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Abstract: YS-121 [2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic 

acid] is the result of target-oriented structural derivatization of pirinixic acid. It is a potent 

dual PPARα/γ-agonist, as well as a potent dual 5-LO/mPGES-1-inhibitor. Additionally, 

recent studies showed an anti-inflammatory efficacy in vivo. Because of its interference 

with many targets, YS-121 is a promising drug candidate for the treatment of inflammatory 

diseases. Ongoing preclinical studies will thus necessitate huge amounts of YS-121. To 

cope with those requirements, we have optimized the synthesis of YS-121. Surprisingly, 

we isolated and characterized byproducts during the resulting from nucleophilic aromatic 

substitution reactions by different tertiary alkylamines at a heteroaromatic halide. These 

amines should actually serve as assisting bases, because of their low nucleophilicity. This 

astonishing fact was not described in former publications concerning that type of reaction 

and, therefore, might be useful for further reaction improvement in general. Furthermore, 

we could develop a proposal for the mechanism of that byproduct formation. 

Keywords: YS-121; pirinixic acid; reaction improvement; nucleophilic aromatic substitution 

reaction at heteroaromatic halide by tertiary alkylamines; byproduct formation mechanism 
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1. Introduction 

Pirinixic acid [1, Wy-14643, 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)acetic 

acid; Figure 1] was discovered in the 1970s, during the development of new agents against 

hypercholesterolemia [1]. Later on, in 1977, it was identified to be a peroxisome proliferator [2]. After 

the discovery of the peroxisome proliferator-activated receptor (PPAR) in 1990 [3], the agonistic 

activity of pirinixic acid at PPARα and PPARγ was detected within the next ten years [4,5]. 

Figure 1. Chemical structure of pirinixic acid. 

pirinixic acid    (1)

Wy-14643
2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)acetic acid

 

YS-121 [2, 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid; Figure 2] is 
the result of target-oriented structural derivatization of pirinixic acid [6]. In YS-121 a hexyl residue 
was introduced in the position α to the carboxylic acid group of pirinixic acid. That structural 
modification enhanced PPARα and PPARγ agonism to values in the low micromolar range [EC50 = 1.0 µM 
(α) and 3.6 µM (γ) in a cell-based luciferase reporter gene assay] [6]. 

Figure 2. Chemical structure of YS-121. 

YS-121    (2)

2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid 

In addition to its dual agonistic activity at PPARα/γ, further research efforts revealed that YS-121 is 
also a potent dual inhibitor of microsomal prostaglandin E2 synthase-1 (mPGES-1, IC50 = 3.9 µM in a 
cell-free assay) and 5-lipoxygenase (5-LO, IC50 = 4.1 µM and 6.5 µM in a cell-based and cell-free 
assay, respectively) with a lack of interference with COX-1 and COX-2 [7,8]. 
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Based on those findings, more detailed investigations concerning the mechanism of mPGES-1 

inhibition, the selectivity profile and the in vivo activity of YS-121 have been conducted [9]. The 

results of those experimental studies demonstrated that YS-121 inhibits mPGES-1 in a selective, 

concentration-dependent, reversible and noncompetitive manner. Moreover, the above-mentioned lack 

of interference with both isoforms of cyclooxygenase still remains, even in assays performed in human 

whole blood. Additionally, an anti-inflammatory efficacy of YS-121 was shown in vivo [9]. 

In summary, YS-121 is a promising drug candidate, because of its interference with many targets 

involved in inflammatory diseases, but there is still a huge lack of in vivo data concerning dosing, 

pharmacokinetics and effectiveness in humans. 

Ongoing preclinical studies will thus necessitate huge amounts of YS-121. In medicinal chemistry 

the amount of compound needed for biochemical assays to get first in vitro data during structural 

optimization steps is very low. For most assays 3–4 mg are sufficient and the syntheses are planned 

along that required low amount of compound. But the demand for compound rises up to gram scale by 

conducting animal experiments to get first in vivo data of an in vitro hit. To cope with those 

requirements, we have optimized the synthesis of YS-121 resolving the problem of byproduct 

formation during that synthesis conducted in a larger scale. Furthermore, we isolated and characterized 

some byproducts enabling us to develop a proposal for the mechanism of that byproduct formation. 

2. Results and Discussion 

YS-121 was synthesized in a four-step reaction originally published by d’Atri et al. [10] and already 

modified by Koeberle et al. [8]. Here, we modified and optimized that synthesis again to make it 

convenient to synthesize YS-121 in amounts of a few grams. The specific conditions utilized, the 

problem of byproduct formation in step (iii a) and the optimization step to circumvent that byproduct 

formation (iii b) are illustrated in Scheme 1. 

During the first step, 2-mercaptopyrimidine-4,6-diol (3) reacted by a nucleophilic substitution with 

ethyl 2-bromooctanoate in DMF in the presence of triethylamine to form the thioether derivative ethyl 

2-(4,6-dihydroxypyrimidin-2-ylthio)octanoate (4). Chlorination with POCl3 and N,N-diethylaniline 

gave the chlorinated pyrimidine derivative ethyl 2-(4,6-dichloropyrimidin-2-ylthio)octanoate (5). 

Through a nucleophilic aromatic substitution at the pyrimidine core of 5, one chloro group was 

substituted by 2,3-dimethylaniline with triethylamine in EtOH to form the monoaminated derivative 

ethyl 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoate (6, iii a). Additionally, the 

disubstituted byproduct ethyl 2-(4-(diethylamino)-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)-

octanoate (7) was formed during that step. Changing the assisting base to sodium carbonate in step (iii b), 

lead to a circumvention of that byproduct formation. The last step to get to the desired compound YS-

121 (2) consisted of a saponification of the ethyl ester derivative 6 with LiOH in EtOH to give the 

carboxylic acid derivative 2-(4-chloro-6-(2,3-dimethylphenylamino)-pyrimidin-2-ylthio)octanoic acid (2). 

Because 6 and 7 could not be separated during the purification procedure of step (iii a), 7 was also 

hydrolyzed during step (iv) to give the byproduct (2-(3-(diethylamino)-5-(2,3-dimethylphenylamino)-

phenylthio)octanoic acid (8), which could be separated from 2 and its structure elucidated afterwards. 
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Scheme 1. Synthesis of YS-121 2 including byproduct formation and optimization step. 

 
Reagents and conditions: (i) ethyl 2-bromooctanoate (1.17 equiv.), triethylamine (1.50 equiv.), 
DMF, RT, 87 h; (ii) POCl3 (18.0 equiv.), N,N-diethylaniline (1.00 equiv.), 90 °C, 45 h; (iii a) 2,3-
dimethylaniline (1.05 equiv.), triethylamine (3.00 equiv.), EtOH, RF, 65 h; (iii b) 2,3-dimethylaniline 
(1.05 equiv.), sodium carbonate (3.00 equiv.), EtOH, RF, 22 h; (iv) LiOH, EtOH, RT, 120 h. 

In comparison to Koeberle et al. [8], several changes have been made to optimize the reaction in 

general. In step (i) the relative amounts of ethyl 2-bromooctanoate and triethylamine as well as the 

reaction temperature were reduced in order to minimize byproduct formation initially caused by a 

dehydrohalogenation of ethyl 2-bromooctanoate leading to a Michael acceptor system that is able to 

react with nucleophiles as well. The dehydrohalogenation is a β-elimination. With regard to the desired 

nucleophilic substitution by 3 on ethyl 2-bromooctanoate, high temperatures and bulky bases raise the 

probability of β-elimination [16]. Because of the lower reaction temperature, longer reaction times 

were required until TLC-control showed total conversion of 3. In step (ii) we reduced the reaction 

temperature to guard the product from decomposition reactions. Because of the lower reaction 

temperature, longer reaction times were required again until TLC-control showed total conversion of 4. 

In steps (iii) and (iv) only the reaction times were expanded. 

Perhaps it would have been possible to reduce the reaction times of all steps, but our aim was first 

and foremost to get the highest yield possible during each respective step. As described above, during 

structural optimization steps in medicinal chemistry, syntheses are planned to get the test compound on 

mg scale, which is sufficient for first in vitro data, but we conducted the reaction steps on a larger scale 

to cope with the rising demand for test compound on gram scale for further in vivo testing. Those 

higher absolute amounts of compounds during synthesis should also have expanded the reaction times. 
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The challenge of optimizing the synthesis of YS-121 consisted of the low yields of the different 

steps that were primarily based on the high level of byproduct formation. That necessitated huge 

reaction batches, followed by extensive purification procedures and finally led in a large part to those 

low yields. One of those byproducts was formed in high amounts in step (iii a). It was not described in 

former publications concerning that type of reaction [6,8,10-14], also with different aromatic amines as 

nucleophiles, and this forced us to modify the reaction procedure as well as the way of purification. In 

step (iii a) the chlorinated pyrimidine derivative 5 should be monoaminated to 6 by a nucleophilic 

aromatic substitution with 2,3-dimethylaniline. The reaction was conducted with triethylamine in 

EtOH, and the amount of the nucleophile 2,3-dimethylaniline was 1.05 equiv. with regard to 5. After 

the reaction was finished, TLC-control showed the formation of at least four byproducts next to 6. Two 

purification steps by column chromatography with silica gel only led to a rough purification in which 

three of the four byproducts could be separated from the desired product 6 in that step. 

Further conversion of the mixture of step (iii a) in step (iv) again led to the isolation of two different 

compounds. In comparison with the ESI data of step (iii a), mass spectrometry indicated that both 

compounds were converted into carboxylic acids. One of them was the desired final compound 2. We 

tried to separate them by column chromatography, but we were not successful. Afterwards, we switched 

to RP-18 silica gel for column chromatography, which finally allowed a satisfactory separation. 

Furthermore, after termination of the complete synthesis, we found out that purification by RP-18 silica 

gel for column chromatography would have been convenient for the purification in step (iii a) as well. 

During the purification procedure of step (iv), it was possible to isolate the byproduct. The amount 

of the byproduct was 1:1, with regard to the amount of 2. Characterization by the whole lineup of 

structure determination methods (including 1H-NMR, 13C-NMR/DEPT, COSY, ROESY, HSQC, 

HMBC and HRMS experiments) suggested a formation of the disubstituted compound 2-(3-

(diethylamino)-5-(2,3-dimethylphenylamino)phenylthio)octanoic acid (8, Figure 3). Analytical data of 

8 are given in the Experimental section. 

Figure 3. Chemical structure of the isolated byproduct 8. 

 

As far as the formation of byproduct 8 is concerned, a disubstitution would have only been possible 

in step (iii a), if diethylamine or diethylamine-related reactive intermediates had been present next to 

2,3-dimethylaniline as nucleophiles as well. Either that byproduct formation is the result of a 
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diethylamine impurity of the used commercially available reagents triethylamine, 2,3-dimethylaniline 

or EtOH in step (iii a) or it is a further indication that triethylamine could react as a nucleophile during 

nucleophilic aromatic substitution reactions at heteroaromatic halides as previously described by 

Matsumoto et al. [15]. 

To get deeper insights into the mechanism leading to the formation of byproduct 8, we repeated step 

(iii a) with triethylamine as assisting base and could reproduce that byproduct formation in two 

reaction batches reacted independently from each other. Afterwards, we tried to isolate other 

byproducts of that reaction that could tell us something about the mechanism leading to 8. In fact, we 

were successful, because we could isolate the stable intermediate 6-(2,3-dimethylphenylamino)-2-(1-

ethoxy-1-oxooctan-2-ylthio)-N,N,N-triethylpyrimidin-4-aminium (9, Figure 4), the precursor of 

compound 7. 

Figure 4. Chemical structure of the isolated byproduct 9. 

 

Compound 9 is a quaternary ammonium cation. Furthermore, both chlorines were already 

substituted, so the formation of 9 probably lead in the first stage to a Meisenheimer complex 

intermediate 10 (Figure 5) that was formed by a nucleophilic attack of triethylamine leading in second 

stage to an elimination of a chloride ion. 

Figure 5. Chemical structure of the Meisenheimer complex intermediate 10. 

 



Molecules 2011, 16 10019 

 

 

Additionally, other byproducts were formed in step (iii a), but we were not able to separate them 

satisfactorily. Because the insights into the mechanism of byproduct formation were still not sufficient, 

we repeated step (iii a) again, now with N-methylpyrrolidine as assisting base as a member of cyclic 

tertiary alkylamines. Again, we tried to isolate byproducts giving us new insights into the mechanism 

of byproduct formation and again, we were successful. We could isolate two byproducts telling us a lot 

about the mechanism. First, we could isolate the byproduct ethyl 2-(4-ethoxy-6-(pyrrolidin-1-

yl)pyrimidin-2-ylthio)octanoate (11, Figure 6). 

Figure 6. Chemical structure of the isolated byproduct 11. 

N

N S

O

O
N

O

isolated byproduct 11
ethyl 2-(4-ethoxy-6-(pyrrolidin-1-yl)pyrimidin-2-ylthio)octanoate  

In comparison to compound 5, several changes took place at the pyrimidine core. Both chlorines 

were substituted, the first by N-methylpyrrolidine and the second by the solvent ethanol. During 

byproduct formation, N-methylpyrrolidine lost its methyl group. But that byproduct as well as 

byproduct 8 could not tell us how in both cases the quaternary ammonium cation had lost its fourth 

carbon residue leading to a N,N-dialkylaminyl substituent at the pyrimidine core. In summary, during 

formation of byproduct 11, one equivalent of methyl chloride and one equivalent of hydrochloric acid 

were eliminated. 

A deeper insight into the incidents taking place at the pyrrolidinyl residue was provided by the 

isolated byproduct ethyl 2-(4-((4-chlorobutyl)(methyl)amino)-6-ethoxypyrimidin-2-ylthio)octanoate (12, 

Figure 7). 

During formation of byproduct 12 the pyrrolidine ring was opened but no carbon residue was 

eliminated. In summary, only one equivalent of hydrochloric acid was eliminated through a solvolytic 

reaction with ethanol, but the terminally chlorinated n-butyl residue as well as the methyl residue of 

the N,N-dialkylaminyl substituent at the pyrimidine core provided evidence for the ring opening 

mechanism. That ring opening probably had happened either through a nucleophilic attack of a 

chloride ion during the state of a Meisenheimer complex intermediate 13 as a concerted process 

together with the elimination of the chloride ion from the pyrimidine core or during the state of a 

quaternary ammonium cation such as 1-(6-ethoxy-2-(1-ethoxy-1-oxooctan-2-ylthio)pyrimidin-4-yl)-1-

methylpyrrolidinium (14, Figure 8) as a non-concerted process. 
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Figure 7. Chemical structure of the isolated byproduct 12. 

 

Figure 8. Chemical structures of not isolated hypothetical intermediates of the respective 

intermediate stages during reaction with N-methylpyrrolidine. 

 

We could not isolate either of the two intermediates, but because we could isolate byproduct 9, so 

the non-concerted process of a nucleophilic attack of a chloride ion after elimination from the 

pyrimidine core seems to be more likely. The solvolytic reaction at the pyrimidine core also stresses 

that last presumption. Only during the stage of the quaternary ammonium cation, a nucleophilic attack 

of the solvent is possible and catalyzed, because N-methylpyrrolidine is a good leaving group in that 

case. The potential of tertiary amines to catalyze nucleophilic substitution reactions at aromatic 

heterocycles was already described in the literature [17]. The fact that we could not isolate solvolytic 

reaction byproducts from the reaction with triethylamine could be due to the steric hindrance at the 

tertiary ammonium cation 9 preventing a nucleophilic attack of the solvent. 

Another interesting fact is that during reaction with N-methylpyrrolidine we could not isolate any 

amount of desired compound 6 at all, although we had not changed the relative amounts of educts. 

That suggests a higher nucleophilic potential of N-methylpyrrolidine as well as a higher potential of  

N-methylpyrrolidine to catalyze solvolytic reactions at the chlorinated pyrimidine core in comparison 

to triethylamine. 
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To sum it up, the following Scheme 2 depicts our proposal for the mechanism of byproduct 

formation based on the isolated and characterized byproducts 8, 9, 11 and 12 during step (iii a) with 

two different tertiary alkylamines as assisting bases: 

Scheme 2. Postulated mechanism of byproduct formation. 

 

(i) A nucleophilic attack of a tertiary alkylamine at a 4,6-di-chlorinated pyrimidine core 15 leads to 

a Meisenheimer complex intermediate 16; (ii) afterwards, a chloride ion is eliminated leading through 

rearomatization to a quaternary ammonium cation intermediate stage 17; (iii) finally, a nucleophilic 

attack by a chloride ion at any carbon residues of the quaternary N,N,N-trialkylaminyl substituent of 17 

leads to a monochlorinated pyrimidine core with a N,N-dialkylaminyl substituent 18. 

With the isolation of byproduct 9 and the support from isolated byproducts 11 and 12 we can state 

that formation of byproduct 8 during step (iii a) was due to a direct nucleophilic attack of the tertiary 

alkylamine triethylamine at the chlorinated pyrimidine core of 5. Because triethylamine and other tertiary 

alkylamines are broadly used as assisting bases during nucleophilic aromatic substitution reactions due 

to their low nucleophilicity, our results put their use into question during that type of reactions. 

As stated above, the formation of that sort of byproducts was not described in former publications 

about that type of reaction showing the synthesis of pirinixic acid derivatives. One cause of the fact 

that byproduct 8 is apparently formed exclusively during reaction batches on a larger scale could 

probably be the higher concentration of triethylamine during step (iii a) that has raised the probability 

of a nucleophilic attack of triethylamine at the chlorinated pyrimidine core. Therefore, we think that it 

could be useful to lower the concentration of triethylamine in step (iii a) or to change the assisting base 
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triethylamine to sodium carbonate as depicted in step (iii b) and as previously described by  

Rau et al. [6] and Popescu et al. [11] to avoid the formation of byproduct 8. 

We checked that last proposal for effectiveness during step (iii b) and indeed, byproducts were 

formed to a lesser extent. That made the purification procedure less complex. Therefore, we succeeded 

in optimizing reaction step (iii a) by changing the assisting base triethylamine to sodium carbonate as 

depicted in step (iii b). So, all forms of reactions utilizing inorganic assisting bases during nucleophilic 

aromatic substitution reactions at heteroaromatic halides seem to be more suitable than reactions using 

tertiary alkylamines as assisting bases. 

3. Experimental 

3.1. General 

Compounds and Chemistry. All commercial chemicals and solvents were of reagent grade and were 

used without further purification. For step (i), commercially available triethylamine was distilled after 

refluxing over KOH. All reactions were carried out in an argon atmosphere and compounds 2, 4, 5, 6, 

8, 9, 11 and 12 were permanently stored under argon after their purification. The structures of 

compounds 2, 4, 5, 6, 8, 9, 11 and 12 were confirmed by 1H-NMR spectroscopy and mass 

spectrometry (ESI). The structures of final compound 2 and byproducts, 8, 9, 11, and 12 were 

additionally confirmed by 13C-NMR spectroscopy and in part by high-resolution mass spectrometry 

(HRMS). Furthermore, the purity of compound 2 was determined by combustion analysis and high 

pressure liquid chromatography (HPLC) analysis and was 99%. 
1H- and 13C-NMR spectra were measured in DMSO-d6 on a Bruker AM 250, DPX 250, AV 300 or 

AV 400 spectrometer (Bruker, Rheinstetten, Germany). For correct correlation of 13C-NMR signals to 

the respective carbon atom in compound 2 and for structure determination of byproduct 7 in general, 
13C distortionless enhancement by polarization transfer (DEPT), 1H-1H correlation spectroscopy 

(COSY), 1H-1H rotating frame nuclear overhauser effect spectroscopy (ROESY), 1H-13C heteronuclear 

single quantum coherence (HSQC) and 1H-13C heteronuclear multiple bond correlation (HMBC) 

experiments were conducted. They were also performed on the spectrometers mentioned above. 

Chemical shifts are reported in parts per million (ppm) using tetramethylsilane (TMS) as an internal 

standard. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet,  

t = triplet, q = quartet, m = multiplet, br = broad. Mass spectra were obtained on a Fisons Instruments 

VG Platform II spectrometer measuring in the positive- or negative-ion mode (ESI-MS system, Fisons 

Instruments, Manchester, Great Britain). High-resolution mass spectra (HRMS) were recorded on a 

Thermo Scientific MALDI LTQ Orbitrap XL (Thermo Fisher Scientific, Waltham, MA, USA). 

Combustion analysis was performed by the Microanalytical Laboratory of the Institute of Organic 

Chemistry and Chemical Biology, Goethe University Frankfurt, on a Foss Heraeus CHN-O-rapid 

elemental analyzer (Heraeus, Hanau, Germany). High pressure liquid chromatography (HPLC) 

analysis was carried out on a Waters instrument (Waters, Milford, CT, USA) consisting of a Waters 

600 controller, an In-Line Degasser AF, a Waters 717plus autosampler and a Waters 2487 dual λ 

absorbance detector. The utilized detection wavelengths were 247, 254 and 290 nm. The column used 

was a MultoHigh Phenyl-5 µm column, 250 × 4 mm (CS Chromatographie, Langerwehe, Germany). 
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The mobile phase gradient used consisted of 2 phases (MeOH = phase A, Milli-Q distillate 0.1% 

formic acid = phase B) starting with 10% phase A up to 100% phase A within 45 min. The used flow 

rate was 1 mL/min and the separation temperature was set at 25 °C. Reactions were monitored by  

thin-layer chromatography that was carried out on Merck TLC silica gel plates 60 F254 and RP-18 F254 s 

(Merck, Darmstadt, Germany) using UV light as visualizing agent. Macherey Nagel silica gel 60, 

particle size 0.040–0.063 mm/230–400 mesh ASTM (Macherey Nagel, Düren, Germany) and  

Sigma-Aldrich octadecyl-functionalized silica gel, particle size 200–400 mesh, extent of loading:  

20–22% (Sigma-Aldrich, St. Louis, MO, USA) were used for column chromatography. The synthesis 

of YS-121 followed the route originally published by d’Atri et al. [10] and already modified by 

Koeberle et al. [8]. That synthesis was modified and optimized again in some cases to be convenient to 

resolve the problem of byproduct formation during that synthesis conducted in a larger scale. 

3.2. Ethyl 2-(4,6-Dihydroxypyrimidin-2-ylthio)octanoate (4) 

Step (i). 2-Mercaptopyrimidine-4,6-diol (3; 30.0 g, 208 mmol, 1.00 equiv.) was dissolved in 

anhydrous DMF (150 mL) under heating. Triethylamine (31.5 g, 312 mmol, 1.50 equiv.) was added at 

23 °C through a dripping funnel, followed by ethyl 2-bromooctanoate (61.4 g, 244 mmol, 1.17 equiv.). 

After stirring at room temperature for 87 h (TLC control), the DMF was evaporated under reduced 

pressure. The residue was suspended in water and extracted with EtOAc. The combined organic layers 

were washed with brine, dried with MgSO4, filtered and evaporated under reduced pressure. The crude 

product was recrystallized from EtOAc/n-hexane to give 4 (27.3 g, 42%) as a white solid. Rf = 0.64 

(silica gel, EtOAc-MeOH 3:1); 1H-NMR [250.13 MHz, (CD3)2SO]: δ = 0.86 (t, 3H, CH3-Hex, J = 6.8 Hz), 

1.17 (t, 3H, OCH2CH3, J = 7.0 Hz), 1.25–1.44 (m, 8H, CH2-Hex), 1.73–1.94 (m, 2H, CH2-Hex), 4.14 

(q, 2H, OCH2, J = 7.3 Hz), 4.52 (t, 1H, SCH, J = 7.3 Hz), 5.25 (s, 1H, Pyr-5H), 11.81 (br s, 2H, OH); 

MS (ESI+): m/e = 315.1 [M + H]+. 

3.3. Ethyl 2-(4,6-Dichloropyrimidin-2-ylthio)octanoate (5) 

Step (ii). POCl3 (219 g, 1.43 mol, 18.0 equiv.) was added through a dripping funnel at 0 °C to the 

thioether derivative 4 (25.0 g, 79.5 mmol, 1.00 equiv.) resulting from step (i), followed by  

N,N-diethylaniline (11.9 g, 79.5 mmol, 1.00 equiv.) at 0 °C. That mixture was stirred at 90 °C for 45 h 

(TLC control). Then, excess POCl3 was distilled off at atmospheric pressure, and the resulting oil was 

poured onto crushed ice. The aqueous solution was extracted with EtOAc, and the combined organic 

layers were washed with diluted HCl, saturated NaHCO3 solution and brine. Then, the organic layer 

was dried over MgSO4, filtered and evaporated under reduced pressure. The crude product was 

purified by column chromatography (silica gel, n-hexane-EtOAc 5:1) to give 5 (24.5 g, 88%) as a red 

oil. Rf = 0.6 (silica gel, n-hexane-EtOAc 5:1); 1H-NMR [400.13 MHz, (CD3)2SO]: δ = 0.86 (t, 3H, 

CH3-Hex, J = 7.2 Hz), 1.20 (t, 3H, OCH2CH3, J = 6.8 Hz), 1.24–1.34 (m, 6H, CH2-Hex), 1.36–1.43 

(m, 2H, CH2-Hex), 1.79–1.97 (m, 2H, CH2-Hex), 4.15 (q, 2H, OCH2, J = 7.2 Hz), 4.37 (t, 1H, SCH,  

J = 7.2 Hz), 7.75 (s, 1H, Pyr-5H); MS (ESI+): m/e = 351.1 [M + H]+. 
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3.4. Ethyl 2-(4-Chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoate (6) and 2-(4-Chloro-

6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic Acid (2) 

Step (iii a). A solution of the chlorinated pyrimidine derivative 5 (18.7 g, 53.2 mmol, 1.00 equiv.) 

obtained from step (ii), triethylamine (16.2 g, 160 mmol, 3.00 equiv.) and 2,3-dimethylaniline (6.78 g, 

55.9 mmol, 1.05 equiv.) in EtOH (62.5 mL) was refluxed under stirring for 65 h (TLC control). Then, 

EtOH and excess triethylamine were evaporated under reduced pressure. The residue was dissolved in 

EtOAc, and the organic layer was extracted with diluted HCl, saturated NaHCO3 solution and brine. 

Then, the organic layer was dried over MgSO4, filtered and evaporated under reduced pressure. The 

crude product was roughly purified by column chromatography (silica gel, n-hexane-EtOAc 10:1) to 

give a mixture of the desired compound 6 together with one byproduct as a yellow oil (14.0 g). MS 

(ESI+): m/e = 436.2 [M + H]+, byproduct: MS (ESI+): m/e = 473.3 [M + H]+. That mixture was used 

for step (iv) without further purification. 

After completion of step (iv), further purification of 500 mg of that mixture by column 

chromatography (RP-18 silica gel, acetonitrile-water 4:1) gave the desired compound 6 (210 mg) as a 

yellow oil. Therefore, purification by RP-18 silica gel is already useful and applicable at that stage of 

synthesis. By extrapolating the result of RP-18 column chromatography of 500 mg up to 14.0 g, a yield 

of 5.88 g, 25% of 6 could have been achievable. Rf = 0.2 (silica gel, n-hexane-EtOAc 10:1);  
1H-NMR (250.13 MHz, (CD3)2SO): δ = 0.83 (t, 3H, CH3-Hex, J = 7.0 Hz), 1.15 (t, 3H, OCH2CH3,  

J = 7.0 Hz), 1.16–1.34 (m, 8H, CH2-Hex), 1.63–1.84 (m, 2H, CH2-Hex), 2.05 (s, 3H, Ph-2-CH3), 2.26 

(s, 3H, Ph-3-CH3), 4.08 (q, 2H, OCH2, J = 7.3 Hz), 4.25 (t, 1H, SCH, J = 7.3 Hz), 6.20 (s, 1H, Pyr-5H), 

7.06-7.13 (m, 3H, Ph-4,5,6-H), 9.51 (br s, 1H, NH); MS (ESI+): m/e = 436.2 [M + H]+. 

Step (iv). The mixture of 6 and one byproduct (13.5 g) obtained in step (iii a) was dissolved in 

EtOH (420 mL) at room temperature. An approximate excess of LiOH (2.61 g, 109 mmol) was added, 

and the resulting mixture was stirred at room temperature for 120 h (TLC control). Then, EtOH was 

removed under reduced pressure, and the obtained residue was dissolved in water under heating, while 

low amounts of MeOH were added. The solution was acidified with diluted HCl, and the precipitate 

was filtered, washed to neutrality with water and then with n-hexane. A solution of the precipitate in 

EtOAc was dried over MgSO4, filtered and evaporated under reduced pressure. The crude product was 

purified by column chromatography (RP-18 silica gel, acetonitrile-water 4:1). Finally a solution of the 

purified product in EtOAc was extracted with diluted HCl, washed to neutrality with water and was 

dried over MgSO4. After filtration, the solvent was evaporated under reduced pressure and the product 

was precipitated from EtOAc/n-hexane. After two weeks at 26 °C, the solid product was filtered and 

was washed with n-hexane. In the end 2.00 g of the carboxylic acid derivative 2 were obtained as a 

pale yellow solid. By including the extrapolated content of 6 in the mixture used in that step, a yield of 

38% was achieved. Rf = 0.4 (silica gel, EtOAc); 1H-NMR [250.13 MHz, (CD3)2SO]: δ = 0.85 (t, 3H, 

CH3-Hex, J = 6.3 Hz), 1.10–1.37 (m, 8H, CH2-Hex), 1.59–1.91 (m, 2H, CH2-Hex), 2.08 (s, 3H, Ph-2-

CH3), 2.28 (s, 3H, Ph-3-CH3), 4.23 (br t, 1H, SCH), 6.21 (s, 1H, Pyr-5H), 7.08–7.16 (m, 3H, Ph-4,5,6-H), 

9.51 (br s, 1H, NH), 12.82 (br s, 1H, COOH); 13C-NMR [62.90 MHz, (CD3)2SO]: δ = 13.85 (CH3-Hex), 

13.99 (Ph-2-CH3), 20.06 (Ph-3-CH3), 21.90 (CH2-Hex), 26.38 (CH2-Hex), 28.08 (CH2-Hex), 30.94 

(CH2-Hex), 31.95 (CH2-Hex), 46.93 (SCH), 98.90 (Pyr-5-C), 123.99 (Ph-6-C), 125.67 (Ph-5-C), 

127.83 (Ph-4-C), 132.33 (Ph-2-C), 135.61 (Ph-3-C), 137.59 (Ph-1-C), 157.73 (Pyr-4-C), 162.16 (Pyr-2-C), 
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169.63 (Pyr-6-C), 172.47 (COOH); MS (ESI+): m/e = 408.1 [M + H]+; HRMS (MALDI): calcd. for 

C20H27ClN3O2S
+ [M + H]+ = 408.1507, found 408.1509; Anal. Calcd. C20H26ClN3O2S C, H, N: Calc.  

C 58.88, H 6.42, N 10.30, found C 59.12, H 6.52, N 10.15. 

3.5. Analytical data of (2-(3-(Diethylamino)-5-(2,3-dimethylphenylamino)phenylthio)octanoic Acid (8) 

During purification procedure of step (iv), 8 could be isolated as well as a pale, yellow solid. Rf = 0.6 

(silica gel, EtOAc); 1H-NMR [250.13 MHz, (CD3)2SO]: δ = 0.85 (t, 3H, CH3-Hex, J = 6.8 Hz), 1.05 (t, 

6H, N(CH2CH3)2, J = 7.0 Hz), 1.19–1.41 (m, 8H, CH2-Hex), 1.69–1.88 (m, 2H, CH2-Hex), 2.08 (s, 

3H, Ph-2-CH3), 2.26 (s, 3H, Ph-3-CH3), 3.27–3.43 (m, 4H, N(CH2CH3)2), 4.25 (t, 1H, SCH, J = 7.5), 

5.19 (s, 1H, Pyr-5H), 6.98–7.15 (m, 3H, Ph-4,5,6-H), 8.38 (br s, 1H, NH), 12.74 (br s, 1H, COOH);  

13C- NMR [62.90 MHz, (CD3)2SO]: δ = 12.79 (N(CH2CH3)2), 13.84 (CH3-Hex), 14.01 (Ph-2-CH3), 

20.16 (Ph-3-CH3), 21.92 (CH2-Hex), 26.80 (CH2-Hex), 28.30 (CH2-Hex), 31.07 (CH2-Hex), 32.42  

(CH2-Hex), 41.49 (N(CH2CH3)2), 46.96 (SCH), 77.39 (Pyr-5-C), 123.43 (Ph-6-C), 125.32 (Ph-5-C), 

126.38 (Ph-4-C), 131.59 (Ph-2-C), 137.13 (Ph-3-C), 137.52 (Ph-1-C), 160.42 (Pyr-4-C), 161.80  

(Pyr-2-C), 167.63 (Pyr-6-C), 173.29 (COOH); MS (ESI+): m/e = 445.3 [M + H]+; HRMS (MALDI): 

calcd. for C24H37N4O2S
+ [M + H]+ = 445.2632, found 445.2635. 

3.6. 6-(2,3-Dimethylphenylamino)-2-(1-ethoxy-1-oxooctan-2-ylthio)-N,N,N-triethylpyrimidin-4-

aminium (9) 

A solution of the chlorinated pyrimidine derivative 5 (400 mg, 1.14 mmol, 1.00 equiv.) obtained 

from step (ii), triethylamine (346 mg, 3.42 mmol, 3.00 equiv.) and 2,3-dimethylaniline (145 mg,  

1.20 mmol, 1.05 equiv.) in EtOH (1.33 mL) was refluxed under stirring for 14 h (TLC control). Then, 

EtOH and excessive triethylamine were evaporated under reduced pressure. The residue was dissolved 

in EtOAc, and the organic layer was extracted with diluted HCl, saturated NaHCO3 solution and brine. 

Then, the organic layer was dried over MgSO4, filtered and evaporated under reduced pressure. 

Compound 9 was precipitated from EtOAc/n-hexane at 26 °C to give 9 (70.0 mg, 12%) as a colorless 

solid. 1H-NMR [400.13 MHz, (CD3)2SO]: δ = 0.86 (t, 3H, CH3-Hex, J = 6.7 Hz), 1.11–1.39 (m, 20H, 

N(CH2CH3)3, OCH2CH3, CH2-Hex), 1.71–1.89 (m, 2H, CH2-Hex), 2.10 (s, 3H, Ph-2-CH3), 2.30 (s, 

3H, Ph-3-CH3), 3.65–3.82 (m, 6H, N(CH2CH3)3), 4.04–4.16 (m, 2H, OCH2), 4.30 (br t, 1H, SCH),  

6.91–7.24 (m, 4H, Pyr-5H, Ph-4,5,6-H), 10.22 (s, 1H, NH); 13C-NMR [75.44 MHz, (CD3)2SO]:  

δ = 7.68 (N(CH2CH3)3), 13.82 (CH3-Hex), 13.92 (OCH2CH3), 14.18 (Ph-2-CH3), 20.08 (Ph-3-CH3), 

21.85 (CH2-Hex), 26.39 (CH2-Hex), 28.08 (CH2-Hex), 30.87 (CH2-Hex), 30.95 (CH2-Hex), 47.07 

(SCH), 53.41 (N(CH2CH3)3), 61.05 (COOCH2), 95.39 (Pyr-5-C), 123.57 (Ph-6-C), 125.63 (Ph-5-C), 

127.94 (Ph-4-C), 131.92 (Ph-2-C), 135.42 (Ph-3-C), 137.59 (Ph-1-C), 159.10 (Pyr-4-C), 162.76  

(Pyr-2-C), 170.26 (Pyr-6-C), 171.21 (COOCH2CH3); MS (ESI+): m/e = 502.3. 

3.7. Ethyl 2-(4-Ethoxy-6-(pyrrolidin-1-yl)pyrimidin-2-ylthio)octanoate (11) and Ethyl 2-(4-((4-chloro-

butyl)(methyl)amino)-6-ethoxypyrimidin-2-ylthio)octanoate (12) 

A solution of the chlorinated pyrimidine derivative 5 (200 mg, 0.569 mmol, 1.00 equiv.) obtained 

from step (ii), N-methylpyrrolidine (145 mg, 1.71 mmol, 3.00 equiv.) and 2,3-dimethylaniline (72.4 mg, 
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0.598 mmol, 1.05 equiv.) in EtOH (0.667 mL) was refluxed under stirring for 21 h (TLC control). 

Then, EtOH and excessive N-methylpyrrolidine were evaporated under reduced pressure. The residue 

was dissolved in EtOAc, and the organic layer was extracted with diluted HCl, saturated NaHCO3 

solution and brine. Then, the organic layer was dried over MgSO4, filtered and evaporated under 

reduced pressure. The crude product was roughly purified by column chromatography (silica gel,  

n-hexane-EtOAc 20:1) to give a mixture of compound 11 and compound 12. To separate both 

compounds a second column chromatography step followed using silica gel and an eluent gradient of 

n-hexane-EtOAc from 50:1 to 20:1 to give 11 (8.0 mg, 4%) as a colorless oil and 12 (10.0 mg, 4%) as 

a light yellow oil. 

Compound 11. Rf = 0.4 (silica gel, n-hexane-EtOAc 10:1); 1H-NMR [400.13 MHz, (CD3)2SO]:  

δ = 0.86 (t, 3H, CH3-Hex, J = 6.8 Hz), 1.17 (t, 3H, COOCH2CH3, J = 7.1 Hz), 1.25–1.43 (m, 11H, 

ArOCH2CH3, CH2-Hex), 1.75–1.99 (m, 6H, CH2-Hex, Pyrrolidine-2-CH2, Pyrrolidine-3-CH2),  

3.24–3.42 (m, 4H, Pyrrolidine-1-CH2, Pyrrolidine-4-CH2), 4.06–4.16 (m, 2H, COOCH2), 4.21–4.26 

(m, 2H, ArOCH2), 4.35 (t, 1H, SCH, J = 7.3 Hz), 5.42 (s, 1H, Pyr-5H); 13C-NMR [62.90 MHz, 

(CD3)2SO]: δ = 13.80 (CH3-Hex), 13.93 (COOCH2CH3), 14.43 (ArOCH2CH3), 21.89 (CH2-Hex), 

24.62 (Pyrrolidine-2-CH2, Pyrrolidine-3-CH2), 26.62 (CH2-Hex), 28.11 (CH2-Hex), 30.93 (CH2-Hex), 

31.37 (CH2-Hex), 46.07 (Pyrrolidine-1-CH2, Pyrrolidine-4-CH2), 46.88 (SCH), 60.70 (COOCH2), 
61.43 (ArOCH2), 81.23 (Pyr-5-C), 161.02 (Pyr-2-C), 167.38 (Pyr-4-C), 168.39 (Pyr-6-C), 171.72 

(COOCH2CH3); MS (ESI+): m/e =396.2. 

Compound 12. Rf = 0.3 (silica gel, n-hexane-EtOAc 10:1); 1H-NMR [400.13 MHz, (CD3)2SO]:  

δ = 0.86 (t, 3H, CH3-Hex, J = 6.8 Hz), 1.17 (t, 3H, COOCH2CH3, J = 7.1 Hz), 1.25–1.43 (m, 11H, 

ArOCH2CH3, CH2-Hex), 1.59–1.99 (m, 6H, CH2-Hex, NCH2CH2CH2CH2Cl), 2.95 (s, 1H, NCH3), 

3.43–3.59 (m, 2H, NCH2CH2CH2CH2Cl), 4.06–4.16 (m, 2H, COOCH2), 4.21–4.26 (m, 2H, ArOCH2), 

4.34 (t, 1H, SCH, J = 7.3 Hz), 5.60 (s, 1H, Pyr-5H); 13C-NMR [62.90 MHz, (CD3)2SO]: δ = 13.80 

(CH3-Hex), 13.93 (COOCH2CH3), 14.43 (ArOCH2CH3), 21.89 (CH2-Hex), 24.13 (NCH2CH2CH2CH2Cl), 

26.62 (CH2-Hex), 28.09 (CH2-Hex), 29.36 (NCH2CH2CH2CH2Cl), 30.93 (CH2-Hex), 31.32  

(CH2-Hex), 35.13 (NCH3), 45.09 (NCH2CH2CH2CH2Cl), 46.79 (SCH), 47.48 (NCH2CH2CH2CH2Cl), 

60.74 (COOCH2), 61.51 (ArOCH2), 80.63 (Pyr-5-C), 162.83 (Pyr-2-C), 167.31 (Pyr-4-C), 168.98  

(Pyr-6-C), 171.71 (COOCH2CH3); MS (ESI+): m/e = 446.2. 

3.8. Ethyl 2-(4-Chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoate (6) 

Step (iii b). A solution of the chlorinated pyrimidine derivative 5 (200 mg, 0.569 mmol, 1.00 equiv.) 

obtained from step (ii), sodium carbonate (180 mg, 1.71 mmol, 3.00 equiv.) and 2,3-dimethylaniline 

(72.4 mg, 0.598 mmol, 1.05 equiv.) in EtOH (1.33 mL) was refluxed under stirring for 22 h (TLC control). 

Then, excessive sodium carbonate was filtrated and EtOH was evaporated under reduced pressure. The 

residue was dissolved in EtOAc, and the organic layer was extracted with diluted HCl, saturated NaHCO3 

solution and brine. Then, the organic layer was dried over MgSO4, filtered and evaporated under reduced 

pressure. The crude product was purified by column chromatography (silica gel, n-hexane-EtOAc 

10:1) to give compound 6 (92 mg, 35%) as a yellow oil. For analytical data of 6, see 3.4. 
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4. Conclusions 

Here, we have demonstrated that syntheses conducted in a larger scale can generate problems and 
byproducts that did not appear at these syntheses at the original small scale, but we also show that it is 
possible to resolve these problems by a change in the purification procedure or reagents used as well as 
in the way of synthesis and thus obtained clean compounds. By conducting the described synthesis, it 
was possible to generate up to 2.00 g of YS-121 (2) as a pure compound for use in ongoing preclinical 
studies. By a change of the assisting base triethylamine to sodium carbonate in step (iii b), we 
succeeded in optimizing that step. Byproducts were formed to a lesser extent and the purification 
procedure was dramatically simplified. 

The reaction times are probably reducible, but our aim was first and foremost to get the highest 
yield possible during each respective step. After having conducted several reactions with two different 
assisting bases in step (iii a) and after having isolated and characterized different byproducts formed 
during those reactions, we could develop a proposal for the mechanism of byproduct formation. 
Therefore, we could clearly identify triethylamine as the reason for the formation of byproduct 7 
during step (iii a) that was isolated later, in step (iv), after saponification, as 8. 

Additionally, we could show that also other tertiary alkylamines could act as nucleophiles during a 
nucleophilic aromatic substitution reaction at a heteroaromatic halide. Such a formation of byproducts 
resulting from an initial nucleophilic attack of a tertiary alkylamine and a following elimination of one 
alkyl residue leading to a N,N-dialkylaminyl substituent at the heteroaromatic core was not described 
before during the used conditions. That unexpected fact can be very useful for reaction improvement 
of other nucleophilic aromatic substitution reactions at heteroaromatic halides in general. 

Conflict of interest 

The authors declare no conflict of interest. 

Acknowledgments 

The authors gratefully thank Ramona Steri as well as Mona Tawab for carefully reading through the 
draft of this paper, DI Stephan Bihler for his assistance at structural determination methods and Astrid 
Kaiser for conducting the purity measurements of compound 2 via HPLC analysis. 

References and Notes 

1. Santilli, A.A.; Scotese, A.C.; Tomarelli, R.M. A potent antihypercholesterolemic agent: [4-chloro-
6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14643). Experientia 1974, 30, 1110–1111. 

2. Reddy, J.K.; Moody, D.E.; Azarnoff, D.L.; Tomarelli, R.M. Hepatic effects of some [4-chloro-6-
(2,3-xylidino)-2-pyrimidinylthio] acetic acid (WY-14,643) analogs in the mouse. Arch. Int. 
Pharmacodyn. Ther. 1977, 225, 51–57. 

3. Issemann, I.; Green, S. Activation of a member of the steroid hormone receptor superfamily by 
peroxisome proliferators. Nature 1990, 347, 645–650. 

4. Kliewer, S.A.; Forman, B.M.; Blumberg, B.; Ong, E.S.; Borgmeyer, U.; Mangelsdorf, D.J.; 
Umesono, K.; Evans, R.M. Differential expression and activation of a family of murine 
peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA 1994, 91, 7355–7359. 



Molecules 2011, 16 10028 

 

 

5. Willson, T.M.; Brown, P.J.; Sternbach, D.D.; Henke, B.R. The PPARs: From orphan receptors to 

drug discovery. J. Med. Chem. 2000, 43, 527–550. 

6. Rau, O.; Syha, Y.; Zettl, H.; Kock, M.; Bock, A.; Schubert-Zsilavecz, M. α-Alkyl substituted 

pirinixic acid derivatives as potent dual agonists of the peroxisome proliferator activated receptor 

alpha and gamma. Arch. Pharm. Chem. Life Sci. 2008, 341, 191–195. 

7. Werz, O.; Greiner, C.; Koeberle, A.; Hoernig, C.; George, S.; Popescu, L.; Syha, Y.;  

Schubert-Zsilavecz, M.; Steinhilber, D. Novel and potent inhibitors of 5-lipoxygenase product 

synthesis based on the structure of pirinixic acid. J. Med. Chem. 2008, 51, 5449–5453. 

8. Koeberle, A.; Zettl, H.; Greiner, C.; Wurglics, M.; Schubert-Zsilavecz, M.; Werz, O. Pirinixic 

acid derivatives as novel dual inhibitors of microsomal prostaglandin E2 synthase-1 and  

5-lipoxygenase. J. Med. Chem. 2008, 51, 8068–8076. 

9. Koeberle, A.; Rossi, A.; Zettl, H.; Pergola, C.; Dehm, F.; Bauer, J.; Greiner, C.; Reckel, S.; 

Hoernig, C.; Northoff, H.; et al. The molecular pharmacology and in vivo activity of 2-(4-chloro-

6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid (YS121), a dual inhibitor of microsomal 

prostaglandin E2 synthase-1 and 5-lipoxygenase. J. Pharmacol. Exp. Ther. 2010, 332, 840–848. 

10. d'Atri, G.; Gomarasca, P.; Resnati, G.; Tronconi, G.; Scolastico, C.; Sirtori, C.R. Novel 

pyrimidine and 1,3,5-triazine hypolipidemic agents. J. Med. Chem. 1984, 27, 1621–1629. 

11. Popescu, L.; Rau, O.; Böttcher, J.; Syha, Y.; Schubert-Zsilavecz, M. Quinoline-based derivatives 

of pirinixic acid as dual PPAR α/γ agonists. Arch. Pharm. Chem. Life Sci. 2007, 340, 367–371. 

12. Dittrich, M.; Zettl, H.; Schubert-Zsilavecz, M. Functionalization of fatty acid mimetics for solid-

phase coupling and subsequent target identification. Arch. Pharm. Chem. Life Sci. 2010, 10, 625–630. 

13. Thieme, T.M.; Steri, R.; Proschak, E.; Paulke, A.; Schneider, G.; Schubert-Zsilavecz, M. Rational 

design of a pirinixic acid derivative that acts as subtype-selective PPARγ modulator. Bioorg. Med. 

Chem. Lett. 2010, 20, 2469–2473. 

14. Zettl, H.; Dittrich, M.; Steri, R.; Proschak, E.; Rau, O.; Steinhilber, D.; Schneider, G.; 

Lämmerhofer, M.; Schubert-Zsilavecz, M. Novel pirinixic acids as PPARα preferential dual 

PPARα/γ agonists. QSAR Comb. Sci. 2009, 28, 576–586. 

15. Matsumoto, K.; Hashimoto, S.; Otani, S. Acyclic tertiary amines as nucleophiles in substitution 

reactions of aromatic and heteroaromatic halides. J. Chem. Soc. Chem. Comm. 1991, 306–307. 

16. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry, 1st ed.; Oxford University 

Press Inc.: New York, NY, USA, 2001; p. 468. 

17. Ostrogovic, G.; Fliegl, E.; Bacaloglu, R. Nukleophile Substitutionen an s-Triazinen—II: Kinetik 

und Mechanismus der Solvolyse von 2,4-Dichlor-6-phenylamino-s-triazin. Tetrahedron 1971, 27, 

2885–2891. 

Sample Availability: Samples of compound 2 are available from the authors for scientific cooperations. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


