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Abstract: A series of new 8-arylhydrazono-2-(benzylsulfanyl)-7H-purin-6-ones 6 were 

synthesized, their electronic absorption spectra in different organic solvents of varying 

polarities were investigated and their acid dissociation constants in both the ground and 

excited states were determined spectrophotometrically. The tautomeric structures of such 

products were elucidated by spectral analyses and correlation of their acid dissociation 

constants with the Hammett equation. The results indicated that the studied compounds  

6 exist predominantly in the hydrazone tautomeric form 6A in both the ground and  

excited states. 
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1. Introduction 

Purines are ubiquitous nitrogen-containing heterocycles that exist at relatively high concentrations 

in living organisms [1]. Guanine and adenine, two of the most common purines, are essential 

components of nucleic acids (RNA and DNA), cofactors and signaling molecules that modulate 

protein function [2] and other fundamental biological processes [3-6]. Indeed, a great variety of di-, tri- 
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or tetra-substituted purines described in the literature have been found to be potent inhibitors of 

chaperone HSP90, protein kinases (MAP, Src and Cdk), sulfotransferases, phosphodiesterases and 

microtubule assembly, inducers of interferon and dedifferentiation and antagonists of adenosine 

receptors and corticotropin-releasing hormone receptors [2]. This wide range of biological activities 

displayed by purines is conferred by a judicious choice of the nature of the substituents that can be 

combined on the N-1, C-2, N-3, C-6, N-7, C-8 and N-9 centers of purine moiety [4]. Furthermore, 

thiopurines are used as anti-cancer agents, in the treatment of inflammatory disorders, and as 

immunosuppressants [7]. Thiopurines are chemically more reactive than the normal DNA bases, so 

they have powerful therapeutic activity [8]. 

On the other hand, arylazo heterocycles are a versatile class of colored organic compounds that 

have recently attracted the interest of many research groups due to their diverse applications, not only 

as classical synthetic dyes and pigments, but also as solvatochromic probes and thermally stable 

organic second-order nonlinear optical (NLO) chromophores [9-12]. Other recent applications, include 

memory and recording devices, molecular switches, thermochromic, photovoltaic and fluorescent 

devices, supramolecular systems, holographic data storage materials, acid-base and metal sensors, 

active ligands in Pd-catalyzed cross-coupling reactions and lasers [10,13-26]. The biological 

importance of arylazo compounds is well known, and they are used as antineoplastics [27],  

anti-diabetics [28], antiseptics [29] and other useful chemotherapeutic agents [30-33]. 

Despite the fact that the purines, especially xanthine and their N-methyl-derivatives, are prone to 

easy electrophilic substitution reactions at the position 8 of the nucleus, it is to some extent surprising 

that only a few examples of 8-arylazopurines have been reported in the literature [34,35]. So it was 

considered worthwhile to study the reaction of arenediazonium salts with 2-(benzylsulfanyl)-7H-purin-

6-one 5 to synthesize a series of 8-arylazo- analogues, 6, and to determine their tautomeric structures 

prior to exploring their applications. 

2. Results and Discussion 

The starting materials 6-amino-2-thiouracil (1) [36,37] and 6-amino-2-(benzylsulfanyl)uracil (2) [38,39] 

were prepared by literature methods. Treatment of 2 with an equivalent amount of sodium nitrite in 

dilute HCl afforded the new 5-nitrosouracil derivative 3, which was reduced using sodium dithionite  

in water to give the corresponding 5,6-diamino-2-benzylsulfanyluracil (4). The ring closure of the 

latter was carried out by refluxing in a mixture of formic acid and sodium formate to afford  

2-(benzylsulfanyl)-1,7-dihydropurin-6-one (5) [40,41]. The latter compound has proved to be versatile 

substrate in azo coupling reactions, allowing the preparation of several new donor acceptor substituted 

purines. The coupling reaction of arenediazonium salts with 5 in ethanol/sodium hydroxide gave rise to 

the formation of purine-azo dyes namely, the 8-arylhydrazono-2-benzylsulfanyl-1,8-dihydropurin-6-

ones 6a-i. Diazo coupling occurred selectively at the 8-position of the purine moiety to give 

compounds 6a-i in moderate to good yields (35–60%), (Scheme 1). These results are in accordance 

with the selectivity of the reaction of electrophiles with xanthine and its N-methyl derivatives as it has 

been shown in the case of nitration reactions. [42] The structures of the formed 8-purine azo dyes 6a-i 

were unambiguously confirmed by their analytical and spectral data (IR, 1H-NMR and MS). 
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Scheme 1. 8-Arylhydrazono-2-benzylsulfanyl-1,8-dihydro-purin-6-ones. 
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The infrared spectra of dyes 6a-i (see Experimental) showed the two characteristic bands at  

3,100–3,172 and 3,300–3,397 cm−1 for two N-H stretching absorptions. The strong bands observed at 

1,678–1,693 cm−1 and 1,595–1,653 cm−1 indicate stretchings vibrations of the C=O and C=N groups. 

Their 1H-NMR spectra in DMSO-d6 exhibited a broad singlet peak centered at  10.10–10.90 and 

11.61–13.22 due to two NH protons. The peaks at  4.60–4.93 are characteristic for CH2 protons. 

The 13C-NMR of 6a-i in DMSO-d6 revealed peaks at  151.5–153.0 ppm which are characteristic for 

C8=N, hydrazo group and correspond with data for 8-substituted purine derivatives [43]. Typically,  

C8 is shifted downfield (by 13 ppm from 141 to 154 ppm) in comparison with 8-unsubstituted  

analogs [44,45]. 

Their mass spectra revealed in each case the respective molecular ion peak with low intensity. 

Although the foregoing spectroscopic data are consistent with the assigned structures 6a-i, they cannot 

distinguish between the two possible tautomeric structures, namely, the arylazo and arylhydrazono 

forms 6A and 6B, respectively (Scheme 1). To elucidate the tautomeric structure of compounds 6, we 

studied their electronic absorption spectra. 

The electronic absorption spectra of compounds 6a-i in dioxane revealed, in each case, two 

characteristic absorption bands in the regions 385–405 and 288–318 nm Table 1. The spectra of the 

unsubstituted compound 6d, taken as representative example of the series prepared, in a series of 

different solvents, exhibit little max shifts (Table 1). On the basis of such an absorption pattern, it can 

be concluded that the studied compounds 6 have in solution one tautomeric form, namely the 

hydrazone tautomer 6A. This conclusion was confirmed by the 1H-NMR spectra of the studied 
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compounds 6. Such spectra showed the hydrazone NH proton signals in the region of  11.61–13.22 

(see Experimental). 

Table 1. Electronic absorption and spectral data of the compounds 6a-i. 

Compd. no. max nm (EtOH) Compd. no. max nm (EtOH) 

6a 387 (4.17), 315 (4.10) 6f 388 (4.38), 288 (4.52) 

6b 390 (4.42), 310 (4.35) 6g 396 (4.50), 317 (4.47) 

6c 385 (4.21), 295(4.05) 6h 395 (4.65), 318 (4.51) 

6d + 392 (4.26), 300 (4.45) 6i 405 (4.58), 310(4.33) 

6e 394 (4.35), 298 (4.40)   
+ solvent: max nm (Log ) Ethanol: 398 (4.22), 300 (4.40); Chloroform: 388 (4.15), 315 
(4.18); Acetic acid: 392(4.26), 312 (4.29); Cyclohexane: 405 (4.29), 305 (4.43); 
Pyridine: 410(4.12); 328 (4.15); Ether: 398 (4.04),310 (sh.). 

To provide further evidence for the tautomeric form 6A assigned to the studied coupling  

products, the acid dissociation constants pKa of the series prepared were determined and their 

correlation by the Hammett equation was tested [46]. The pKa values for the series 6a-i were 

determined spectrophotometrically at 27 °C in 80% dioxane-water mixture (v/v). In all determinations 

the ionic strength was kept constant at 0.1. From the pH-absorbance data. Typical absorption spectra  

of 6a in such buffer solutions are shown in Figure 1 and 2. The value of pKa was calculated  

(See experimental). 

Figure 1. Electronic Absorption Spectra of (6a), in solution of different pH values (20% 

dioxane-water) at 27 °C and μ = 0.10. 
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Figure 2. Spectrophotometric titration curve of (6a), at  max. 476 nm in 20% dioxane-

water at 27 °C and μ = 0.10. 
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The pKa values determined for the compounds 6a-i are listed in Table 2. The pKa values were 

plotted versus the Hammett substituent constants x and −x as shown in Figures 3 and 4 [46]. 

Table 2. Acid dissociation constants pK and pK* of compounds 6a-i. 

Compd. No σ σ− pK  max (a)  max (b) ∆ cm−1 pK* 
6a −0.27 −0.27 9.89 405 476 3683 2.52 
6b −0.17 −0.17 9.73 408 479 3633 2.46 
6c −0.17 −0.17 9.58 400 470 3723 2.13 
6d 0 0 9.43 402 480 4042 1.35 
6e 0.23 0.23 9.05 397 482 4442 0.17 
6f 0.37 0.37 8.76 405 493 4407 −0.05 
6g 0.71 0.71 8.25 404 502 4832 −1.41 
6h 0.78 1.28 6.71 415 535 5405 −4.10 
6i 0.5 0.84 8.01 400 510 5392 −2.77 

(a) in acid medium; (b) in alkaline medium; ± s = 0.04. 

Figure 3. Correlation of pKa and pKa* 8-arylhydrazono-2-benzylsulfanyl-1,8-dihydro-

purin-6-onee 6a-i with the Hammett substituent constant X. 
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Figure 4. Correlation of pKa and pKa* 8-arylhydrazono-2-benzylsulfanyl-1,8-dihydro-

purin-6-ones 6a-i with the Hammett substituent constant −X. 
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The equations corresponding to the straight lines obtained are: 

pKa = 9.3598 − 2.4067σX, r 2 = 0.8563, s = ± 0.160 

pKa = 9.4255 − 1.8994 σX
−, r 2 = 0.977, s = ± 0.087 

where r is the correlation coefficient and s is the standard deviation. From these values of r and s, the 

pKa data from 6a-i seem to be better correlated with the enhanced Hammett substituent constant -x. 

This finding indicates that compounds 6a-i exist in the hydrazone form 6A in solution. This is because 

if 6 existed as equilibrium mixture of 6A and 6B (Schemes 1 and 2) no linear relations between pK and 

−x would be observed. Furthermore, the value of the reaction constant  = 1.8994 seems to favor the 

hydrazone form 6A as it is in good agreement with those reported for similar hydrazones and not 

arylazo derivatives [47,48]. If the azo form 6B were the predominant tautomer for the studied 

compounds 6, the value of the reaction constant  would have been not more than 0.75. This is because 

the transmissive factor for the bridge -C=C-N=N- in the azo form 6B is expected to be 0.32 as the 

transmissive factors of the -C=C- and -N=N- bridges were reported to be 0.47 and 0.69, respectively. 

Next, the acid dissociation constants pK*'s of the studied compounds in excited state were 

calculated by utilizing the so-called Forester energy cycle [49,50]. According to this cycle: 

pK* = pK + () (0.625/T) 

where pK and pK* are the acid dissociation constants in the ground and excited states, respectively and 

 represents the frequency difference in cm−1 between the values of the absorption maximum max. of 

the compound in acid and alkaline media. The results of such calculations are summarized in Table 2. 

Correlation of these data of pK* with x and −x are shown in Figure 3 and 4, respectively. The linear 

equations corresponding to such correlations are: 

pK* = 1.284 − 5.901σX, r2 = 0.891, s = ± 0.139364 

pK* = 1.4196 − 4.458σX
−, r2 = 0.9884, s = ± 0.061538 
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Scheme 2. Azo –hydrazone tautomeric structures of compounds 6. 
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Such linear equations indicate that studied compounds 6a-i are predominantly in the hydrazone 

tautomeric form in their excited states. The larger value of * emphasizes the importance of the 

electronic interaction in the excited state [51]. 

According to our further investigation, we have found another acidic proton in the products 6a-i, it 
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It is also found that the E isomer is energetically more stable than the Z isomer. Analogously, 

Compounds 6A of our products 6a-i can exist in the E-structure or the Z-structure (Scheme 3). 

Scheme 3. E and Z Forms of compounds 6. 
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From the foregoing results, we can indicate that coupling of compound 5 with diazonium salts gives 

coupling products 6 having the hydrazone form 6A in both the ground and excited states. 

3. Experimental 

3.1. General 

All melting points were determined on an Electrothermal Gallenkamp apparatus and are 

uncorrected. The IR spectra were measured on a Pye-Unicam SP300 instrument in potassium bromide 

discs. The 1H-NMR spectra were recorded on a Varian Mercury VXR-300 spectrometer (300 MHz) 

and 13C-NMR was run at 75.46 MHz. The mass spectra were recorded on a GCMS-Q1000-EX 

Shimadzu and GCMS 5988-A HP spectrometers, the ionizing voltage was 70 eV. Electronic 
absorption spectra were recorded on Perkin-Elmer Lambda 40 spectrophotometer. Elemental analyses 

were carried out by the Microanalytical Center of Cairo University, Giza, Egypt. The starting materials 

6-amino-2-thiouracil (1) [36,37] and 6-amino-2-benzylthiouracil (2) [38,39] were prepared as 

previously described. 

6-Amino-2-(benzylsulfanyl)-5-nitrosopyrimidin-4-one (3): 6-Amino-2-(benzylsulfanyl)-pyrimidin-4-

one (14.0 g, 0.06 mol) was suspended in an excess of dilute hydrochloric acid (3M, 100 mL) and a 

solution of sodium nitrite (5.0 g, 0.072 mol) in a little water was added gradually. The suspended 

material assumed a deep blue color and became crystalline and very bulky. The reaction was complete 

in about fifteen minutes, after which the solid material was filtered off, washed with cold water and 

then dried to give a blue powder; mp 198 °C; yield 86%; IR (KBr) /cm−1: 3,409 (NH), 3,319, 3,260 

(NH2),1,647 (CO); 1H-NMR (DMSO-d6) /ppm: 4.45 (s, 2H, CH2), 5.60 (br s, 2H, NH2), 7.20–7.50 

(m, 5H, Ar-H),10.80 (br s, 1H, NH); MS m/z (%): 299 (M++1, 10.5), 298 (M+, 22.6), 111 (100.0), 92 

(33.7), 83 (31.1), 64 (15.7); Anal. Calcd. for C11H10N4O2S (262.29): C, 50.37; H, 3.84; N, 21.36; S, 

12.23%. Found: C, 50.22; H, 3.64; N, 21.20; S, 12.0%. 

5,6-Diamino-2-(benzylsulfanyl) pyrimidin-4-one (4): 6-Amino-2-(benzylsulfanyl)-5-nitrosopyrimidin-

4-one (3, 10 g, 40 mmol)) was suspended in distilled water (300 mL). The suspension was kept at  

70–80 °C and sodium dithionite (ca. 18 g) was added upon stirring until the originally deeply colored 

solution had almost decolorized. After cooling to room temperature overnight, the solid formed was 

filtered, dissolved in dilute potassium hydroxide at 70 °C, filtered and cooled. The solution was 

acidified with glacial acetic acid and left to cool at room temperature overnight. The solid formed was 

filtered, washed with water, dried and stored in a vacuum desicator at room temperature to give pale 

yellow crystals; mp 244 °C; yield 70%; IR (KBr) /cm–1: 3,463 (NH), 3,350, 3,080 (NH2), 1,627 (CO); 
1H-NMR (DMSO-d6) /ppm: 2.20 (br s, 2H, NH2), 4.51 (s, 2H, CH2), 5.50 (br s, 2H, NH2), 7.22–7.42 

(m, 5H, Ar-H),10.45 (br s, 1H, NH); MS m/z (%): 248 (M+, 22.8), 215 (16.6), 157 (7.7), 126 (2.0), 91 

(100), 65 (27.2), 55 (9.8); Anal. Calcd. for C11H12N4OS (248.3): C, 53.21; H, 4.87; N, 22.56; S, 

12.91%. Found: C, 53.50; H, 4.58; N, 22.35 S, 13.0%. 

2-(Benzylsulfanyl)-7H-purin-6-one (5) [40,41]: To a solution of 5,6-Diamino-2-(benzylsulfanyl) 

pyrimidin-4-one (4, 5 g, 20 mmol) in formic acid (100 mL), an equivalent amount of sodium formate 
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was added. The mixture was refluxed for 30 min. and the excess formic acid was distilled off in vacuo. 

The residue was suspended in distilled water, collected by filtration, washed with water, and dried. to 

afford the title compound 5 as colorless crystals; mp = 260 °C [from a mixture of dimethylformamide 

and water (v/v 1:2)]; yield 75%; IR (KBr) /cm−1: 3,338, 3,112 (2 NH), 1,660 (CO); 1H-NMR 

(DMSO-d6) /ppm: 4.60 (s, 2H, CH2), 7.34−7.91 (m, 5H, Ar-H), 8.19 (s, 1H, 8-CH), 10.51 (br s, 1H, 

NH), 12.24 (br s, 1H, NH); MS m/z (%): 258 (M+, 1.5), 151 (96.7), 134 (12), 123 (7.6), 91 (16.4), 69 

(36.4), 55 (74.5), 54 (100); Anal. Calcd. for C12H10N4OS (258.3): C, 55.80; H, 3.90; N, 21.69; S, 

12.41%. Found: C, 55.85; H, 3.80; N, 21.53; S, 12.32%. 

3.2. General Procedure for Synthesis of 8-Arylhydrazono-2-benzylsulfanyl-1,8-dihydro-purin-6-ones 

6a-i 

To a stirred solution of compound 5 (0.65 g, 2.5 mmol) in ethanol (20 mL) was added sodium 

hydroxide (0.1 g, 2.5 mmol) and the mixture was cooled in an ice bath to 0–5 °C. To the resulting 

solution, while being stirred, was added dropwise over a period of 20 min a solution of the appropriate 

arenediazonium chloride, prepared as usual by diazotizing the respective aniline (2.5 mmol) in 

hydrochloric acid (6 M, 1.5 mL) with sodium nitrite (1 M, 2.5 mL). The whole mixture was then left in 

a refrigerator overnight. The precipitated solid was filtered, washed with water and finally crystallized 

from dimethylformamide/ethanol (v:v 1:5) to give the respective hydrazones 6. The physical constants 

and the spectral data of the products (6a-i) are listed below. 

2-(Benzylsulfanyl)-8-[(4-methoxyphenyl)hydrazono]-1,8-dihydropurin-6-one (6a). Yellow solid;  

mp > 300 °C; yield 66%; IR (KBr) /cm−1: 3,303, 3,128 (NH), 1,685, 1,648 (CO); 1H-NMR (DMSO-d6) 

/ppm: 3.40 (s, 3H, OCH3), 4.70 (s, 2H, CH2), 7.01–7.40 (m, 4H, Ar-H), 7.60–7.92 (m, 5H, Ar-H), 

10.84 (br s, 1H, NH), 13.05 (br s, 1H, NH); 13C-NMR (DMSO-d6): 34.8 (CH2), 51.0 (OCH3), 

[Aromatic-C, 118.3, 120.2-133.8], 151.5 (C8=N, hydrazo), 152.7 (C6), 155.3 (C4), 156.1 (C2), 158.6 

(C5); MS m/z (%): 392 (M+, 4.3), 281 (44.8), 258 (20.7), 123 (20.7), 119 (27.6), 108 (100), 64 (48.3); 

Anal. Calcd. for C19H16N6O2S (392.43): C, 58.15; H, 4.11; N, 21.42; S, 8.17%. Found: C, 58.22; H, 

4.18; N, 21.31; S, 8.25%. 

2-(Benzylsulfanyl)-8-[(4-methylphenyl)hydrazono]-1,8-dihydropurin-6-one (6b). Yellow solid;  

mp > 300 °C; yield 71%; IR (KBr) /cm−1: 3,313, 3,133 (NH), 1,686, 1,640 (CO); 1H-NMR (DMSO-d6) 

/ppm: 2.34 (s, 3H, CH3), 4.60 (s, 2H, CH2), 7.02–7.35 (m, 4H, Ar-H), 7.50–7.90 (m, 5H, Ar-H), 

10.76 (br s, 1H, NH), 12.93 (br s, 1H, NH); 13C-NMR (DMSO-d6): 24.5 (CH3), 34.9 (CH2), [Aromatic-

C, 116.2, 121.5–136.0], 152.4 (C8=N, hydrazo), 153.0 (C6), 155.5 (C4), 156.7 (C2), 159.3 (C5); MS 

m/z (%): 376 (M+, 1.8), 272 (26.9), 226 (15.9), 139 (15.9), 122 (15.3), 108 (20.7), 92 (23.4), 77 (13.8), 

65 (48.9), 60 (100); Anal. Calcd. for C19H16N6OS (376.43): C, 60.62; H, 4.28; N, 22.33; S, 8.52%. 

Found: C, 60.60; H, 4.15; N, 22.25; S, 8.60%. 

2-(Benzylsulfanyl)-8-[(3-methylphenyl)hydrazono]-1,8-dihydropurin-6-one (6c). Yellow solid;  

mp > 300 °C; yield 68%; IR (KBr) /cm−1: 3,397, 3,127 (NH), 1,683, 1,645 (CO); 1H-NMR (DMSO-d6) 

/ppm: 2.23 (s, 3H, CH3), 4.50 (s, 2H, CH2), 7.30–7.85 (m, 9H, Ar-H), 10.41 (br s, 1H, NH), 12.72 (br 

s, 1H, NH); 13C-NMR (DMSO-d6): 25.5 (CH3), 34.0 (CH2), [Aromatic-C, 118.2, 120.0-134.6], 152.0 
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(C8=N, hydrazo), 152.9 (C6), 155.0 (C4), 156.5 (C2), 159.0 (C5); MS m/z (%): 376 (M+, 2.6), 270 

(25.0), 149 (8.4), 123 (6.3), 91 (6.9), 77 (100); Anal. Calcd. for C19H16N6OS (376.43): C, 60.62; H, 

4.28; N, 22.33; S, 8.52%. Found: C, 60.60; H, 4.15; N, 22.25; S, 8.60%. 

2-(Benzylsulfanyl)-8-[(phenylhydrazono]-1,8-dihydropurin-6-one (6d). Yellow solid; mp > 300 °C; 

yield 60%; IR (KBr) /cm−1: 3,307, 3,133 (NH), 1,687, 1,644 (CO); 1H-NMR (DMSO-d6) /ppm: 4.70 

(s, 2H, CH2), 7.250–7.86 (m, 10H, Ar-H), 10.80 (br s, 1H, NH), 13.10 (br s, 1H, NH); 13C-NMR 

(DMSO-d6): 33.0 (CH2), [Aromatic-C, 120.8, 122-129.6, 130.7, 131.0, 131.7, 137.5], 152.2 (C8=N, 

hydrazo), 152.8 (C6), 155.0 (C4), 157.0 (C2), 159.9 (C5); MS m/z (%): 362 (M+, 4.9), 255 (6.4), 227 

(10.6), 167 (14.8), 130 (6.4), 123 (5.8), 111(10.1), 104 (14.5), 93 (19.9), 77 (100), 65 (17.6); Anal. 

Calcd. for C18H14N6OS (362.41): C, 59.65; H, 3.89; N, 23.19; S, 8.85%. Found: C, 59.60; H, 4.0; N, 

23.10; S, 8.73%. 

2-(Benzylsulfanyl)-8-[(4-chlorophenyl)hydrazono]-1,8-dihydropurin-6-one (6e). Yellow solid;  

mp > 300 °C; yield 83%; IR (KBr) /cm−1: 3,300, 3,126 (NH), 1,692, 1,653 (CO); 1H-NMR (DMSO-d6) 

/ppm: 4.80 (s, 2H, CH2), 7.10–7.25 (m, 4H, Ar-H), 7.35–7.89 (m, 5H, Ar-H), 10.84 (br s, 1H, NH), 

13.05 (br s, 1H, NH); 13C-NMR (DMSO-d6): 33.0 (CH2), [Aromatic-C, 118.2, 120.8, 122.5–129.6, 

130.6, 131.0, 131.7, 138.5], 153.0 (C8=N, hydrazo), 153.8 (C6), 155.8 (C4), 156.5 (C2), 159.0 (C5); 

MS m/z (%): 397 (M++1, 8.1), 396 (M+, 5.5), 250 (6.4), 132 (10), 111(100), 75 (83.3), 69 (76.7), 55 

(45); Anal. Calcd. for C18H13ClN6OS (396.85): C, 54.48; H, 3.30; N, 21.18; S, 8.08%. Found: C, 

54.45; H, 3.30; N, 21.12; S, 8.0%. 

2-(Benzylsulfanyl)-8-[(3-chlorophenyl)hydrazono]-1,8-dihydropurin-6-one (6f). Yellow solid;  

mp > 300 °C; yield 73%; IR (KBr) /cm−1: 3,321, 3,100 (NH), 1,685, 1,621 (CO); 1H-NMR (DMSO-d6) 

/ppm: 4.90 (s, 2H, CH2), 7.30–7.85 (m, 9H, Ar-H)), 10.10 (br s, 1H, NH), 12.18 (br s, 1H, NH);  
13C-NMR (DMSO-d6): 33.0 (CH2), [Aromatic-C, 119, 122.0–129.5, 130.0, 132.8, 133.0, 138.0], 151.8 

(C8=N, hydrazo), 152.3 (C6), 154.5 (C4), 155.9 (C2), 158.5 (C5); MS m/z (%): 397 (M+ + 1, 10.2), 

396 (M+, 6.5), 255 (6.1), 132 (15), 111(100), 75(80.0), 69 (50.5), 55 (40); Anal. Calcd. for 

C18H13ClN6OS (396.85): C, 54.48; H, 3.30; N, 21.18; S, 8.08%. Found: C, 54.22; H, 3.50; N, 21.0;  

S, 8.20%. 

2-(Benzylsulfanyl)-8-[(4-bromophenyl)hydrazono]-1,8-dihydropurin-6-one (6g). Orange solid;  

mp > 300 °C; yield 70%; IR (KBr) /cm−1: 3,323, 3,144 (NH), 1,688, 1,638 (CO); 1H-NMR (DMSO-d6) 

/ppm: 4.72 (s, 2H, CH2), 7.20–7.35 (m, 4H, Ar-H), 7.45–7.95 (m, 5H, Ar-H), 10.87 (br s, 1H, NH), 

11.61 (br s, 1H, NH); 13C-NMR (DMSO-d6): 33.0 (CH2), [Aromatic-C, 120.0, 122.5-129.0, 130.6, 

131.0, 131.7, 138.5], 152.5 (C8=N, hydrazo), 153.2 (C6), 155.0 (C4), 155.9 (C2), 158.7 (C5); MS m/z 

(%): 441 (M+, 8.6), 191 (77.2), 151 (100), 91 (77.2), 65 (86.3); Anal. Calcd. for C18H13BrN6OS 

(441.3): C, 48.99; H, 2.97; N, 19.04; S, 7.27%. Found: C, 48.90; H, 3.0; N, 19.15; S, 7.20%. 

2-(Benzylsulfanyl)-8-[(2-nitrophenyl)hydrazono]-1,8-dihydropurin-6-one (6h). Orange solid;  

mp > 300 °C; yield 58%; IR (KBr) /cm−1: 3,385, 3,125 (NH), 1,693, 1,649 (CO); 1H-NMR (DMSO-d6) 

/ppm: 4.87 (s, 2H, CH2), 7.50–7.95 (m, 9H, Ar-H), 10.90 (br s, 1H, NH), 13.19 (br s, 1H, NH);  
13C-NMR (DMSO-d6): 34.0 (CH2), [Aromatic-C, 120.0, 122.5–129.5, 130.0, 132.8, 133.0, 137.5], 
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152.0 (C8=N, hydrazo), 152.5 (C6), 153.8 (C4), 155.0 (C2), 158.0 (C5); MS m/z (%): 407 (M+, 18.8), 

149 (45.9), 91 (27.5), 83 (34.6), 77 (26), 69 (52); Anal. Calcd. for C18H13N7O3S (407.41): C, 53.07; H, 

3.22; N, 24.07; S, 7.87%. Found: C, 53.0; H, 3.30; N, 23.99; S, 7.80%. 

2-(Benzylsulfanyl)-8-[(4-nitrophenyl)hydrazono]-1,8-dihydropurin-6-one (6i). Orange solid;  

mp > 300 °C; yield 66%; IR (KBr) /cm−1: 3,387, 3,127 (NH), 1,696, 1,651 (CO); 1H-NMR (DMSO-d6) 

/ppm: 4.93 (s, 2H, CH2), 7.15–7.25 (m, 4H, Ar-H), 7.40–7.88 (m, 5H, Ar-H), 10.94 (br s, 1H, NH), 

13.22 (br s, 1H, NH); 13C-NMR (DMSO-d6): 35.0 (CH2), [Aromatic-C, 120.0, 122.5–129.0, 130.6, 

131.0, 131.7, 138.5], 152.0 (C8=N, hydrazo), 152.9 (C6), 155.5 (C4), 156.9 (C2), 159.0 (C5); MS m/z 

(%): 407 (M+, 20), 150 (17.5), 97 (29.2), 83 (32.6), 77 (100), 68 (18); Anal. Calcd. for C18H13N7O3S 

(407.41): C, 53.07; H, 3.22; N, 24.07; S, 7.87%. Found: C, 53.0; H, 3.30; N, 23.99; S, 7.80%. 

3.3. pK Determination 

The acid dissociation constants pK's of the compounds 6 were determined spectrophotometrically in 

80% (v/v) dioxane-water mixture at 27 °C and ionic strength 0.1. An Orion 420A pH meter fitted with 

combined glass electrode type 518635 was employed for measurement of pH values. The instrument 

was accurate to ±0.01 pH unit. It was calibrated using two standard Beckman buffer solutions of pH 

4.01 and 7.00. The pH meter readings (B) recorded in dioxane-water solutions were converted to 

hydrogen ion concentration [H+] by means of the widely used relation of van Uitert and Haas [49] 

namely: 

−log [H+] = B + log UH 

where log UH is the correction factor for the solvent composition and ionic strength used for which B 

is read. The value of log UH was determined by recording the pH values for a series of hydrochloric 

acid and sodium chloride such that the ionic strength is 0.1 in 4:1 (v/v) dioxane-water mixture at  

27 °C. The value of log UH was found to be −0.48. 

The experimental procedure followed in the determination of pka constants and their calculations 

from the absorbance-pH data are as previously described [50]. The pKa values were reproducible to  

±0.04 pKa unit. The results are given in Table 2. 

4. Conclusions 

In conclusion, 2-(benzylsulfanyl)-7H-purin-6-one (5) [40,41] is prepared. A simple coupling 

reaction of 5 for the preparation of 8-arylhydrazono-2-benzylsulfanyl-1,8-dihydropurin-6-ones 6a-i in 

good yield is described. The structures of the newly synthesized compounds 6a-i were confirmed by 

spectral and elemental analyses data and the correlation with Hammett equation. The obtained results 

indicate that the isolated coupling products 6 have the hydrazone form 6A in both the ground and  

excited states. 
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