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Abstract: The induction of phase II enzymes and phase III transporters contributes to the 
metabolism, detoxification of xenobiotics, antioxidant capacity, redox homeostasis and cell 
viability. Transactivation of the genes that encode for phase II enzymes and phase III 
transporters is coordinatively regulated by activating transcription factors in response to 
external stimuli. Comprehensive studies indicate that antioxidant phytochemicals promote 
the induction of phase II enzymes and/or phase III transporters through various signaling 
pathways, including phosphoinositide 3-kinase, protein kinase C, and mitogen-activated 
protein kinases. This paper focuses on the molecular mechanisms and signaling pathways 
responsible for the transactivation of genes encoding for these proteins, as orchestrated by 
a series of transcription factors and related signaling components. 

Keywords: phase 2 enzyme; phase 3 transporter; NF-E2-related factor 2; CCAAT-
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1. Introduction 

Biotransformation of xenobiotics including drugs is catalyzed by enzymes which are commonly 
referred to as drug-metabolizing enzymes. Most tissues and organs have detoxifying systems 
responsible for the transformation and removal of chemicals. Proteins, which include phase I, phase II 
enzymes and phase III transporters, play key roles in the metabolism, detoxification, and/or 
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elimination of exogenous chemicals introduced into the body as well as endogenous ones [1,2]. The 
metabolizing enzymes are basally expressed and/or induced by external stimuli. In addition, diverse 
phytochemicals have beneficial actions by upregulating them. 

1.1. Phase II enzyme induction 

Phase II enzymes such as UDP-glucuronosyl transferases, glutathione S-transferases (GSTs), 
NAD(P)H:quinone oxidoreductases (NQOs), and N-acetyltransferases catalyze conjugation reactions 
of exogenous and endogenous chemicals, usually after phase I reactions (i.e., oxidation, reduction and 
hydrolysis) [1]. In general, they mediate detoxification and elimination of toxicants through diverse 
reactions (e.g., glucuronidation, sulfation, acetylation and methylation), whereas phase I oxidation 
reactions may often produce reactive metabolites. If the conjugation reactions are inadequate, active 
metabolites may cause damage and injury to cells and tissues, which is frequently accompanied by 
inflammatory responses [3]. Thus, the inducers of phase II enzymes have cytoprotective effects. 

1.2. Phase III transporter induction 

Phase III transporters are expressed in many tissues, including the liver, intestine, kidney and brain, 
where they provide a barrier against drug penetration, acting as the major determinants of the systemic 
bioavailability of many drugs (e.g., absorption, distribution and excretion) [4,5]. P-glycoprotein (P-gp) 
and multidrug resistant-associated protein (MRP) transport a broad range of substrates across the cell 
membrane by utilizing the energy released from ATP hydrolysis [4]. The ATP-binding cassette (ABC) 
transporters either import or export various substrates such as sugars, amino acids, lipids, ions, 
xenobiotics and many therapeutic agents [6,7]; they have two nucleotide binding domains and two 
transmembrane domains. The nucleotide binding domain, also called as an ABC, is the main 
characteristic of transporter family, and the transmembrane domain facilitates the movement of 
substrates across the cell membranes [6,7].  

In humans, 46 ABC transporters have been identified [4,6]. Along with P-gp (or MDR1; ABCB1), 
the MDR subfamily includes MDR3 (ABCB4), and bile salt export protein (Bsep or SP-gp; ABCB11) 
[8]. The MRP subfamily consists of nine subfamilies (MRP1-9) [6]. MRP1 (ABCC1) and MRP3 
(ABCC3) are typically located on the basolateral membrane of polarized cells, whereas MRP2 
(ABCC2) mostly exists in the apical canalicular membrane, implying that MRP2-mediated transport 
increases excretion into bile, whereas MRP1/3-mediated transport does it into the urine. Organic anion 
transporting polypeptide 2 (OATP2), localized in the hepatic sinusoidal membrane, mediates ATP- and 
sodium-independent transport of compounds, including bilirubin, steroids, type II organic cations, 
thyroid hormones and bile salts [9,10]. P-gp, MRP and OATP2 that are expressed on the membrane of 
the intestinal enterocytes excrete xenobiotics into the lumen [7,11]. 

In response to various extracellular stimuli, the transactivation of phase II enzyme and phase III 
transporter genes is coordinately regulated by activating transcription factors. This paper focuses on 
the molecular mechanisms of transcriptional induction of the genes orchestrated by a series of 
transcriptional factors. 
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2. Transcription Factors that Promote Phase II and Phase III Gene Induction 

2.1. NF-E2-related factor 2 (Nrf2) 

Nrf2 is a Cap‘n’Collar/basic leucine zipper transcription factor. In the resting state, Keap1 interacts 
with Nrf2 for its degradation by Cullin 3-mediated ubiquitination in the cytoplasm [12]. When Keap1 
dissociates from Nrf2 under oxidative and xenobiotic stress, Nrf2 is phosphorylated and translocated 
into the nucleus [13]. Unlike canonical bZIP proteins, Nrf2 can not form homodimer [14]. It forms a 
heterodimer with small Maf proteins (e.g., MafF/G/K) that lack a canonical transactivation domain. 

The induction of phase II enzymes and phase III transporters depends on the activity of Nrf2. Major 
anti-oxidant enzymes contain one or more functional antioxidant response elements (AREs) in their 
promoter regions. Once Nrf2 dissociates from its Keap1 binding in response to oxidative stress, it 
translocates into the nucleus and binds ARE in the target genes. Thus, Nrf2 activation transactivates 
the genes containing ARE(s) such as GST, heme oxygenases-1 (HO-1), UDP-glucuronosyl transferase, 
NQO-1, γ-glutamylcysteine synthetase and organic anion transporters [12]. Nrf2 activation and gene 
induction contribute to the detoxification and excretion of xenobiotics. Plant or synthetic chemicals 
may have cytoprotective and chemopreventive effects by activating Nrf2 [15]. Consistently, a 
deficiency in Nrf2 abrogates the abilities of these agents to protect cells from toxicant or other stresses. 

2.2. CCAAT-enhancer binding protein-β (C/EBPβ) 

Among the members of C/EBP family, C/EBPβ is a transcription factor responsible for the 
expression of genes encoding for antioxidant and/or conjugating enzymes [16]. It binds to a C/EBP-
binding site as homo- or heterodimers. The localization and/or activity of C/EBPβ can be regulated by 
phosphorylation. C/EBPβ is phosphorylated by p90 ribosomal S6 kinase-1 (RSK1) and translocated 
from the cytoplasm into the nucleus [17]. Once in the nucleus, a phosphorylated form binds the 
C/EBP-response element [18]. Ceramide, a toxic lipid, decreased the transcriptional activity of 
C/EBPβ by reducing its phosphorylation [19]. In contrast, treatment of hepatocytes with oltipraz, a 
cancer chemopreventive agent, activated and induced C/EBPβ. The activation of C/EBPβ led to phase 
II enzyme induction, contributing to its antioxidant effect [20]. Prostaglandin J2 treatment also induces 
GSTA2 by activating C/EBPβ as well as Nrf2 [21]. In most cases, the expression of phase II genes 
may be coordinately regulated by C/EBPβ and Nrf2 that make a large enhanceosome complex. 

2.3. Hepatic nuclear factor 1 (HNF1) 

HNF1, a liver-specific gene transactivator, is a dimeric transcription regulator. HNF1α, but not 
HNF1β, exists in hepatocytes [22] and is also expressed in other tissues including kidney, intestine and 
pancreatic islets [23]. The binding of HNF1α to the cis-acting HNF1-binding element in the target 
promoters regulates the expression of genes including glucose-6-phosphatase, albumin, α-lipoprotein 

AII and B, and CYP2E1 [22,24]. The transcriptional activity of HNFs is regulated by coactivators such 
as CBP, p300 and p300/CBP-associated factor [22]. Several reports have suggested the important role 
of HNF1 in cell survival. So, HNF1α deficiency causes hepatic dysfunction [25]; inhibition of HNF1α 
triggers mitochondrial hyperpolarization and apoptotic cell death in response to toxic stimuli (e.g., 
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ceramide) [26]. For example, ceramide enhances the degradation of HNF1 [27], which might cause 
apoptosis. Furthermore, HNF recognition element has been identified in the promoter region of the 
GSTA2 gene [28]. Oltipraz treatment increased the nuclear accumulation and DNA binding of HNF1 
[27], indicating that the activation of HNF1 might contribute to its cytoprotective effect. HNF1α is a 
master regulator of several transporter families. HNF1α disruption results in significant 
downregulation of several organic anion transporters (Oat) and Oatp uptake transporters in liver and 
kidney, but increases the expression of efflux transporters (e.g., MDR and MRP) [29]. 

Liver-enriched HNF4α promotes the expression of genes involved in hepatic lipid homeostasis and 
hepatocyte differentiation [30,31]. It also regulates the expression of phase II enzymes and phase III 
transporters (e.g., UGT1A9) [32]. In addition, HNF4α, not HNF1α, binds to the Ntcp promoter. The 
HNF4α binding site located in the human steroid- and bile acid-sulfotransferase gene enhances basal 
promoter activity [33]. In fasted rats, HNF4α upregulates the basolateral bile acid transporters  
(e.g., Ntcp, Oatp1, and Oatp2) [34]. 

2.4. Peroxisome proliferator-activated receptors (PPARs) 

Currently, three members of this nuclear receptor family have been identified, namely PPARα, 
PPARβ and PPARγ [35,36]. PPARα is expressed in the liver, heart, kidney, intestine and brown adipose 
tissue. PPARβ is expressed in most adult tissues; brain, kidney and intestine are the highest expressed 
tissues. PPARγ, mainly expressed in the spleen, intestine and fat cells, is composed of two 
submembers, PPARγ1 and PPARγ2. PPARs regulate physiological functions such as lipoprotein and 
fatty acid metabolism [1,2,36-38]. In the GSTA2 gene, a PPAR-binding site cluster was identified. In 
particular, specific mutations in the peroxisome proliferator response element (PPRE) sites caused 
defect in the responsiveness [21]. PPARγ and retinoid X receptor (RXR) activate the GSTA2 gene [21]. 
In addition, the PPARγ agonist and 9-cis retinoic acid synergistically enhanced the activities of Nrf2 
and C/EBPβ [21]. 

2.5. Nuclear receptors [pregnane X receptor (PXR), farnesoid X receptor (FXR)] 

The expression of phase III transporters such as P-gp, depends on PXR [39,40]. PXR ligands 
including rifampicin, clotrimazole, mifepristone and nifedipine induced MDR1 gene in hepatocytes 
and cancer cells [2,41,42]. Constitutively activated hPXR also induces P-gp without specific ligand 
binding. A direct repeat 4 nuclear receptor response element was identified as a distinct PXR binding 
site essential for MDR1 induction by rifampin [43]. In addition, PXR activation causes the induction of 
other transporters including OATP2 [44,45], MRP2 [46] and MRP3 [47,48]. 

FXR (NR1H4) is expressed in liver, intestine, kidney and adrenal glands [49-51]. Bile acids 
including chenodeoxycholic acid are endogenous ligands of the receptor [52]. FXR has diverse 
physiological roles in the regulation of bile acid, lipid and glucose metabolism. As a transcription 
factor, it regulates the expression of genes including hepatic transporters; Bsep, MRP2 (ABCC2) and 
MDR3 (ABCB4) are present in the bile canalicular membrane and thereby help secrete bile acids (and 
other compounds) [53,54]. FXR also controls the process of bile acid absorption via apical sodium-
dependent bile acid transporter, heterodimeric organic solute transporter-α and -β. Thus, FXR is a key 
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sensor for bile acids and plays a role in maintaining bile acid homeostasis such as bile acid synthesis, 
conjugation, secretion and absorption.  

2.6. Cooperative interactions of activating transcription factors 

Diverse transcription factors cooperatively regulate the expression of phase II and/or phase III 
enzymes. The GSTA2 gene transactivation is controlled by both the ARE and C/EBP-binding sites [21]. 
A deletion of either ARE or C/EBP-binding sites prevented the PPARγ and RXRα-mediated GSTA2 
gene induction, indicating that Nrf2 and C/EBPβ binding to their responsive DNA elements are 
essential for full transactivation of the gene. In addition, the ligand-dependent transcriptional activity 

was inhibited by a mutation of the respective PPRE binding site [21], suggesting that the PPREs are 
important for the full ligand responsiveness. Thus, protein complex formation on target DNA binding 
site seems to be an important step for transcriptional activation by inducers.  

3. The Signaling Pathways for Transcription Factor Activation 

3.1. Phosphatidylinositol 3-kinase (PI3K)  

PI3K phosphorylates phosphatidylinositols at the 3 position of the inositol ring, and the downstream 
Akt-p70S6 kinase pathway regulates a variety of biological responses including cell proliferation, 
survival, mitogenesis and cell transformation [55]. PI3K has been reported to act as a positive 
regulator of Nrf2 binding with ARE [56] (Figure 1). Kang et al. showed that PI3K is involved in 
nuclear localization of Nrf2 by tert-butylhydroquinone-induced oxidative stress, and is associated with 
cytoplasmic actin rearrangement [57].  

Figure 1. The signaling pathways for transcription factor activation that leads to phase II 
enzyme and phase III transporter induction. 
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Insulin stimulates Nrf2 activity and induces GSTA2 [57]. Since Akt and RSK1, the downstream 
molecules of PI3K, are activated by insulin, the induction of GSTA2 may depend on the activation of 
mTOR complex. The finding that ceramide decreased S6K1 activity and protein synthesis [58] 
indicates that ceramide inhibits GSTA2 expression [59] at least in part through the repression of the 
mTOR pathway. Thus, mTOR signaling may be involved in the regulation of GST expression. Insulin 
also activates C/EBPs via PI3K [60]. Likewise, α-lipoic acid treatment induced phase II enzymes 
through PI3K-dependent activation of C/EBPα and C/ΕΒPβ, enhancing the ability of insulin to induce 
target genes [20] (Figure 1). In addition, the activation of C/EBPβ by oltipraz and its metabolites 
contributes to the induction of phase II genes in a PI3K-dependent manner [18,61].  

3.2. Protein kinase C (PKC) 

PKCs consist of 12 isoforms of the PKC family, which are grouped into 3 subfamilies based on 
their second messenger requirements: 1) conventional (PKCα, PKCβI, PKCβII and PKCγ), 2) novel 
(PKCδ, PKCε, PKCη and PKCθ) and 3) atypical (PKCι, PKCζ, PK-N1 and PK-N2). Conventional 
PKCs require diacylglycerol phospholipase C, Ca2+ and phospholipid for activation. Novel PKCs 
require diacylglycerol phospholipase, but not Ca2+. Atypical PKCs require neither diacylglycerol 
phospholipase nor Ca2+. In some cells, PKCζ may be at downstream of PI3K, whose activation 
depends on PI3K products [62]. 

Nrf2 activation requires phosphorylation at serine-40 by PKCδ [63,64] (Figure 1): a mutant form of 
Nrf2 (S40A) could not be phosphorylated by PKC. This mutation affects the association of Nrf2 with 
Keap1, but not the in vitro binding of Nrf2/MafK to the ARE [63,64]. The phosphorylation of wild-
type Nrf2 by PKCδ promotes its dissociation from Keap1, contributing to its stabilization. This finding 
indicates that PKCδ-induced Nrf2 phosphorylation is crucial for ARE-mediated antioxidant response. 
Treatment with PKC activator, phorbol 12-myristate 13-acetate, increased the phosphorylation of FXR. 
A study showed that the DNA binding domain of FXR was in vitro phosphorylated by PKCα and 
PKCβI [65] (Figure 1). The phosphorylation of FXR induced by PKCα directly modulates ligand-
mediated regulation of FXR target genes. Consistently, the induction of FXR target genes by 
chenodeoxycholic acid was repressed by PKC inhibition, but not by PKA or PI3K inhibition. In 
addition, PKCζ directly phosphorylates FXR at threonine 442 site. So, PKCζ knockdown decreased its 
nuclear localization [66]. 

3.3. Mitogen-activated protein kinases (MAPKs) 

Three major MAPK pathways [i.e., extracellular signal-regulated kinase (ERK), c-Jun N-terminal 
kinase (JNK) and p38 kinase] are involved in the regulation of many transcription factors, which 
affects the phase II enzyme and phase III transporter expression (Figure 1). Nrf2 activity may be 
modulated by MAPKs [67]; ERK2, ERK5 and JNK1 increase ARE activation [68-70], whereas p38 
kinase suppresses it [71].  

C/EBPβ is regulated by the MAPK pathways. Interferon γ-stimulated pathway stimulates C/EBPβ-
dependent gene expression via MEKK-MEK1-ERK1/2 and p38 kinase [72,73]. In addition, JNK 
inhibition reduced C/EBPβ expression, indicating that phosphorylation induced by JNK participates in 
C/EBPβ expression [74]. 
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The transcriptional activity of HNF4α may be regulated by post-translational modifications. 
Thirteen potential serine/threonine phosphorylation sites exist in HNF4α. It is phosphorylated by 
kinases including p38 kinase, ERK1/2, PKA, PKB, PKC and AMPK, and the phosphorylated forms 
have lower DNA binding, dimerization or transactivation activities [75,76]. JNK1 phosphorylates 
HNF4α, and reduces its interaction with DNA. Of interest, HNF1α negatively regulates its own and 
HNF4 expressions by a negative feedback loop [77]. HNF1α expression in turn depends on HNF4α 
expression, and is reduced under the condition of reduced HNF4α activity [78-80]. 

The members of the RSK family play a role in mitogen-activated cell growth, differentiation, or cell 
survival. RSK1 is a major form expressed in the liver, muscle and fat [81]. RSK, a serine/threonine 
protein kinase, is activated by ERK [82]. It contains two distinct active kinase domains. Activated 

RSK1 phosphorylates C/EBPβ and CREB [83]. 

4. The Induction of Phase II Enzymes and/or Phase III Transporters by Antioxidant 
Phytochemicals 

4.1. Genistein 

Genistein, a biologically active isoflavone found in soy, has a chemopreventive effect. Genistein 
modulates the expression of genes encoding for phase II and antioxidant enzymes. Feeding rats with 
diets containing genistein stimulated hepatic NQO-1 activity. It increased hepatic GSTA2 mRNA level, 
but decreased those of GSTM2 and GSTP1 [84]. However, GST activity was decreased in the liver of 
mice fed 1,500 mg/kg of genistein [85]. Genistein treatment repressed sulfotransferase 1E1, UGT1A1, 
UGT2B7, UGT2B15, MRP2 and MRP4 mRNA levels [86]. 

4.2. Resveratrol 

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenol compound present in grapes 
and peanuts. This agent has a variety of potential therapeutic effects. Many of the beneficial effects of 
resveratrol are a result of its antioxidant action. Resveratrol scavenges not only lipid hydroperoxyl free 
radicals, but hydroxyl and superoxide anion radicals and thus, resveratrol treatment protects cells from 
oxidative stress by increasing Nrf2 activity through Akt/protein kinase B and ERK1/2 pathways [87]. 

Resveratrol alters the profile of xenobiotic-metabolizing enzyme activity; GST was significantly 
inhibited, particularly in the lung (~76% loss of activity) after single administration of 25 mg 
resveratrol/kg b.w. A different response for UDP-glucuronosyl transferase was observed; a significant 
induction was seen (83%) in the liver, whereas a significant reduction was observed in the lung (up to 
~83% loss) after treatment with 25 mg resveratrol/kg b.w. for 7 days [88]. Resveratrol also regulates 
the expression of phase III transporters; it down-regulates MRP1 expression and thereby reverses 
doxorubicin resistance in acute myeloid leukemia cells [89]. 

4.3. Liquiritigenin 

Liquiritigenin, a biologically active licorice component, inhibited LPS-induced NO synthase 
induction [90]. After intravenous administration of liquiritigenin, bile flow rate and biliary excretion of 
bile acid, glutathione and bilirubin contents were elevated [91]. Liquiritigenin treatment markedly 
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stimulated Nrf2 translocation into the nucleus via PKCδ activation [92]. The natural compound 
enhances not only the expression of hepatic phase II enzymes but that of canalicular efflux transporters 
and basolateral uptake transporters [91] (Figure 2). Consistently, liquiritigenin treatment attenuated 
galactosamine/LPS-induced hepatitis in rats [91]. Overall, liquiritigenin has a hepatoprotective effect 
by inducing phase II enzymes and phase III transporters. 

Figure 2. The induction of phase II enzyme and phase III transporters by liquiritigenin. 

 

4.4. Sauchinone 

Sauchinone, a lignan from the roots of Saururus chinensis (Lour.) Baill, Saururaceae, has potent 
hepatoprotective and anti-inflammatory actions [93,94]. It also inhibits bone resorption [95]. In a cell 
culture model, sauchinone treatment induced HO-1 expression and activity, which in part accounts for 
its cytoprotective efficacy against oxidative injury [96]. Moreover, sauchinone enhanced nuclear 
accumulation of Nrf2, and increased ARE activity. Sauchinone protects cells from t-butyl-
hydroperoxide-induced oxidative injury, possibly through p38 kinase-mediated Nrf2/ARE-dependent 
HO-1 induction [96]. 

4.5. Dithiolethiones 

Oltipraz [4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione] is a synthetic compound that has the 
dithiolethione moiety found in the Crucifera. [97]. Dithiolethiones and some of their metabolites are 
inducers of genes encoding for phase II enzymes [18,61,98,99]. Oltipraz exerts its cancer 
chemopreventive effect by inducing these enzymes [100,101]. Nrf2 is critical for the enzyme induction 
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by oltipraz [98,102,103]. Also, oltipraz induced C/EBPβ [18,83], and antagonized the effect of 
hepatitis B virus X that represses C/EBPβ-mediated GST induction [104]. Phase III transporters are 
also induced by oltipraz treatment [105,106]. The effect of oltipraz on MRP expression is mediated 
with Nrf2 [105,106]. Thus, oltipraz’s actions seem to be cooperatively regulated by both Nrf2 and 
C/EBPβ. 

5. Conclusions 

Living organisms have their own defense mechanisms to protect themselves from cellular damage 
caused by oxidative stress. The ability of cells to maintain homeostasis during stress can be achieved 
by inducing detoxifying enzymes and transporters and consequently removing harmful substances. A 
battery of genes encoding for these proteins shares common transcriptional regulatory mechanism 
(Figure 3). Antioxidant phytochemicals activate signaling pathways responsible for the regulation of 
key transcription factors, thereby inducing phase II and phase III proteins for the improved metabolism 
and excretion of xenobiotics. 

Figure 3. A schematic representation of the mechanism by which phytochemical induces 
target genes. 
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