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Abstract: Fe3O4:PVP/Au nanocomposite synthesized via a two-step procedure was tested 
as a quasi-homogenous alcohol oxidation catalyst. It was found that the nanocomposite 
was able to carry out aerobic oxidation of alcohols in water at room temperature. Studies 
show rapid magnetic recoverability and reusability characteristics.  

Keywords: poly(N-vinylpyrrolidone); magnetite; gold nanoclusters; alcohol oxidation; 
green chemistry 

 

1. Introduction  

In recent years, energy has become an important concern, leading to the desire for better, more 
efficient catalysts to replace current industrial processes [1,2]. These days, sustainability and 
environmental friendliness are key elements to consider in the realm of catalysis. While catalysis is an 
important process for the development of starting materials, fine chemicals and pharmaceuticals, green 
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catalysis requires the synthesis of environmentally benign catalysts which can be easily removed from 
the reaction media and recycled many times with very high efficiency [3]. 

Since Haruta’s breakthrough discovery of oxide-supported Au nanocluster (Au NC) catalysts for 
CO oxidation at low temperatures [4,5], interest in gold chemistry in the field of catalysis has grown 
exponentially [6-9]. Gold has been shown to be capable catalyzing many organic transformations, 
some of them uniquely [10-16], due to the relativistic effect of the element [17] that allows for new 
modes of catalysis. This meteoric rise in popularity in gold catalysts is reflected in the recent reviews 
on the trend and future direction of this research field [7-9,18,19] and on the recent use of gold 
catalysts in an atom-economic and chemoselective total synthesis of bryostatin 16 [20]. 

Au NCs of 1.3 nm to 2 nm in diameter protected by poly(N-vinyl-2-pyrrolidone) (PVP) have been 
proven to perform aerobic oxidation of alcohols at ambient temperatures [21,22]. Other metal 
nanoclusters on magnetite have recently been reported to be active, magnetically recoverable and 
reusable [23,24]. Notably, a nano-ferrite-Pd catalyst [23] has been used in the oxidation of alcohols as 
well, albeit using H2O2 rather than molecular oxygen as the oxidant. This is encouraging as it indicates 
that the use of nano-ferrite as the support does not deactivate the supported catalyst towards oxidation 
catalysis, and the choice of oxidant can be further improved by using molecular oxygen, or even air.  

Au NCs have also been successfully attached onto magnetite either in dumbbell-shape fashion  
[25-27] or as a core-shell motif [28-30]. It has further been found that such Au NCs on iron oxides can 
perform aerobic oxidation of amines either as heterogenous catalysts [31,32], or as CO oxidation 
catalysts [25]. 

PVP-supported iron oxides are known in the literature [33-35], and have also been found to have 
good dispersity [35], which is potentially important in maintaining the “quasi-homogeneous” property 
of the composite in relation to the parent Au:PVP system [21,22,36-45] which has already been 
established. 

Although no clear mechanism has been defined for the oxidation process [46], it has been 
determined that the size of gold on the surface is not the key issue, but rather the nature of interface 
[47] and the presence of oxygen in the form of oxides [48]. 

While there has been some work done with Au NCs stabilized by PVP, Fe3O4 stabilized by PVP 
and Au nanoparticles on Fe3O4, there is a lack of information where all three elements are present, 
especially in the field of alcohol oxidation. Our work here aims to address this gap, although the 
concept of using magnetic nanoparticles as quasi-homogenous catalysis supports has been known [49]. 
Herein, we describe our attempt to make magnetically recoverable and reusable quasi-homogenous 
Fe3O4/Au PVP-stabilized catalyst for the aerobic oxidation of alcohols. 

2. Results and Discussion 

2.1. Catalyst Preparation  

The catalyst was prepared by a two-step wet chemical process, whereby the magnetite support 
stabilized by PVP [50] was first isolated, followed by the addition and reduction of the gold precursor 
to afford the desired composite catalyst. The magnetite particles were synthesized via a modified 
literature method [43,51,52], by reduction of a mixture of Fe2+ and Fe3+ ions [51,52] using ammonia 
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solution in the presence of the PVP polymer. Our novel one-pot synthesis is more environmentally 
friendly than earlier reports, as it can be carried out at lower temperatures [34,35], without the use of 
organic solvents and surfactants [53-55]. In most cases, a much stronger base like sodium hydroxide 
[35] is used for the reduction of iron salts to the magnetite core was well, and our switch to ammonia 
as a reductant addresses the waste disposal problems associated with this process. 

Magnetic recoverability is one main benefit which led to the development of this system, and as 
such, the Vibrating Sample Magnetometry (VSM) measurements are of great interest. VSM studies of 
the support and the composite (Figure 1) show hysteresis loops typical for superparamagnetic particles 
[56]. The composite Fe3O4:PVP/Au is less magnetic than its corresponding Fe3O4:PVP support, 
which is unsurprising, given the shielding effect of having gold on the outside of the PVP-stabilized 
magnetite. With regard to other known synthetic magnetic materials [35,55,56], the Fe3O4:PVP/Au 
and the Fe3O4:PVP support both show sufficient superparamagnetic behavior, as exhibited by strong 
magnetic moments of 65.6 and 84.4 e.m.u./g, respectively.  
 

Figure 1. VSM data for the Fe3O4:PVP support and the Fe3O4:PVP/Au composite, 
conducted at 100K. 

 
 

Field Emission Scanning Electron Microscope (FESEM) images of Fe3O4:PVP/Au prepared at 
275K show large particle sizes [Figure 2(b)] of approximately 80 nm in diameter, which is 
unsurprising due to the longer chain of the PVP stabilizer used. In this case, PVP(K-90) [50] with an 
average molecular weight of 360,000 was used, in lieu of the PVP(K-30) of molecular weight 30,000 
in the case of Au:PVP [43]. The longer chain of the PVP polymer is evident in the encapsulation layer 
visible around the particles. A slight, expected increase in the particle size is observed for the 
composite [Figure 2(b)] compared to the support alone [Figure 2(a)]. 
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Figure 2. (a) FESEM image of the Fe3O4:PVP support at 150,000 times magnification. 
(b) FESEM image of the Fe3O4:PVP/Au composite at 50,000 times magnification. 

 
 

Transmission Electron Microscopy (TEM) images of the Fe3O4:PVP/Au composite [Figure 
3(b)] shows inhomogeneity in the coating of Au NCs on the iron support. This is probably because 
even at low temperatures of 275K, there exists the possibility of the HAuCl4 to be instantaneously 
reduced by the Fe2+ present within the iron support should the two substances come into contact. 
Such reductions without the need for a reducing agent are known in the literature [57]. Other Au 
atoms were probably first pre-coordinated to the PVP before addition of NaBH4 give Au:PVP 
clusters similar to those of the original system [21,22,36-45,58]. TEM studies show very few small 
Au NCs, which is unexpected based on the earlier reported Au:PVP systems [21,22]. 

Figure 3. (a) TEM image of the Fe3O4:PVP support. (b) TEM image of the 
Fe3O4:PVP/Au composite. 

 

It was, however, decided to carry on with the catalytic screening based on the absence of a gold 
Surface Plasmon Resonance (SPR) band around the 520 nm region [59] in the UV-Visible 
spectrum for this composite. (Figure 4) The presence of such a band would indicate the existence 
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of large nanoclusters of gold in the catalyst, which inevitably give rise to poorer activities [22]. 

Figure 4. UV-Vis Spectra for Fe3O4:PVP/Au in milliQ water, both before and after the 
alcohol oxidation, conducted at 300K. 

 
 

2.2. Catalytic Screening and Substrate Scope 

Fe3O4:PVP/Au was screened against various substrates in aerobic alcohol oxidation. All the 
reactions were carried out using 2 atom% (per Au) of Fe3O4:PVP/Au, in the presence of 300 mol% of 
K2CO3 in water under ambient conditions. The results are summarized in Table 1 with the yields with 
Au:PVP catalyst under the same conditions in parentheses for reference. In the reaction with benzyl 
alcohol, aerobic oxidation took place giving the mixture of benzaldehyde and benzoic acid in 5% and 
94% yields, respectively (Entry 1). Although the reactivity of Fe3O4:PVP/Au was slightly different 
from that of Au:PVP, which yielded benzoic acid selectively in 98% yield, the Fe3O4:PVP/Au 
catalyst was found to be of sufficient catalytic activity to monitor with other benzylic alcohols.  

As shown in Entry 2, when screened against para-hydroxybenzyl alcohol, the corresponding 
aldehyde and acid were obtained in 42% and 30% yields, respectively, and a considerable amount of 
polymers were produced, which was contrary to the result with Au:PVP which gave the selective 
formation of aldehyde in 91% yield [60]. The Fe3O4:PVP/Au composite also gave the aldehyde as a 
major product in the reaction with para-methoxybenzyl alcohol (entry 3) in 42% yield, together with 
the acid in 32% yield. Under the same reaction conditions, exclusive formation of the acid (93% yield) 
was observed in the Au:PVP-catalyzed reaction.  

In contrast, Fe3O4:PVP/Au exhibited comparable reactivity to Au:PVP in the reaction with the 
substrates with electron-withdrawing group such as para-nitrobenzyl alcohol (entry 4) or cyclic benzyl 
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alcohol such as 1-indanol (Entry 5). In both cases, quantitative yield of the product was obtained under 
the same reaction conditions.  

 
Table 1. Aerobic alcohol oxidation of various benzyl alcohols by Fe3O4:PVP/Au. Values 
in parentheses correspond to those for the established Au:PVP catalyst [39].  

300K

catalyst (2 atom %)
K2CO3 (300 mol %)

+

1 2
R

OH

R
CHO

R
CO2H

 
Entry R Time (h) GC Yield (%) 

1 2 
1 H 6 5 94 (98) 
2 p-OH 8 42a (91) 30a (8) 
3 p-OMe 3 42 32 (93) 
4 p-NO2 24 - 99 (99) 
5 1-indanolb 0.5 98 (>99) - 

a Isolated yield. The remainder of the substrate was polymerized. 
b Product is 1-indanone. 

 
2.3. Recoverability and Reusability Characteristics  

The recoverability and reusability of the Fe3O4:PVP/Au catalyst is one of its key features. The ease 
of recoverability is demonstrated in Figure 5. A typical duration for recovery of the Fe3O4:PVP/Au 
composite is 1 minute. The neodynium magnet used for retrieval has a pull force of over 35 pounds, 
much more than the usual magnetic stirring bar. Hence, during the reaction, the catalyst remains 
dispersed in solution as seen in Figure 5(a), even for the catalysis involving para-nitrobenzyl alcohol 
which has a 24-hour reaction time. Vigorous stirring and the much weaker magnetic field of the 
stirring bar ensures that the monodispersity is maintained in solution. 

The ability to recover the catalyst quickly gives us the option of first recovering the catalyst, 
followed by neutralization of the reaction mixture only. The neodynium magnet is applied to first 
magnetically separate the catalyst, and the reaction mixture decanted into another vessel, with 
washing, before addition of acid is done to neutralize the base used in the catalysis. This solves one of 
the key problems of the older Au:PVP system, i.e. the aggregation of gold in the presence of acid. In 
Figure 4, this is exhibited by a lack of growth of an SPR band at the region around 520 nm [59]. 
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Figure 5. (a) The composite dispersed in water during the reaction. (b) Magnetic recovery 
of the composite after the reaction, using a strong external neodynium magnet. 

 
 

Stark and his co-workers reported that carbon-coated cobalt particles exhibit rapid magnetic 
separation ability due to the strong magnetic saturation [61]. In comparison with Stark’s example, the 
above Fe3O4:PVP/Au showed slower recovery. This is unsurprising, given the lower magnetic 
saturation values caused by the use of PVP, which forms a protective film around the magnetic core 
[Figure 2(a)]. In contrast, this protective film serves to protect the magnetite from oxidation during 
storage. The samples are stable for 1-2 months at room temperature without having to store them under 
nitrogen atmosphere. 

Table 2. Recoverability studies for the aerobic oxidation of benzyl alcohol by 
Fe3O4:PVP/Au. 

300K

catalyst (2 atom %)
K2CO3 (300 mol %)

+

1 2

OH
CHO CO2H

 
Entry Cycle GC Yield (%) Conversion (%) 

1 2 
1 1 5 94 99 
2 2 6 92 98 
3 3 8 90 98 
4 4 8 89 97 
5 5 6 88 94 

 
To prove the magnetic recoverability and reusability of the composite, the catalyst was used to 

oxidize simple benzyl alcohol for 5 cycles. Under the standard conditions of benzyl alcohol oxidation 
with 2 atom% (per Au) of Fe3O4:PVP/Au, in the presence of 300 mol% of K2CO3 in water under 
ambient conditions for six hours, it can be concluded that Fe3O4:PVP/Au possesses satisfactory 
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reusability although conversion yield was slightly decreased to 94% after 5 cycles (Table 2). Like 
other examples [62], the magnetite cores are fairly stable under the reaction conditions, therefore the 
slight decrease in conversion yield might be due to the aggregation of gold clusters. It is noteworthy 
that Au:PVP catalysts [39] could not be reused in the reaction with benzyl alcohol because the 
aggregation of the catalyst by benzoic acid, the product, was unavoidable, causing the drastic 
deactivation of the catalyst. While the star polymer variant of the system with LCST-type 
thermosensitiveness [45] gave superior reusability in the oxidation of benzyl alcohol to benzoic acid in 
>99% conversion over six cycles, the current magnetically recovery system might be easier in practical 
operation.  

3. Experimental  

3.1. General 

The composites prepared were characterized by VSM, UV-visible (UV-vis) optical spectroscopy, 
FESEM, and TEM. VSM studies were performed on a LakeShore 7400 calibrated with a Ni Sphere 
Model 730908 with field applied with a 4-inch magnet across a gap of 1.5 inches. UV-vis absorption 
spectra were recorded at ambient temperature using a double-beam spectrophotometer (V-670, 
JASCO). FESEM studies were conducted on a JEOL 6701F Spectrometer. TEM images were recorded 
at an acceleration voltage of 100 kV (Hitachi H-7500) with a typical magnification of 100,000. 

3.2. Preparation of Fe3O4:PVP Support  

The Fe3O4:PVP support with various PVP chain lengths can be prepared by the rapid and 
simultaneous reduction of a FeCl2-FeCl3 (1:2) mixture by NH4OH in an aqueous solution of PVP at 
353 K using Schlenk techniques. Specifically, PVP (K-90) (555.5 mg, 5 mmol in monomer units) was 
added to degassed milliQ water (10 mL) and stirred for 30 minutes at room temperature to obtain an 
aqueous solution. 2 M FeCl2 in 2 M HCl (125 μL, 0.25 mmol) and 1M FeCl3 in 1M HCl (500 μL, 0.5 
mmol) were added and the resulting mixture was stirred slowly at ambient temperature for another 30 
mins under inert atmosphere. The temperature was then raised to 353 K and the stirring rate increased. 
NH4OH (6.25 mL of 0.7 M solution diluted to 40 mL with degassed milliQ) was injected under inert 
conditions and with vigorous stirring. After a further 1 h of stirring, the resulting hydrosol of 
Fe3O4:PVP was purified via magnetic decantation three times using 20 mL of degassed milliQ. 
Finally, the black Fe3O4:PVP solid was dried in vacuo to obtain powders for easy storage.  

3.3. Preparation of Fe3O4:PVP/Au Composites  

The Fe3O4:PVP/Au composite was prepared by the rapid and simultaneous reduction of a HAuCl4 
by NaBH4 in an quasi-homogenous solution of the respective Fe3O4:PVP supports at low temperature 
using Schlenk techniques. A quasi-homogeneous solution (25 mL) of Fe3O4:PVP (25.0 mg) was 
prepared by sonication for 45 mins in an ice bath under inert atmosphere. To the solution HAuCl4 
(833.4 μL of 50 mM solution, 41.67 mmol) was added at 275 K under vigorous stirring. After stirring 
for 30 min at 275 K, the aqueous solution of NaBH4 (0.1 M, 2.5 mL) was rapidly injected into the 
mixture and further stirred for 1 h. The resulting hydrosol of Fe3O4:PVP/Au was dialyzed three times 
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by magnetic decantation. Similarly, the black Fe3O4:PVP/Au solid was dried in vacuo to obtain 
powders for easy storage.  

3.4. General Procedure for Aerobic Oxidation of Benzyl Alcohols  

Aerobic oxidation of the alcohol substrate 1 to the corresponding aldehyde 2 was carried out using 
an organic synthesizer (EYELA, PPS-2510). Changes were made to the earlier process [39] to 
accommodate the magnetic recovery process, as the Fe3O4:PVP cores are unstable toward mineral 
acids. Benzyl alcohol (0.25 mmol), K2CO3 (103.6 mg, 0.75 mmol), and H2O (5 mL) were placed into a 
test tube (Φ = 30 mm). Fe3O4:PVP/Au (15.1 mg, 2 atom %) was first added to degassed milliQ water 
(10 mL) and sonicated for 45 minutes to obtain a quasi-homogenous solution. This solution was added 
to the reaction mixture and stirred vigorously at 300 K. The catalyst was separated magnetically using 
a commercial neodynium magnet for retrieval, and the reaction solution quenched with 1 M HCl (1.5 
mL). The products were extracted with ethyl acetate (3x20 mL) and dried in vacuo. The residue was 
redisssolved in ethyl acetate (30 mL) and a portion (200 μL) of this crude mixture was added to ethyl 
acetate (1.5 mL) and 6 mM hexadecane (200 μL) as internal standard, to make up the solution 
analyzed using gas chromatography (Shimadzu, GC-2014).  The GC yield was estimated from the 
calibration curve.  

4. Conclusions  

To date, this is the only known report on the use of PVP as a stabilizer to support both 
magnetite and gold nanoclusters to form a composite. The benefit to such a design is the ability to 
effect the magnetic recoverability of the magnetite and the aerobic catalytic oxidation ability of the 
nanoclusters while retaining the quasi-homogenous solubility of the parent Au:PVP catalyst. Such 
a quasi-homogenous catalyst has a larger surface area compared with heterogenous catalysts, as 
well as better potential in terms of substrate scope as the catalysis can be done in one phase. 

In our preliminary catalytic studies, we have found that Fe3O4/Au stabilized by PVP (K-90) 
show good activity, selectivity and recoverability, despite a lack of small Au NCs (~ 1.3 – 3 nm) 
seen in the TEM images. This points to two possibilities, one of which is that there are very small, 
sub-nm clusters responsible for the high activity, which are not visible in the TEM. Another is that 
the support so greatly enhances activity that it overcomes the size requirement of the gold clusters, 
similar to heterogenous CO oxidation catalysts. 

Compared with our earlier systems, the magnetic recovery process possesses several benefits: 
one is that the reuse of the catalyst is much easier and more speedy. Another is that the recovery 
operated before the neutralization of the reaction media can prevent the significant aggregation of 
the catalyst, which is proceeded under acidic conditions and which causes deactivation of the 
catalyst.  
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