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Abstract: The conversion of molecular nitrogen to ammonia is a key biological and 

chemical process and represents one of the most challenging topics in chemistry and 

biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via 

an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, 

industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to 

ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and 

pressure. This process accounts for the production of millions of tons of nitrogen 

compounds used for agricultural and industrial purposes, but the high temperature and 

pressure required result in a large energy loss, leading to several economic and 

environmental issues. During the last 40 years many attempts have been made to 

synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild 

conditions of the nitrogenase enzymes. Several compounds, almost all containing transition 

metals, have been shown to bind and activate N2 to various degrees. However, to date 

Mo(N2)(HIPTN)3N with (HIPTN)3N= hexaisopropyl-terphenyl-triamidoamine is the only 

compound performing this process catalytically. In this review we describe how Density 

Functional Theory calculations have been of help in elucidating the reaction mechanisms 

of the inorganic compounds that activate or fix N2. These studies provided important 

insights that rationalize and complement the experimental findings about the reaction 

mechanisms of known catalysts, predicting the reactivity of new potential catalysts and 

helping in tailoring new efficient catalytic compounds.   

OPEN ACCESS



Molecules 2011, 16                            

 

 

443

Keywords: nitrogen fixation; nitrogen reduction; biomimetic catalyst; Density Functional 

Theory; DFT; reaction mechanisms 

 

1. Introduction  

A long-standing holy grail of chemistry is the fixation of molecular nitrogen. Nitrogen is ready 

available in the air, but due to its triple bond, its non polarity and to its large HOMO-LUMO gap this 

molecule is highly inert and its use as a feedstock is challenging [1-3]. 

In Nature the highly specialized enzymes nitrogenases, expressed by soil bacteria, perform the 

important function of fixing N2, converting the nitrogen present in the atmosphere into ammonia under 

mild conditions of temperature and pressure [4]. In the Mo containing nitrogenase this function is 

performed at an iron-molybdenum cofactor cluster (MoFe7S9) usually referred to as FeMo-co (Figures 

1a and b), where the electrons for the activation of N2 are transferred by the Fe protein, which contains 

a Fe4S4 cluster, and by a P cluster, which contains a Fe8S7 unit (Figure 1a) [4,5].  

Figure 1. (a) Mo containing nitrogenase enzyme (PDB code: 1N2C), only half of the 

protein is shown for clarity. In the upper part the two chains of the Fe protein are shown in 

which the adenosine diphosphate (ADP) units and the Fe4S4 cluster are represented in van 

der Waals spheres. These are involved in the electron transfer to the catalytic unit. In the 

lower part of the picture is represented the MoFe protein where are placed the P-cluster and 

the FeMo-co, which mediates electron transfer and which performs N2 fixation, 

respectively. In (b) FeMo-co of the nitrogenase is shown; In (c) a ball and stick 

representation of the Schrock’s Mo catalyst is provided. Hydrogens are omitted for clarity. 
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Despite the large number of experimental and theoretical studies the detailed mechanism by which 

the enzyme fixes N2 under ambient conditions is not clear [4-16]. The synthesis of ammonia is, 

however, important for the industrial production of fertilizers, crucial for sustaining the World’s 

agricultural production. Ammonia is obtained, industrially, via the Haber-Bosh process on the surface 

of a heterogeneous iron catalyst under drastic temperature and pressure conditions of 500 °C and  

150-200 atm. This process accounts for the production of over 100 millions of tons of ammonia 

annually. Nevertheless, it uses about 1% of human energy consumption, raising several economic and 

environmental issues [2,4]. Therefore, inorganic chemists have been occupied for decades to find 

efficient biomimetic catalysts able to perform the same function of nitrogenases under the same mild 

conditions [3]. Unfortunately, cubane clusters that chemically resemble the enzymes exhibit only a 

modest reactivity towards N2 activation [1]. Instead, mono or dinuclear transition metal complexes can 

activate N2 to various degrees [17]. After the discovery of the first transition metal-N2 complex, 

[Ru(N2)(NH3)5]
2+, a large number of metal complexes coordinating N2 has been isolated for almost all 

transition metals [18]. These include, among many others, the first Mo-N2 complex, trans-

[Mo(N2)2(Ph2PCH2CH2PPh2)2], or the mono and dinuclear ruthenium-sulfur (Sellmann-type) 

complexes [17-20].  

Figure 2. Inorganic compounds discussed in this review. i-Pr, Me, Ph, and But, Cp* 

abbreviations stand for isopropyl, methyl, phenyl, tert-butyl, and 

pentamethylciclopentadienyl substituents, respectively. 
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However, only in 2003 the Mo(N2)(HIPTN)3N (with (HIPTN)3N=hexaisopropyl-terphenyl-

triamidoamine) catalyst (I, Figure 2) has been proven to convert nitrogen into ammonia with an overall 

yield of 65% [21]. This is so far the only inorganic compound able to perform this function 

catalytically under ambient conditions and in the presence of a suitable proton and an electron source. 

Hence, it represents a breakthrough in the efforts to find a homogeneous catalyst for N2 fixation. Due 

to the importance of I, a large number of experimental and theoretical studies has been carried out to 

characterize in detail its catalytic mechanism [3]. 

The number of inorganic catalysts synthesized with the aim of activating molecular nitrogen is 

impressive [17] and among these only some complexes can produce NH3 from N2. In this review we 

focus: (i) on theoretical studies performed to understand the reaction mechanisms of the compounds 

for which NH3 production has been observed experimentally; (ii) On calculations performed to predict 

if compounds which activate N2, would perform nitrogen fixation with the same mechanism as I 

(Schrock’s mechanism) or via direct N2 hydrogenation; (iii) On computational studies performed to 

assess the performance of the catalysts depending on the ligands and transition metals employed 

(computational design of new catalysts). Therefore, the aim of this review is to show how the 

theoretical studies can be a crucial help to understand and predict reaction mechanisms, providing a 

detailed picture at atomistic level of the intermediates involved in the catalytic cycles and unveiling the 

electronic and structural properties of real or potential nitrogen fixing catalysts. 

 

2. Density Functional Theory in the Study of Inorganic Catalysts 

Facing the problem of nitrogen activation is a challenge from the experimental point of view. In 

fact, understanding the reaction mechanism of the biological systems or their biomimetics, as well as 

the electronic, structural and thermodynamic properties that drive the enzymatic/catalytic reactions can 

be difficult or not accessible to experiments. Theoretical methods, and in particular Density Functional 

Theory (DFT), have been of valuable help to predict the reactivity of both transition metal enzymes 

and catalysts, assessing which is the most likely reaction path (when multiple paths are possible), 

determining the structures of reactants, of (known or unknown) intermediates, products, transition 

states and elucidating the structural electronic properties of all these species [22-24].  

A rigorous description of DFT is already available in many reviews [25-29]. Hence, here we only 

provide the basic concepts of the method and we highlight the problems faced by DFT calculations 

when dealing with inorganic catalysts. DFT describes the electronic structure of atoms and molecules 

in terms of the electron density () of the N-electron system. In contrast to wavefunction methods 

(such as Hartree-Fock (HF) and post-HF),  is the central quantity in DFT as the ground state energy 

of the system is a unique functional of . An exact expression of the total energy as function of  is 

unknown. Kohn and Sham (KS) solved this problem by replacing the true kinetic energy of the real N-

electron system with that of a system of non-interacting N-electrons. Within the KS formulation the 

central issue becomes the expression of the exchange-correlation (XC) functional term as a function of 

 In fact, no exact analytical form of this exists [27]. Different approximations have been proposed to 

account for this problem and the quality of the DFT results is strictly related to the functional used to 

evaluate the XC energy contribution. Among the different approximations, one of the most popular is 

gradient-corrected one, in which the XC term depends on  as well as on its gradient. Typical 
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examples of this are the BLYP [30,31] BP [30,32], PBE [32,33] and PW91 [34] functionals. These 

account for both the electron correlation and the exchange contributions in an approximate manner. 

However, an improvement to the accuracy of the gradient-corrected XC functionals has been achieved 

by combining the DFT-exchange functional term with the Hartree-Fock exact exchange. This approach 

led to the development of hybrid functionals, among which B3LYP is the most popular [31,35,36]. 

Many other types of functionals have been created over the years by different combinations of the DFT 

exchange term with the exact HF exchange [27]. However, none of these hybrid functionals solves all 

the issues associated to the treatment of transition metal compounds. Furthermore, their use is still not 

accessible to codes, which perform periodic calculations since they are too computationally expensive 

to be used with plane waves basis sets. The choice of the most appropriate XC functional for the 

system in study is, nevertheless, fundamental as this usually affects the energetics (thermodynamic 

stabilities and free energy barriers) of the catalytic reactions [37], redox potentials [38], calculated 

spectroscopic properties etc. to a very large extent. In contrast, the structural properties of these 

molecules are usually not markedly affected by this choice. 

Another problem, common to all XC functionals, is the self interaction [39]. This effect arises from 

the approximate form of the exchange term that does not totally cancel the interaction of an electron 

with itself. Consequences of this are, among others, that the eigenvalue of the highest occupied Kohn-

Sham orbital does not correspond to the ionization potential and unphysical delocalization of the 

electron density may occur in open shell systems, as frequently transition metal compounds are [39]. 

Although different approaches have been proposed to correct this error, they are usually quite 

demanding from the computational point of view [27].   

An issue that is strictly connected with the theoretical treatment of inorganic complexes is an 

accurate description of correlation [27]. In fact, transition metals present partially filled valence d 

shells, which result in a number of nearly degenerate electronic states (static correlation). In addition, 

correlation effects arise also from electron-electron repulsion at short range (dynamical correlation). 

Correlation is completed neglected in Hartree-Fock formalism and it would be necessary to consider 

multireference systems to account for it [27]. However, accurate correlated methods are highly 

computationally expensive and their use is hampered already in the treatment of medium size 

inorganic molecules. By contrast, DFT, although being a single reference method, accounts for 

correlation effects in an accurate and computationally efficient manner, but the accuracy of the 

calculations markedly depends on the XC functional used.  

Finally, DFT does not account for dispersion forces, which are at the basis of -stacking or 

hydrophobic interactions. These may be important to reproduce the structural and energetic properties 

of inorganic catalysts [40-42]. This issue has been only recently addressed by some hybrid functionals 

[42-44]. 

DFT is computationally quite efficient and it is used for systems of up to thousands of atoms [45]. 

A transition metal catalyst is usually sensibly smaller, but if one wants to individuate the most likely 

catalytic path, several possible intermediates and transition states have to be considered. This search 

can be computationally demanding even for a medium size catalyst. Hence, a reduced model is most 

commonly used, after verifying that it reproduces the main electronic and structural features of the real 

catalyst. Sometimes a hybrid quantum-classical (QM/MM) approach is also introduced [46]. In this 

approach part of the catalyst is treated at QM level, while the remaining part is considered at force 
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field MM level [23,47]. Furthermore, if one wants to consider explicitly the solvent in which the 

catalytic reaction occurs the number of atoms increases rapidly. The most common approach adopted 

in the quantum-chemistry community to address this aspect is the use of implicit solvation models, in 

which the solvent is represented as a continuum medium [48-52]. These models allow estimating the 

solvation free energies in a computationally efficient manner. Yet, this approach is not appropriate if 

the solvent is directly involved in the reaction or if hydrophobic or hydrogen bonds interactions 

contribute to the reaction energetics [42]. An alternative to this is the use of QM/MM methods in 

which the catalyst is described quantum mechanically, while the solvent is treated at the MM level 

[28,53]. 

In practice, to perform DFT calculations a careful comparison with experimental data (and/or 

higher-level calculations, when experimental data are not available) is essential to establish the 

reliability and predictability of the adopted computational protocol. Once this aspect is verified, DFT 

calculations can complement experimental findings and predict structural, kinetic and thermodynamic 

properties of the systems studied [22]. Nowadays DFT represents the best compromise between 

accuracy and efficiency, and it is hence the theory of choice to study the electronic properties and the 

reactivity of transition metal catalysts.  

3. N2 fixation by Mo Catalysts  

To date, molybdenum complexes are the only organometallic compounds able to catalyze the 

reduction of molecular nitrogen to ammonia under mild conditions. In particular, MoN2((HIPTN)3N) 

(I, in Figure 2), discovered by Yandulov and Schrock in the 2003 [21], can produce ammonia with a 

catalytic yield of 60-65% under ambient conditions, in heptane media, using 2,6-dimethylpyridinium 

(lutidinium, LutH+) and decamethylchromocene [(Cp*)2Cr] as proton and electron sources, 

respectively. For its good and exclusive catalytic performances among all other inorganic catalysts 

synthesized to date, I represents a milestone in the research of new methods for the synthesis of 

ammonia. The only other catalytic Mo compound known to date produce in fact hydrazine and not 

ammonia as final product [54]. 

In recent years a large number of experimental [55] and theoretical [56] investigations have been 

carried out to rationalize the catalytic mechanism of I [42,57-61]. However, some important details of 

this reaction are still controversial. In this section we will provide an overview of the theoretical 

investigations performed so far on this topic. 

Since several reaction intermediates have been isolated by Schrock et al. [21], a mechanism has 

been proposed (Schrock’s cycle, Scheme 1) in which the reaction proceeds via the stepwise addition of 

protons and electrons, that, in six catalytic steps, leads to the release of two ammonia molecules. 

According to the Schrock’s cycle the reaction proceeds from the MoN2 (1, Scheme 1) via the addition 

of a proton to the N of the dinitrogen unit. This is followed by a one-electron reduction, leading to the 

formation of a diazenido complex 2. The reaction proceeds with a protonation and subsequent 

reduction with formation of a positively charged and neutral hydrazido intermediates, respectively (3, 

Scheme 1). An additional protonation leads to a positively charged hydrazinium intermediate 4+. From 

this compound the first ammonia is released and the subsequent reduction results in the formation of a 

nitrido complex 4. The following stepwise additions of protons and electrons lead to the formation of 
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imido, amido and amine compounds 5-7. The calculations reveal that the energetically most difficult 

steps are the conversion of MoNNH to MoNNH2 and of MoN to MoNH [3]. Finally, the regeneration 

of I goes through a direct coordination of N2 to the MoNH3, avoiding the formation of a naked 

intermediate [3]. In spite of a large amount of experimental data available for this catalytic cycle, the 

theoretical calculations on this topic still remain challenging.  

Scheme 1. Reaction mechanism of the Schrock’s catalyst. Reaction energies (kcal/mol) are 

reported as a sum of consecutive protonation and reduction steps. In the figure the 

protonated intermediates, referred in the text with the same number of the corresponding 

neutral compound followed by a +, are not shown. The colours correspond to theoretical 

studies in which different approximations of R have been used; namely R=H [62], R=Ph 

[42] and R=HIPT [58]. Available experimental free energies are reported in black. 
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A complete discussion of the theoretical results found for every step of the catalytic cycle has been 

recently and accurately reviewed by Schrock [3] and Shenk et al.[58]. In these papers every reaction 

step is discussed in view of the theoretical and experimental data available in the literature. Therefore, 

we will not discuss this aspect in detail here, but we would rather highlight how different approaches, 

used within the DFT framework, have addressed different aspects of this key catalytic process. 

Hopefully, this will give the reader a flavour of the utility and the difficulties emerged in applying 

DFT methods to the study of the Schrock’s catalyst. 

A general agreement is found concerning the geometries of the different intermediates for all the 

different computational protocols employed so far. The geometrical properties of the compounds are in 

good agreement with the experimentally determined ones also when different XC functionals are used. 

Nevertheless, the most debated aspect of the DFT investigations on the Schrock’s cycle concerns the 

calculation of reaction (free) energies of the various steps. Remarkably, appreciable discrepancies have 

been found for the H/G estimated with different computational protocols (see Scheme 1). In fact, 

every group addressed this problem using a different computational approach. Studt et al. [62] 

calculated the reaction free energy differences for each step of the catalytic cycle using B3LYP 

[31,35,36] and considering a reduced model of I, where the HIPT groups are replaced by H atoms. 

However, this model is too simplified to correctly account for the reaction energies. In fact, Le 

Guennic et al. [63] observed that the geometry of the triamidoamine ligand is not reproduced correctly 

in the amine intermediate. This prompted the use of other models of the catalyst where the HIPT 

substituents were simplified less drastically. In particular, Le Guennic et al. [63] tested models of 

increasing complexity replacing HIPT with a CH3, a 3,5-(C6H2)2C6H3 and a 3,5-(2,4,6-Me3C6H2)C6H3. 

In all these compounds the geometry of the amine intermediate was correctly reproduced and, thus, 

these models appear to be more reliable with respect to the most simplified one. Their computational 

investigation, carried out employing B3LYP [31,35] and BP [30,32], shows significant differences in 

the energy between the most simplified and the larger models, in particular for the step involving 

NH3/N2 exchange [63].  

In a different paper Cao et al. [60] replaced the HIPT with a phenyl and they carried out a 

characterization of the reaction mechanisms on both the Schrock’s catalyst and the nitrogenase 

enzyme. This study, carried out with BLYP [30,31] and PW91 [33], assessed that the energetics of the 

biological and the inorganic processes were similar. However, the proton and electron sources 

considered in this study are different from those used experimentally by Yandulov et al. [21] and this 

prevents a comparison with other theoretical data.  

Subsequently Magistrato et al. [42] investigated the catalytic reaction using static and dynamic 

(Car-Parrinello, CP) [64] within a BP-DFT [30,32] approach. In these calculations each HIPT is 

replaced by a phenyl, after testing via QM/MM calculations that the reduced model correctly 

reproduces the structural features of I. This type of model, previously proposed also by Cao et al. [60], 

represents a good compromise between accuracy and computational efficiency. 

As in previous studies, Magistrato et al. observed remarkable discrepancies between calculated and 

experimental reaction free energies [42]. Therefore, for those steps for which G was known 

experimentally they also performed calculations with different computational protocols, namely 

different localized basis sets (6-31+G-(d) or 6-311++G(d,p)) and different XC functionals (B3LYP, 
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[30,31,35] B3P [30,32,35], PW91 [33], BHandHLYP [30,35], and BHandH [30,35]). This allowed 

testing the influence of the level of theory on calculated reaction (free) energies of the Schrock’s cycle. 

Moreover, Magistrato et al. accounted also for the effect of explicit solvent on the reaction free 

energies. In addition to a continuum solvation model, used also in previous studies, they adopted a 

micro solvation approach, including discrete number of solvent molecules (up to four). The inclusion 

of explicit solvent reduces the errors of the reaction free energies for protonation steps within the limit 

of DFT accuracy. This improvement is due to hydrophobic interactions present between the catalyst 

and the solvent that are totally neglected in the implicit solvation model. In contrast, the micro 

solvation approach has no effect on the discrepancies observed for the G of the reduction steps [42]. 

These latter, in fact, seem to be particularly sensitive to the choice of the XC functional and, in this 

respect, B3LYP [31,35,36] represents the best choice. Most importantly, the comparison of the 

different computational protocols employed in this paper gives an important picture of the accuracy 

and reliability of DFT in this kind of theoretical investigations. 

Alternative reaction pathways have been also proposed with respect to that originally formulated by 

Yandulov et al. [21]. In particular, Reiher et al. have accurately investigated the first proton addiction, 

as this appears to be an energetically crucial step for the catalytic cycle. In principle, the formation of 

the neutral diazenido complex can occur via a protonation and subsequent reduction of Mo-N2 or vice 

versa. DFT calculations, in which the two possibilities have been considered, show that the protonation 

is more feasible before the reduction simply for thermodynamic reasons and this feature is common to 

all subsequent steps of the catalytic cycle [58]. 

Moreover, Schenk et al. [58], employing as a model the complete catalyst, considered a possible 

alternative route in which the protonation does not occur directly on the substrate, but rather the proton 

is transferred to one of the equatorial N atoms of the (HIPTN)3N ligand and only after reduction it 

migrates on N of the substrate. This mechanism is the preferred one for the formation of MoNNH (2) 

and MoNNH3
+

 (4
+), while for MoNNH2 (3) the direct protonation of the N group is preferred by more 

than 12 kcal/mol. In addition, for 3 different MoN2H2 isomers have been considered [58]. DFT 

calculations show that the cis and trans-hydrazido isomers are only 9.1 kcal/mol and 4.2 kcal/mol 

higher in energy than the isodiazene structure, respectively. This does not allow excluding that a side 

reaction, involving the formation of these isomers, may take place.  

Interestingly, theoretical evidences highlight that, when the H atom arrives in the vicinity of the 

N2H2 group, the first NH3 starts leaving the catalyst. This reaction can take place even in absence of a 

reductant. In the fourth, the fifth and the sixth steps the protonation occurs directly on the N atom of 

the substrate [58]. At variance with previous works, these authors have adopted also a ‘one-pot model’ 

for the protonation steps in which acid/base molecules have been considered simultaneously in the 

calculations. This approach did not show any significant energetic difference from the isolated 

molecule one. The very careful and detailed computational study performed by Schenck et al. [58] 

reproduces experimental reaction free energies quite accurately. Therefore, the authors attributed the 

discrepancies observed in previous theoretical works mainly to the use of reduced model systems. 

A crucial step for the development of an efficient Mo catalyst is the substitution of NH3 in the 

amine complex with a new N2 to regenerate the catalyst and start a new catalytic cycle. In fact, a too 

strong or too weak binding of the two molecules can drastically influence the turnover of the catalyst 

as well as its quality (catalyst poisoning) [57]. 
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From the experimental point of view the G for the NH3/N2 exchange requires 1.4 kcal/mol. This 

step has been investigated by different groups, but the experimental reaction free energy has been 

always overestimated by more than 4 kcal/mol [42,57,58,62].  

Scheme 2. Chatt’s reaction mechanism. The most likely reaction path is highlighted with 

red arrows. Reaction free energies calculated considering HBF4 in Et2O as proton source 

are reported, while, in parenthesis, free energies calculated considering lutidinium as 

proton source are also given.   

 

Recently, this step has been also investigated by Schenk et al. [57] using CPMD. In this work the 

authors studied the NH3/N2 exchange in the neutral form of the catalytic complex. They have supposed 

two trajectories for the approach of N2 and for the release of NH3. The two trajectories consist of a 

route on the plane determined by the three equatorial amide atoms of the triamidoamine ligand, and of 
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a second route from the axial position occupied by the substrate. Following the two trajectories, the 

authors identified a six-coordinated intermediate with N2 and NH3 in the equatorial and axial position, 

respectively. A calculation of the infrared spectra (IR) has been done to test whether the Mo(NH3)(N2) 

intermediate could be experimentally detected. The comparison of experimental and calculated IR 

spectra of the MoN2 complex assesses the good accuracy of the calculations, suggesting that, in 

principle, the formation of the six-coordinated intermediate could be monitored experimentally 

observing the N-N stretching mode near 2,000 cm-1. Finally, Schenk et al. have performed a 

computational design of peripheral ligands to increase the efficiency of the Schrock-type catalyst, 

identifying new potential candidates, which gave promising computational results [59]. 

The detailed characterization of the Schrock’s catalytic cycle has also revitalized the interest 

towards similar reaction mechanisms. Historically Schrock’s cycle was anticipated by Chatt’s cycle 

(Scheme 2), which is based on compounds of formula M(N2)2L2 with M=Mo or W and L=1,2-

bis(diphenylphosphino)-ethane=dppe (II in Figure 2) or 1,2-bis(diethylphosphino)-ethane=depe. These 

compounds did not undergo a true catalytic cycle. 

Interestingly, Stephan et al. have investigated the energetic profile of Chatt’s cycle considering a 

Mo complex in which the real phosphine ligands are replaced by H2PCH2CH2PH2 (diphosphinoethane, 

dpe) (1 in Scheme 2) and the position trans to N2 is occupied by a fluorine [65]. The authors have 

studied the complete reaction path for NH3 production and they have compared it with Schrock’s cycle 

[65]. Their results indicate strong similarities between the two cycles: i.e. a progressive reduction of 

the N-N bond order and increase of the Mo-N one, the same intermediates found in the Schrock cycle 

are also found and the reaction in both cycles proceeds via stepwise addition of protons and electrons, 

in which the first protonation is the most endergonic and the N-N bond breakage step is the most 

exothermic. However, in contrast to Schrock’s cycle, the reaction cannot proceed with lutidinium as 

proton source, since some reaction steps are not thermally accessible (Scheme 2). Therefore, a stronger 

protonation agent, such as HBF4 in Et2O, has to be used to allow the full conversion of N2 to NH3. In 

addition, the most likely reaction path (Scheme 2) differs from Schrock’s cycle since the neutral 

isodiazene (3) can be further protonated in N leading to 8+. Subsequent electron transfer leads to 

MoNHNH2 (8), which upon protonation on N results in an imido complex and ammonia. The rest of 

the reaction proceeds as in Schrock’s cycle [65].  

A possible alternative pathway involves the formation of bis dinitrogen complexes in which F is 

replaced by an additional N2. However, binding of the second N2 to 1 is not thermodynamically 

favoured. Moreover, MoN2(dpe)2F is unstable towards disproportionation, leading to a loss of catalyst 

during the cycle [65]. Thus, to have a true catalytic system, this disproportionation must be avoided by, 

for example, introducing appropriate ligands [65].      

4. N2 Fixation by Other Inorganic Catalysts 

A large number of other transition metal complexes have been demonstrated to reduce molecular 

nitrogen to ammonia or to bind and activate N2 [17]. In this paragraph we concentrate on the 

theoretical studies of the reaction mechanisms carried out on these compounds to characterize the 

complete conversion of N2 to NH3. 
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Recently Mori et al. synthesized a cubane-type metal sulfido cluster bearing dinitrogen as a ligand 

([(RIr)3 Ru(tmeda)(N2)(μ3-S)4], with tmeda=Me2NCH2CH2NMe2 and R= Cp*=5-C5Me5, III, in 

Figure 2) [66]. In this complex N2 is coordinated in an end-on manner and it is moderately activated as 

demonstrated by the vibrational frequency of N-N triple bond and the elongated N-N distance. Based 

on this important finding Tanaka et al. carried out a DFT-B3LYP [31,35,36] investigation of the 

reduction of N2 to NH3 performed by this type of cluster [18]. In this work the authors used a reduced 

model in which the Cp* has been replaced by a cyclopentadienyl substituent and they studied the 

mechanism according to the Schrock cycle (Scheme 3).  

In analogy with what is observed experimentally for I, the calculations show that in the first half of 

the catalytic cycle there is a weakening of the N-N bond, which leads to the release of the first 

ammonia after formation of the hydrazinium complex, and in the second part of the catalytic cycle the 

Ru-N bond is progressively weakened [18]. The reaction enthalpies are calculated considering 

lutidinium and Co(Cp*)2, as proton and electron sources, respectively. With the only exception of the 

reduction step of the amine complex, which is thermoneutral, the only two endothermic steps are the 

first protonation, which leads to the formation of a positively charged diazenido complex (2+ in 

Scheme 3), and the dissociation of the second ammonia molecule with regeneration of the naked 

catalyst. This step has been demonstrated to be unlikely in Schrock’s catalyst [3,57]. Thus, the overall 

catalytic process is exothermic by -193 kcal/mol, which indicates that the catalytic production of NH3 

is feasible, if compared with the calculations performed on the Schrock catalyst (-198 [62], -171, [42] -

117 [58]  kcal/mol). The energetic profile of this cycle shares some features with that calculated by 

Studt et al. [62] for the Schrock system. This is observed in the N2 binding energy (-16.4 vs -14.2 

kcal/mol), the enthalpy change for the first protonation (17.8 vs. 21.5 kcal/mol) and the enthalpy 

change for the NH3/N2 exchange (-5.4 vs. -5.4 kcal/mol). However, as pointed out by Reiher et al. [56] 

the model of Studt et al. [62] is oversimplified to reproduce correctly the energetics of the catalytic 

cycle. Not surprisingly, the reaction energies calculated by Tanaka et al. are close to those of Studt et 

al. [62] as the oversimplified model used in this latter study does not account for any steric influence 

of the ligand on the reaction mechanism and resembles more closely the situation of N2 in the Ru 

cluster. Yet, in this latter, the NNHx ligand has been observed to interact with the vicinal Ir atom. 

According to the calculations performed by Tanaka et al. [18] III may be a suitable catalyst for the N2 

reduction if a proper choice of proton/electron sources is done.  

Recently, Tanaka and co-workers presented also a computational study for different cubane-type 

metalsulfido clusters in which the Ru atom of III has been substituted with different metals (M=V, Cr, 

Mn, Fe, Co, Ni, Cu, Mo, Ru and W; R= Cp) [67] to propose new clusters with more efficient N2 

activation than the original one [18]. DFT calculations suggest that MoIr3S4 and WIr3S4 may work as 

potential catalysts for N2 functionalization.  

Another interesting study concerning the reaction mechanism of compounds able to reduce N2 to 

NH3 was performed by Yelle et al. [68]. In this case, a DFT-B3LYP [31,35,36] approach was 

employed for studying the N2 fixation mechanism performed by Fe(dmpe)2N2 (IV, Figure 2) (with 

dmpe=1,2-bis(dimethylphosphino)ethane). This compound was demonstrated experimentally to 

produce ammonia under acidic conditions [69]. 
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Scheme 3. Schrock’s cycle for the Ru cluster of Mori et al. [18,66]. Calculated reaction 

energies (kcal/mol) are shown in red. 

 
 

At variance with previous studies Yelle et al. identified the most probable route for the N2 reduction 

considering three possibilities: (i) an asymmetric monomeric mechanism (Chatt-like) that consists in 
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the successive protonations at the terminal nitrogen, (ii) a symmetric monomeric mechanism, which 

involves the formation of diazene and hydrazine intermediates and (iii) a dimeric mechanism where 

the reaction occurs via the formation of a bridged N2 species. According to these calculations the 

Chatt-like mechanism is the less likely as it possesses unfavorable reduction or protonation steps. The 

same holds true for the dimeric mechanism, for which the formation of the initial (Fe(dmpe)2)2N2 

dimer is endothermic, although the rest of the mechanism is characterized by several exothermic steps. 

Instead, the most likely pathway appears to be the symmetric protonation mechanism depicted in 

Scheme 6. In this mechanism, both nitrogen atoms are protonated alternatively in several steps, 

proceeding up to formation of an iron diazene complex (3 in Scheme 4).  

Scheme 4. Symmetric protonation of Fe(dmpe)2N2 as proposed by Yelle et al. [68] 

Phosphine ligands are dmetylphosphinoethane (dmpe). Reaction energies (kcal/mol) and 

free energies, in parenthesis, are shown in red. 

 
 

This is subsequently reduced by 1 via a 2-electron reduction, leading to an 2-hydrazido 

intermediate 4. Two subsequent protonations lead to -hydrazine complex 6. The overall process is 

highly exothermic (H = -105 kcal/mol and G = -110 kcal/mol). Further protonation of 6 and release 

of N2H5
+ is also exothermic (H = +6 kcal/mol and G = -8 kcal/mol), but the protonation of 6 with 

the release of ammonia is unfavorable. Experiments on similar iron complexes suggest that a 
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disproportionation reaction may occur from 6, leading to a mixture of N2H5
+ and a smaller amount of 

NH4
+. However, the exact mechanism of ammonia formation from this pathway is unclear [68]. This 

mechanism is energetically more favorable, but it relies on the amount of 1, which may be in small 

concentrations in presence of a strong acid. Therefore, it is not possible to formulate conclusive 

hypotheses about the most likely reaction path. 

An interesting contribution to design a potential biomimetic catalyst was done by Dance [1]. In his 

work Dance evaluated the catalytic activity of synthetic compounds formed by metal sulfide cubane 

clusters that resemble the NFe7MoS9 core of nitrogenase. On the basis of his theoretical studies carried 

out on the biological cluster, he established the basic ingredients that a nitrogenase mimic should have 

and he looked in the literature for compounds with these characteristics [1]. After selecting several 

systems Dance verified their potentialities as nitrogenase mimics, considering if they were able to 

reproduce the intermediates of the enzymatic cycle as predicted by DFT calculations [7-9,70]. The 

ligands design of these clusters is performed according to ligands available in the literature easy to 

obtain synthetically. Based on these calculations Dance predicts V (Figure 2) to be the most promising 

compound to perform N2 fixation, assuming that a suitable source of protons and electrons is given. 

Therefore, this interesting work can provide a guide to the experimentalists for the synthesis of clusters 

mimicking nitrogenase [1].  

While the catalytic protonation of N2 has been achieved by Schrock, the direct N2 hydrogenation 

under mild conditions is still one of the unresolved challenges in chemistry. However, this process 

does not mimic the biological nitrogen fixation, which occurs via proton and electron transfer to the 

FeMo-co, therefore this part will be only briefly discussed here.  

Pool et al. showed in 2004 that 5-(Cp5Me4H)2Zr2(2,2,2-N2) complex (Chirik-type) with a side-

on coordinated N2 (VI, Figure 2)  produces ammonia in small yields, along with several Zr side 

products, after the addiction of five H2 molecules [71]. The reaction with the first two H2 occurs at 

room temperature, while the addition of the other three H2 molecules occurs after gentle heating.  

A large amount of literature data is also available for the study of dinuclear Zr complexes, as 

several studies have been carried out on this complex and on similar precursors [72-76]. For VI 

Miyachi et al. have carried out a B3LYP [31,35,36] -DFT study showing that the calculated barriers 

for the first four additions of H2 are 20.4, 10.9, 24.1 and 28.0 kcal/mol, respectively [72]. The reactions 

involve multi centers transition states including the added H2, the two Zr and the two N atoms. The 

final addition of H2, leads to the dissociation of the catalyst in two subunits and to the release of two 

NH3 molecules (Scheme 5). A comparison of the reaction mechanism of this compound with its 

precursors of formula P22Zr(2,2,2-N2)Zr(P2N2) with P2N2=PhP(CH2SiMe2NSiMe2CH2)2PPh and 

Ph=phenyl (Fryzuk-type) was also done. 

The latter complex was shown experimentally to react with only one H2 molecule. Theoretical 

studies have proved that the difference between the two catalysts depends on the rigidity of the ligands, 

which results in different intermediates after the first H2 addition. The intermediate obtained for the 

Fryzuk-type complex requires larger activation energy for the second H2 addiction with respect to the 

Chirik-type complex (H# = 11 vs. 24 kcal/mol or G# = 16 vs. 24 kcal/mol), rationalizing the different 

experimental findings [72,74]. 
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Scheme 5. N2 hydrogenation performed by a model of Chirik complex. Reaction energies 

(kcal/mol) are shown in red. Reaction energies, calculated with respect to 1, for the 

formation of 6, 9 and 10, using as a model the real Chirik complex, are -35.3, -44.2 and -

56.7 kcal/mol, respectively. 
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Hoelshner et al. [77] have investigated the catalytic performance of compounds of chemical 

formulae similar to the Schrock catalyst, H-M((NHCH2CH2)3-X) with M = Mo, Ru and Os and X =N 

and P. The aim of this study was to investigate the catalytic potential of these catalysts for the 

reduction of N2 to NH3 using only H2 as reducing agent. These calculations were performed with a 

simplified ligand in which the HIPT substituents are replaced by phenyl groups and the entire ligand is 

considered at QM/MM level only to estimate its effect on selected properties. DFT calculations 

revealed that the three compounds possess catalytic cycles for direct N2 hydrogenation (Scheme 6), 

although they show remarkable differences among each other. Indeed, the Mo catalyst is not 

appropriate due to the high activation energy barriers found for several steps of the catalytic cycle 

(H#
max = 69 kcal/mol). The activation free energy barriers found for the other catalysts, bearing Ru 

and the Os (for the latter the coordinating axial N is replaced by P), are lower (H#
max/G#

max = 33/43 

and 26/36 kcal/mol, respectively). The Os compound showed the smallest G#
max, but this was 

significantly higher than 30 kcal/mol and thus it was not possible only from theoretical point of view to 

determine if this catalyst would work experimentally. Interestingly, from this study it appears clearly 

that the free energy barriers can be tuned by varying transition metals and ligands.   

4. Summary and Conclusions 

In this review we have presented an overview of computational studies performed to investigate the 

reaction mechanisms of inorganic complexes able to convert dinitrogen to ammonia. In this respect, 

particular emphasis is given to the Schrock catalyst, as this is the only inorganic compound known to 

date catalyzing this process in the presence of a proton and an electron source. A large amount of 

theoretical studies has been done on this molecule in the last years assessing in detail every reaction 

step [42,60,63], the importance of the bulky substituents, the influence of solvent for the reaction free 

energies [42] as well as the importance of level of theory chosen to carry out the study [42,55,57,58]. 

In addition, Schrock’s mechanism was used as a model to study the reaction mechanisms of other 

inorganic complexes known to produce ammonia in small yields or simply known to activate N2 

[18,65,68]. A comparison of their reaction free energies with those of the Schrock catalyst assesses 

their feasibility to work as potential catalysts for nitrogen fixation. Finally, the theoretical design of 

clusters mimicking the FeMo-co of nitrogenase is presented [1]. 

A large amount of literature data is also available for the study of direct N2 hydrogenation [72-76] 

In this respect, dinuclear Chirick-type Zr complex coordinates N2 in a side-on mode and converts it to 

ammonia simply using H2 as reducing agent [72,74]. Other studies have been performed with 

compounds of similar chemical architecture of Schrock’s catalyst, but containing also different 

transition metals (Ru, Os). For these catalysts the direct conversion of N2 to NH3 was studied simply 

using H2 as reducing agent [77].  

Nowadays, DFT can explore quite reliably and relatively quickly the structures and reactivities of 

transition metal complexes. Therefore, it can be used (i) to explore in detail the reaction mechanisms 

of known catalysts, (ii) to provide a picture at the molecular level of reaction intermediates, which are 

not accessible experimentally, (iii) to identify the most energetically demanding steps, (iv) to suggest 

modifications of the ligands or the use of different transition metals to improve the efficiency of the 
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catalysts; (v) to tailor biomimetic catalysts on the basis of the knowledge of the reaction mechanism of 

the nitrogenase enzyme. 

Scheme 6. Catalytic cycle of Os modified Schrock’s catalyst as proposed by Holsher et al. 

[77]. Reaction energies, and free energies in parenthesis (kcal/mol), are shown in red. 
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In conclusion, although DFT calculations provide only an approximate picture of the real systems 

and they may encounter difficulties in reproducing some energetic or spectroscopic properties, a 

careful theoretical investigation, which accounts for available experimental data and try to reproduce 

them as close as possible, can be of crucial help in interpreting experiments, and in complementing 

them when experimental information is not accessible. Most importantly, all these studies can provide 

important information to be used by the experimentalists in the development of new efficient catalysts 

for nitrogen fixation.  
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