humans 

in sub-Saharan African are infected. Despite the critical need, the available therapies are becoming less 

satisfactory due to the rising level of resistance to the available drugs, the long period of treatment 

required to achieve a cure, and the unacceptable and sometimes severe adverse effects associated with 

current therapies [16]. However, optimization of the selectivity of drug candidates for parasite kinases 

becomes an issue due to the highly conserved amino acids and protein conformation of the catalytic 

domains [17-20]. Our main objective in this work was to identify numerous examples of anti-parasitic, 

anti-fungi, etc. and GSK-3 inhibitors in order to obtain a model for the optimization of selected target 

inhibitors for drug development [21,22]. 

There are more than one thousand theoretical descriptors available in the literature to represent 

molecular structures, and one usually faces the problem of selecting those which are the most 

representative for any particular property under consideration. Topological indices [23-33], the most 

commonly used molecular descriptors, have been widely used in the correlation of physicochemical 

properties of organic compounds. In chemical graph theory, molecular structures are normally 

represented as hydrogen depleted graphs, whose vertices and edges act as atoms and covalent bonds, 

respectively. Chemical structural formulas can be then assimilated to undirected and finite multigraphs 

with labeled vertices, commonly known as molecular graphs. Topological indices, also known as 

graph theoretical indices, are descriptors that characterize molecular graphs and contain a large amount 

of information about the molecule, including the numbers of hydrogen and non-hydrogen atoms 

bonded to each non-hydrogen atom, the details of the electronic structure of each atom, and the 

molecular structural features [34]. In this article, we use ModesLab software [35] for calculating 

Topological indices (see Table 1), which is very important in the area of development of molecular 

descriptors and its applications to quantitative structure-property (QSPR), quantitative structure-

activity (QSAR) relationship and drug design. ModesLab also provides a very useful way to define the 

properties of atoms, bonds and fragments by an extension of SMILES language and use these 

properties in molecular descriptors calculations. 

Table 1. Topological Indices used in the present study. 

Index Description 
χ(P), χ(C), χ(PC), χ(Ch) Randic branching index 
χv(P), χv (C), χv (PC), χv (Ch) Valence connectivity 
e(P), e(C), e(pC), e(Ch) Epsilon index 
1κ, 2κ, 3κ Kappa index 
1κ(alpha), 2κ(alpha), 3κ(alpha) Kappa (alpha) index 
Ø Flexibility index 
M1 Zagreb M1 index 
M2 Zagreb M2 index 
H Harary number 
J Balaban index 

The development of QSARs using simple molecular indices appears to be a promising alternative or 

complementary technique to drug-protein docking, high-throughput screening and combinatorial 

chemistry techniques. Almost all QSAR techniques are based on the use of molecular descriptors, 
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which are numerical series that codify useful chemical information and enable correlations between 

statistical and biological properties [36-38]. 

A large number of examples have been published in which the use of molecular descriptors has 

become in a rational alternative to massive synthesis and screening of compounds in medicinal 

chemistry [39,40]. The principal deficiency in the use of some molecular indices concerns their lack of 

physical meaning. 

2. Results and Discussion 

2.1. General QSAR for GSK-3 Inhibitors 

The development of a discriminant function [41] that allows the classification of organic 

compounds as active or non-active is the key step in the present approach for the discovery of GSK-3 

inhibitors. It was therefore necessary to select a training data set of GSK-3 inhibitors containing wide 

structural variability. Linear Discriminant Analysis (LDA) was used to construct the classifiers. One of 

the most important steps in this work was the organization of the spreadsheet containing the raw data 

used as input for the LDA because this is not a classic classifier. Herein, the schematisation of the 

paper is peculiar. Our expectation is to use a two-group discriminant function to classify compounds 

into two possible groups: compounds that belong to a particular group and compounds that do not 

belong to this group. To this end, we have to indicate somehow what group we pretend to predict in 

each case. In this regard, we made the following steps, these steps are essentially the same given by 

Concu et al. [42,43] for their QSAR study of six classes of enzymes. In this study, each compound 

may be assayed on qth different sets of conditions in the pharmacological tests, which are defined as 

Compound Assay Conditions query (CACq). These conditions are indicated in the supplementary 

material. The selection here of discriminant techniques instead of regression techniques was 

determined by the lack of homogeneity in the conditions under which these values were measured. As 

reported in different sources, numerous IC50 values lie within a range rather than a single value. In 

other cases, the activity is not scored in terms of IC50 values but is quoted as inhibitory percentages at a 

given concentration. Once the training series had been designed, forward-stepwise Linear Discriminant 

Analysis (LDA) was carried out in order to derive the QSAR (see Equation 1): 
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The statistical significance of this model was determined by examining Wilk’s  statistic, Fisher 

ratio (F), and the p-level (p). The model is based on two types of parameters, the first type are 

parameters for single molecules. The type one includes first fourth parameters in the model. The 

following parameters presented in Table 1: randic branching index (χ(Ch), χ(C)), epsilon index (e(Ch), 

e(C), e(P), e(pC)), kappa index (κ), flexibility index (Ø) and valence connectivity (χv(P)). In addition, 

we can see in the model parameters that quantify the difference between the structure of the drug and 

the structure of the drugs active for a given set of conditions CACq (see the last six parameters in the 



Molecules 2010, 15              

 

 

5412

Equation 1a-1f). We quantify this information in terms of the difference between the descriptors (Ds) 

of the drug and the average of Ds of active drugs for a given condition (see Methods section). The 

exact formulas for these terms present in the model are: 
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The introduction of this last parameter in the model (1) coincides with the i-GSK-3 activity observed 

in organic acid compounds [44] and drug connectivity may become an interesting alternative for fast 

computational pre-screening of large series of compounds in order to rationalize synthetic efforts [45-51] 

complementary to more elaborated techniques 3D-QSAR, CoMFA, and CoMSIA studies that depend on 

a detailed knowledge of 3D structure. In any case, these present models are of more general application 

than the other known methods that apply only to compounds tested in only one CAC and/or belonging to 

only one homogeneous structural class of compounds. Confirmation of this statement comes from the 

fact that the present classification function has given rise to an efficient separation of all compounds: 

with Accuracy = 99.1% in training series and Accuracy = 86.8% in validation series for the topological 

function, see Table 2 for details. The names, observed classification, predicted classification and 

subsequent probabilities for all 3,370 compounds in training and average validation are given as 

supplementary material. This level of total Accuracy, Sensitivity and Specificity is considered as 

excellent by other researches that have used LDA for QSAR studies and taking into account the great 

variety of compounds (see Figure 1), due to the fact that their structures are very different; see for 

instance the works of Garcia-Domenech, Prado-Prado and Marrero-Ponce et al. [52-67]. 

Table 2. Training and validation results. 

Group Parameter % GSKI-3 Non-active 
   Training  

GSKI-3 Sensitivity 95.3 854 42 
Non-active Specificity 82.8 77 371 

Total Accuracy 91.1   
   Validation  

GSKI-3 Sensitivity 95.3 282 14 
Non-active Specificity 84.6 179 985 

Total Accuracy 86.8   
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Figure 1. Some compounds studied in this article. 
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3. Materials and Methods 

3.1. Computational Methods 

The dataset formed by 3,370 cases was divided into 43 groups depending of their GSK-3 inhibitory 

activity and antiparasitic, antifungi, etc. activity. The model was obtained with topological descriptors. 

ModesLab (Molecular Descriptor Laboratory) version 1.5 software [35] was used to calculate all 

descriptors (see Figure 2).  

Figure 2. ModesLab software. 

 

The total analyzed variables were 189. The variables 3χ(Ch), 4χ(Ch), 3χv(Ch), 4χv(Ch), 3e(Ch), 
4e(Ch), 3χ(Ch)avg, 

4χ(Ch)avg, 
3χv(Ch)avg, 

4χv(Ch)avg, 
3e(Ch)avg, 

4e(Ch)avg, 
3χ(Ch) dif, 

4χ(Ch)dif, 
3χv(Ch)dif, 

4χv(Ch)dif, 
3e(Ch)dif, 

4e(Ch)dif was eliminated of the database because all of them were equal to 0 and 
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constants. The quality of the model was determined by examining the Wilk’s statistic, the square of 

Mahalanobis distance (D2), the Fisher ratio (F) and the number of variables in the equation. 

Discrimination functions were obtained by using the forward-stepwise linear discriminant analysis as 

implemented in Statistica 6.0. 

3.2. Multi-target Linear Discriminant Analysis (LDA) 

In this regard, we performed the following steps, which are essentially the same given by Concu et al. 

[42,43] for their QSAR study of six classes of enzymes: 

(1). We created a raw data representing each compound input as a vector made up of 1 output 

variable, 189 structural variables (inputs) divided in values (see the first term of the Equation (1)), 

averages (see the second term of the Equation (1)) and differences between values and averages 

(see the third term of the Equation (1)); and the CACq variable. CACq is an auxiliary not used to 

construct the model. 

(2). The first element (output) is a dummy variable (Boolean) called Observed Group (OG); OG = 0 if 

the compound belongs to the class to which we refer in CACq and 1 otherwise (OG = 1). We 

could repeat each compound more than once in the raw data. In fact, we could repeat each 

compound 43 times corresponding to 43 CACq Assay Conditions (see Table 3). The first time we 

used the CACq = CAC number. It means that we used the real CAC class of the compound in 

CACq. In this case, the LDA model had to give the highest probability to the group OG = 0 

because it had to predict the real class of the compound. The remnant 43 times we use an CAC 

class number different to the real in CACq and then the LDA model had to predict the highest 

probability for the group OG = 1. This indicated that the compound did not belong to this group. 

Table 3. Compound Assay Conditions query (CACq). 

Group Parameter Enzyme Isoform 
Enzyme/ 

Organism 
Species 

Activity 
(1,0) 

Condition Observ.

1 % GSK-3 beta enzyme no 0 0 = 
2 cKi GSK-3 alfa enzyme no 0 100 > 
3 EC50 (μM) no no no Cell Efficacy 0 2 > 

4 EC50 (μM) no no no 
glycogen synthesis 

stimulation 
0 inactive = 

5 EC50 (μM) no no no β-catenin synthesis 0 2 > 
6 EC50 (μM) no no parasite T. brucei 0 2 > 
7 EC50 (μM) no no virus HIV-1 0 NA = 
8 ED50 (μM) no no parasite L. donovani 0 5 < 

9 
IC50 

(ng/mL) 
no no parasite 

P. falciparum 
(chloroquine 

resistant W2 clone) 
0 NA = 

10 
IC50 

(ng/mL) 
no no parasite 

P. falciparum 
(chloroquine 

sensitive D6 clone) 
0 NA = 
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Table 3. Cont. 

11 IC50 (nM) GSK-3 alfa enzyme no 0 2000 > 
12 IC50 (nM) GSK-3 beta enzyme no 0 2000 > 
13 IC50 (nM) GSK-3 nd enzyme no 0 2000 > 

14 
IC50 

(μg/mL) 
no no bacterium M. intracellulare 0 NA = 

15 
IC50 

(μg/mL) 
no no bacterium MRS 0 NA = 

16 
IC50 

(μg/mL) 
no no bacterium S. aureus 0 NA = 

17 
IC50 

(μg/mL) 
no no cell line Human Vero cells 0 NC <> 

18 
IC50 

(μg/mL) 
no no fungus C. neoformans 0 NA = 

19 
IC50 

(μg/mL) 
no no parasite L. donovani 0 NA = 

20 IC50 (μM) GSK-3 beta enzyme no 0 2 > 
21 IC50 (μM) GSK-3 nd enzyme no 0 2 > 
22 IC50 (μM) GSK-3 no parasite P. falciparum 0 20 > 
23 IC50 (μM) GSK-3 α/β enzyme no 0 2 > 
24 IC50 (μM) no no bacterium M. intracellulare 0 — = 
25 IC50 (μM) no no bacterium MRSA 0 — = 
26 IC50 (μM) no no cell line Hep2 0 NA = 
27 IC50 (μM) no no cell line HT29 0 NA = 
28 IC50 (μM) no no cell line Human Vero cells 0 NA = 
29 IC50 (μM) no no cell line Human Vero cells 0 NC <> 
30 IC50 (μM) no no cell line LMM3 0 NA = 
31 IC50 (μM) no no cell line PTP 0 2 > 
32 IC50 (μM) no no fungus C. albicans 0 — = 
33 IC50 (μM) no no fungus C. neoformans 0 — = 
34 IC50 (μM) no no parasite L. mexicana 0 2 > 
35 IC50 (μM) no no parasite P. falciparum 0 2 > 
36 IC50 (μM) no no parasite P. falciparum D6 0 NA = 
37 IC50 (μM) no no parasite P. falciparum W2 0 NA = 
38 IC50E-9 (M) GSK-3 nd enzyme no 0 2 > 

39 
IC90 

(μg/mL) 
no no parasite L. donovani 0 NA = 

40 
MIC 

(μg/mL) 
no no bacterium 

M. tuberculosis 
(H37Rv) 

0 NA = 

41 pIC50 GSK-3 beta enzyme no 0 0 = 
42 pIC50 GSK-3 nd enzyme no 0 0 = 
43 IC50 (μM) no no no Cell Efficacy 0 2 > 

The problem in this type of organization of raw data is that the descriptor values are compound 

constants. Consequently, if these latter and LDA are based only on these values, they will necessarily 

fail when we change OG values. An inconvenient in this regard occurs if we pretend to use the model 
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for a real enzyme, since we have only one unspecific prediction and we need 43 specific probabilities, 

one confirming the real class and 42 giving low probabilities for the other CACq. We can solve this 

problem introducing variables characteristic of each CAC class referred on the CACq but without 

giving information in the input about the real CAC class of the protein. To this end, we used the 

average value of each descriptor for all enzymes that belonged to the same CAC class. We also 

calculated the deviation of all the descriptors from the respective group indicated in CACq. Altogether, 

we have then (63 topological descriptor values) + (63 topological descriptor values average values for 

CAC class) + (63 topological descriptor values deviations values for CAC class average) = 189 input 

variables. It is of major importance to understand that we never used as input CACq, so the model only 

includes as input the physicochemical-topological descriptor values for the protein entry and the 

average and deviations of these values from the CACq, which is not necessarily the real CAC class. 

The general formula for this class of LDA model is shown below (see Equation 2), where S(E) is not 

the probability but a real valued score that predicts the propensity of a compound to act as an inhibitor 

of a given class: 
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In a compact notation we write kDt(G), where Dt is the type of descriptor; G is the types of 

subgraphs studied in the molecular connectivity G = path (p), clusters (C), path-clusters (pC) and 

chains (rings) (Ch). 

LDA forward stepwise analysis was carried out for variable selection to build up the models [68]. 

All the variables included in the model were standardized in order to bring them onto the same scale. 

Subsequently, a standardized linear discriminant equation that allows comparison of their coefficients 

was obtained [69]. The square of Canonical regression coefficient (Rc) and Wilk’s statistics (U) were 

examined in order to assess the discriminatory power of the model (U = 0 perfect discrimination, being 

0 < U < 1); the separation of the two groups was statistically verified by the Fisher ratio (F) test with 

an error level p < 0.05. 

3.3. Data Set 

The data set was conformed to a set of marketed and/or reported drugs/receptor pairs where 

affinity/non-affinity of drugs with the receptors was established taking into consideration the IC50, ki, 

pki, values. In consequence, we managed to collect 1,192 examples of active compounds in different 

CACq. In addition, we used a negative control series of 2,178 cases of non-active compounds in 

different CACq. In the two data sets used, there were the following training series: 474 active 

compounds plus 896 non-active compounds (1,370 in total), predicting series: 296 + 1,164 = 1,460 in 

total. Due to space constraints the names or codes for all compounds are listed in supplementary 

material SM1 in the Supporting Information, as well as the references consulted to compile the data in 

this table. This series is composed at random by the most representative families of GSK-3 inhibitors 

taken from the literature (supplementary material SM2). The remaining compounds were a 
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heterogeneous series of inactive compounds, including members of the aforementioned families and 

compounds included in the Merck index [70]. 

4. Conclusions 

In this work we have shown that the ModesLab methodology using topological indices can be 

considered a good alternative for developing GSK-3 inhibitors in a fast and efficient way with respect 

to other methods of the literature. This approach is able to correctly classify the GSK-3 inhibitory 

activity of compounds with different structural patterns. 
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