OPEN ACCESS **MOLECULES** ISSN 1420-3049 www.mdpi.com/journal/molecules

Article

Synthesis and Antibacterial Activities of Novel 2,5-Diphenylindolo[2,3-*e*] Pyrazolo[1',5':3",4"]pyrimido[2",1"-*c*] [1,2,4]triazines

Kamal F.M. Atta *, Omaima O.M. Farahat, Somaya M. Ghobashy and Mohamed G. Marei

Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia P.O. Box 426, Alexandria 21321, Egypt

* Author to whom correspondence should be addressed; E-Mail: prof.kf_atta@yahoo.com; Tel.: +0020-3591-7883; Fax: +0020-3593-2488.

Received: 3 October 2011; in revised form: 2 November 2011 / Accepted: 16 November 2011 / Published: 15 December 2011

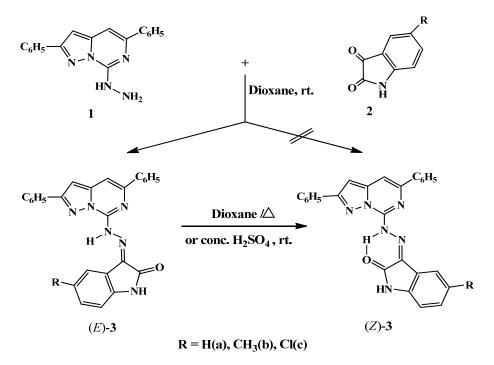
Abstract: The formation of (E)-3- $\{2-(2,5-diphenylpyrazolo[1,5-c]pyrimidin-7$ yl)hydrazono}indolin-2-ones 3 has been achieved by condensation of equimolar amounts of 7-hydrazino-2,5-diphenylpyrazolo[1,5-c]pyrimidine (1) and isatin (or isatin derivatives) 2 at room temperature. The (E)-products could be isomerized into corresponding the (Z)-3 isomers. Reactions of the latter fused heterocyclic hydrazones towards different electrophilic reagents yielded the corresponding 3-substituted derivatives 4-7. Dehydrative cyclisation of the hydrazones 3 using phosphorus oxychloride afforded the 2,5-diphenylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4] triazines 13. The polyfused heterocyclic ring system 13 underwent electrophilic substitution reactions at position 4 rather than at position 3. The 3-bromo isomer of 17 was prepared by a sequence of reactions starting from 2,5-diphenylpyrazolo[1,5-c]pyrimidine-7(6H)-thione (11). The orientation of the electrophilic attack was supported by spectroscopic and chemical evidence. Some of the synthesized compounds were found to possess slight to moderate activity against the microorganisms Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa.

Keywords: pyrazolopyrimidine; isatin; hydrazone; indolopyrazolopyrimidotriazine; antibacterial activity

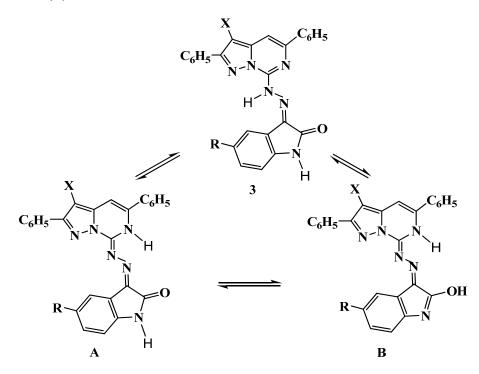
1. Introduction

Pyrimidines and fused pyrimidines, being an integral part of DNA and RNA, play an essential role in several biological processes. They also have considerable chemical and pharmacological importance; particularly, as nucleoside antibiotics, antibacterial, cardiovascular as well as agrochemical and veterinary products [1-9]. Various pyrimidine derivatives showed analgesic, antiarrhythmic, and anticancer activities [10-12], as well as anti-inflammatory, antiparkinsonian, and androgenic anabolic activities [13-18].

Isatin is known to be a colorimetric reagent for the amino acid proline, forming blue derivatives [19]. This property has been exploited for the determination of the level of this amino acid in pollens [20] or for the detection of polymer bound compounds possessing proline residues [21]. It has also been used in a colorimetric screening test for human serum hyperprolinaemia [22], in a colorimetric assay of HIV-1 proteinase [23] and for the estimation of the age of bones in crime investigation [24]. In a similar manner, isatin-3-hydrazone has been studied for the colorimetric determination of steroids [25,26].


Encouraged by the above observations and in continuation of our work for the syntheses of heterocyclic compounds from hydrazino heterocycles [27-32], a new series of $3-\{2-(2,5-diphenyl-pyrazolo[1,5-c]pyrimidin-7-yl)hydrazono\}$ indolin-2-ones and 2,5-diphenylindolo[2,3-e]pyrazolo-[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazines were synthesized, with a view to explore the possibility of achieving better biological activities.

2. Results and Discussion


The theoretical existence of geometric isomers of $3-\{2-(2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono\}indolin-2-ones ($ *E*and*Z*)-**3**had been predicted for the condensation of 7-hydrazino-2,5-diphenylpyrazolo[1,5-c]pyrimidine (**1**), which was readily obtained by sequence of reactions starting from ethyl phenylpropiolate [33,34], with isatin (or isatin derivatives)**2**(Scheme 1). But by stirring equimolar amounts of**1**with**2**at room temperature the reaction yielded only the kinetically more stable geometrical isomer (*E*)-**3a**-**c**, which upon heating in dioxane or stirring with conc. H₂SO₄ at room temperature underwent isomerisation to give the thermodynamically more stable isomer (*Z*)-**3a**-**c**showing a possibility of hydrogen bond formation. The structure and configuration of the pyrazolopyrimidinoindolinonehydrazones (*E*and*Z*)-**3**were fully differentiated by studying their spectra, which included IR, ¹H-NMR and MS. The IR spectra showed characteristic five membered ring amide carbonyl absorption bands at 1684–1710 and 1684–1692 cm⁻¹, in addition to the NH absorption band in the range 3459–3479 and 3451–3467 cm⁻¹, respectively.

The ¹H-NMR spectra of (*E*)-**3a**–**c** revealed, besides the aromatic protons as a multiplet at $\delta_{\rm H}$ 7.37–8.04, two doublets at $\delta_{\rm H}$ 8.07–8.11 and at $\delta_{\rm H}$ 8.16–8.23, as well as other characteristic singlets at $\delta_{\rm H}$ 6.85–7.23 for the H-3 pyrazole ring proton and at $\delta_{\rm H}$ 7.54–7.92 for the H-4 pyrimidine ring proton. The assignment of the higher field signal for the H-3 pyrazole ring proton and the lower field signal for H-4 pyrimidine ring protons is supported by the data reported for 2,5-diarylpyrazolo[1,5-*c*]pyrimidine-7(6*H*)-thiones [20]. Moreover, the spectra of (*E*)-**3a**–**c** exhibited exchangeable singlets at $\delta_{\rm H}$ 10.43–10.80 and at $\delta_{\rm H}$ 14.19–14.22 which are attributed to the NH of hydrazone conformer **3** and NH of pyrimidine conformers **A** or **B**. The intensity of both singlets is equivalent to one proton. The spectra also showed an exchangeable proton as two singlets equivalent to one proton at $\delta_{\rm H}$ 11.03–11.36 and at $\delta_{\rm H}$ 11.15–12.17 which were ascribed to the NH conformer **3** and OH conformer **B** of indole ring [35]. Furthermore, the spectrum of (*E*)-**3b** showed a singlet at $\delta_{\rm H}$ 2.33 for the CH₃ group. The previous data indicates that pyrazolopyrimidinoindolinonehydrazones (*E*)-**3a–c** exist as a mixture of the toutomers **3**, **A** and **B** (Figure 1).

Scheme 1. Synthesis of 3-{2-(2,5-diphenylpyrazolo[1,5-*c*]pyrimidin-7-yl)hydrazono} indolin-2-ones **3**.

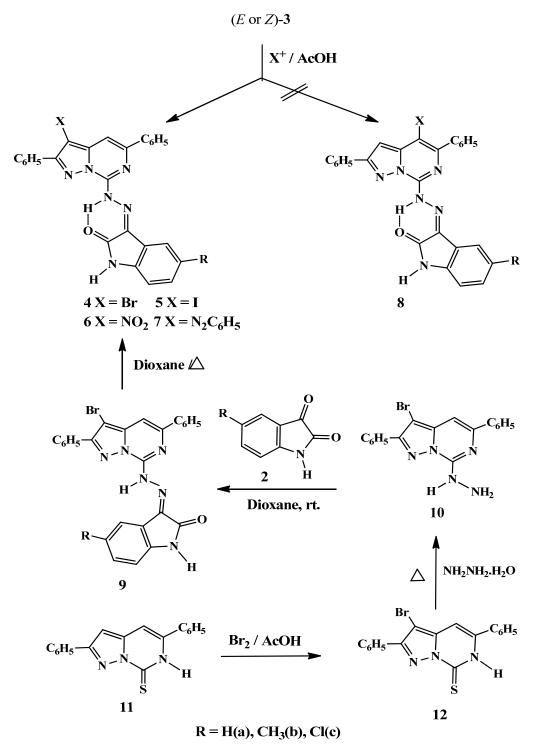
Figure 1. Isomerisation of (*E*)-3- $\{2-(2,5-diphenylpyrazolo[1,5-$ *c* $]pyrimidin-7-yl)hydrazono<math>\}$ indolin-2-ones (*E*)-3.

The ¹H-NMR spectra of (*Z*)-**3a**–**c** showed, besides the aromatic protons as a multiplet at $\delta_{\rm H}$ 7.37–7.71, two doublets at $\delta_{\rm H}$ 8.11–8.13 and at $\delta_{\rm H}$ 8.22–8.27, as well as other characteristic singlets at $\delta_{\rm H}$ 7.18–7.22 for the H-3 pyrazole ring proton and at $\delta_{\rm H}$ 7.88–7.95 for the H-4 pyrimidine ring proton. The spectra of (*Z*)-**3a**–**c** also exhibited an exchangeable NH proton at $\delta_{\rm H}$ 11.14–11.37 which was ascribed to the indole ring [35] and at $\delta_{\rm H}$ 14.21–14.23 for the chelated NH hydrazone residue. On the other hand, the spectra of (*Z*)-**3b** showed a singlet at $\delta_{\rm H}$ 2.33 for the CH₃ group. The above ¹H-NMR spectral data showed only a single conformer for the structure of the hydrazone (*Z*)-**3**.

Further conformation for the structure of both (*E* and *Z*)-pyrazolopyrimidinoindolinonehydrazones was obtained from their mass spectral data, where both isomers showed similar molecular ion peaks at m/z 430, 444 and 464, in addition to base peaks at m/z 77, 339 and 359 for derivatives **a**-**c**, respectively, in addition to the same fragments with similar or almost similar intensities.

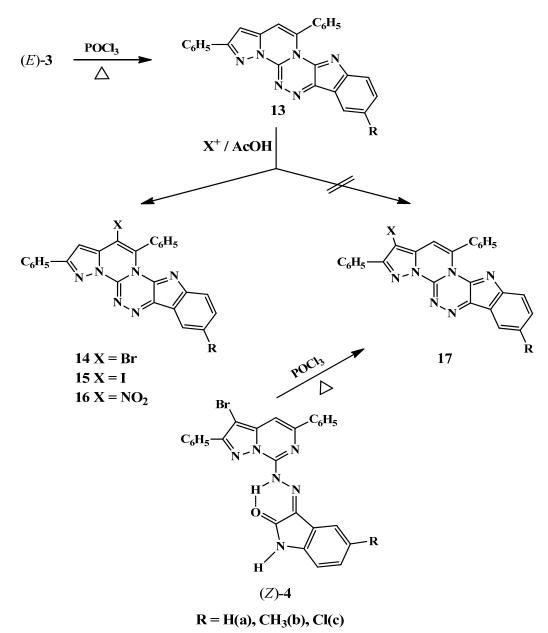
In the present investigation the electrophilic substitution reactions of the geometrical isomers pyrazolopyrimidinoindolinonehydrazones (*E* or *Z*)-**3a**–**c** were studied in the hope that introduction of such substituents might enhance their biological properties, as well as, to study the more reactive position for the electrophilic attack on such fused heterocyclic rings (Scheme 2). Thus, bromination of (*E* or *Z*)-**3a**–**c** with bromine in glacial acetic acid, as well as, iodination with iodine monochloride in the same solvent yielded the respective monosubstituted (*Z*)-isomers **4** and **5**, since the (*E*)-**3a**–**c** isomers were proved to convert into the respective (*Z*)-conformers in acidic medium.

Moreover, reaction of (E or Z)-**3a–c** with nitric and sulfuric acids in glacial acetic acid and with benzenediazonium chloride in the presence of sodium hydroxide afforded the (Z)-3-nitro and 3-phenyldiazenyl derivatives **6** and **7**, respectively.


The structures of the 3-substituted derivatives 4–7 were confirmed by their spectral data. The ¹H-NMR spectra of 4a–c and 5a–c showed the absence of the H-3 pyrazole ring proton signals and the presence of the H-4 pyrimidine ring proton as singlet at $\delta_{\rm H}$ 7.61–7.93 ppm.

The structures were further confirmed chemically by preparing the isomeric 3-bromo derivatives **9a–c** through the bromination of 2,5-diphenylpyrazolo[1,5-*c*]pyrimidine-7(6*H*)-thione **11** with bromine in acetic acid rather than bromine in chloroform which gave the respective 3-bromo derivative **12** [30,33,34] (Scheme 2). Refluxing of **12** with hydrazine hydrate in ethanolic solution afforded the respective hydrazino derivatives **10**, which upon stirring with isatin (or isatin derivatives) **2** at room temperature yielded the corresponding (*E*)-hydrazono derivatives **9a–c**, which underwent isomerisation upon heating in dioxane to give the geometrical isomers (*Z*)-**4a–c**. The isomeric structure of hydrazones **4** and **9** are different in shape under the microscope and by TLC ($R_f = 0.65, 0.77, 0.75$ and 0.27, 0.43, 0.42), respectively, in addition to their mp. 288–290, 320–322, 304–306, 312–314, 300–302, 308–310 °C, respectively.

The ¹H-NMR spectrum of (*E*)-**9a** showed, besides the aromatic protons as a multiplet at $\delta_{\rm H}$ 7.87–8.05, two doublets at $\delta_{\rm H}$ 8.08 and at $\delta_{\rm H}$ 8.25, as well as another characteristic singlet at $\delta_{\rm H}$ 7.74 for the H-4 pyrimidine ring proton. Moreover, the spectrum of **9a** exhibited exchangeable singlets at $\delta_{\rm H}$ 10.92 and at $\delta_{\rm H}$ 14.16 which are attributed to the NH of the hydrazone conformer **3** and the NH of the pyrimidine conformers **A** or **B**, respectively. The intensity of both singlets is equivalent to one proton. The spectrum also revealed an exchangeable proton as two singlets equivalent to one proton at $\delta_{\rm H}$ 11.21 and at $\delta_{\rm H}$ 11.29 which ascribed to the NH conformer **3** and OH conformer **B** of the indole ring [46] (Figure 1).


10391

Scheme 2. Electrophilic substitution reactions of $3-\{2-(2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono\}$ indolin-2-ones (*E* or *Z*)-3.

The high point in the present investigation is the cyclization of the (*E*)-pyrazolopyrimidoindolinonehydrazones **3a–c** forming novel polycyclic rings with six heteroatoms containing two bridged nitrogens. Thus, heating of (*E*)-**3a–c** with phosphorus oxychloride afforded the corresponding target 2,5-diphenylindolo[2,3-*e*]pyrazolo[1',5':3":4"]pyrimido[2",1"-*c*][1,2,4]-triazines **13a–c** (Scheme 3). The structure of the indolopyrazolopyrimidotriazines was fully established from their spectral data analysis, which included IR, ¹H-NMR and MS spectra. The ¹H-NMR spectra of the **13a,b** revealed, besides the aromatic protons as a multiplet at δ_H 7.33–7.55, two doublets at δ_H 8.01, 8.13 and at δ_H 8.13, 8.20, as well as other characteristic singlets at δ_H 7.42, 7.53 for the H-3 pyrazole ring proton and at δ_H 7.55, 7.91 for the H-4 pyrimidine ring proton. On the other hand, the spectrum of **13b** exhibited a singlet at δ_H 2.44 for the CH₃ group.

Scheme 3. Annulation of 2,5-diphenylindolo[2,3-*e*]pyrazolo[1',5':3",4"]pyrimido[2",1"-*c*] [1,2,4]triazines.

The mass spectra of the heterocyclic compounds 13a-c confirmed the dehydrative cyclisation of the respective hydrazones showing their molecular ion peaks at m/z 412, 426 and 446, respectively, compared to that of the starting reactants at m/z 430, 444 and 464, respectively.

The novel fused indolopyrazolopyrimidotriazines **13a–c** appeared to be attractive intermediates for the synthesis of a number of substituted derivatives via reaction with some representative electrophilic reagents, and to the best of our knowledge, no reports on the electrophilic substitution reactions of the

indolopyrazolopyrimidotriazine ring system have been published. We are interested in investigating the reactivity at either the C-3 or C-4 position in such heterocyclic rings. Thus, bromination of **13a–c** with bromine, as well as, iodination with iodine monochloride gave the respective 4-bromo **14a–c** and 4-iodo **15a–c** derivatives, respectively. Moreover, nitration of **13a–c** with nitric and sulfuric acids in glacial acetic acid afforded the respective 4-nitro derivatives **16a–c**. The structures of the 4-substituted derivatives **14–16** were confirmed by studying their ¹H-NMR spectra, which showed the disappearance of the H-4 pyrimidine ring proton signals and the appearance of the H-3 pyrazole ring proton signals at $\delta_{\rm H}$ 7.28–7.47.

Furthermore, the structures of **14–16** were confirmed chemically by synthesizing the 3-substituted isomeric derivatives **17**. Thus, refluxing of (*Z*)-**4a–c** with phosphorus oxychloride led to the formation of the respective isomeric 3-bromo-derivatives of the fused triazines **17a–c**. The two isomeric bromo derivatives **14** and **17** were found to be completely different (TLC, mp and mixed mp, IR, ¹H-NMR and MS spectra). The ¹H-NMR spectra of **17a,b** showed the absence of the H-3 pyrazole ring proton signals and the presence of the H-4 pyrimidine ring proton signals at $\delta_{\rm H}$ 7.69, 7.94, respectively.

3. Experimental

3.1. General

Melting points were determined on a Kofler block and are uncorrected. Elemental analyses were carried out in the Microanalytical Laboratory of the Faculty of Science, Cairo University. The IR spectra of compounds were recorded on a Fourier Transform infrared 8400 spectrophotometer [Bruker Tensor 37] using potassium bromide pellets and frequencies are reported in cm⁻¹. The ¹H-NMR spectra were recorded on a JEOL JNM ECA 500 MHZ instrument and chemical shifts $\delta_{\rm H}$ are in ppm relative to tetramethylsilane used as internal standard. Mass spectra were recorded at 70 ev with a GCMS-QP 1000 EX spectrometer. Reactions were routinely followed by thin layer chromatography (TLC) Merck Kiesel gel; 60-F254 precoated plastic plates. The spots were detected by iodine. 5-Aryl-7-hydrazino-2-phenylpyrazolo[1,5-*c*]pyrimidines **1** and **10** were prepared from the respective acetylenic β -diketones as described earlier [30,33,34].

3.2. Synthesis of Compounds

3.2.1. (E)-3-{2-(2,5-Diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-ones 3a-c

A solution of 2,5-diphenyl-7-hydrazinopyrazolo[1,5-c]pyrimidine [30,33] (1, 0.30 g, 0.0010 mol) in dioxane (10 mL) was stirred with isatin (or isatin derivatives) (2, 0.0015 mol) for 24 hours at room temperature. The products that separated out as orange needles were filtered off, washed with methanol and dried.

(*E*)-3-{2-(2,5-Diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-one (**3a**). Yield 70%; m.p. 332–334 °C; R_f 0.18 (3:1 benzene-EtOAc); IR (cm⁻¹): 3479 (NH), 1700 (indole ring C=O), 1619 (pyrazole ring C=N), 1565 (pyrimidine ring C=N) and 1452 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , $\delta_{\rm H}$, ppm): 6.85 (s, 1H, pyrazole-H), 7.37–8.04 (m, 10H, aromatic-H), 7.54 (s, 1H, pyrimidine-H), 8.07 (d, 2H, aromatic-H), 8.16 (d, 2H, aromatic-H), 11.09, 11.23 (s, 1H, exchangeable NH, OH) and 10.65, 14.20 (s, 1H, exchangeable NH); MS, m/z (%): 430 (7, M⁺), 402 (1, M⁺-N₂), 325 (17, M⁺-C₇H₇N), 248 (1, M⁺-C₁₃H₁₀O), 234 (1, M⁺-C₁₃H₁₂N₂), 194 (1, M⁺-C₁₄H₁₀N₃O⁻), 165 (2, M⁺-C₁₅H₁₃N₄O), 139 (4, M⁺-C₁₆H₁₃N₅O), 132 (4, M⁺-C₁₉H₁₂N₃O), 88 (3, M⁺-C₂₁H₁₈N₄O), 77 (100, M⁺-C₂₀H₁₃N₆O) and 62 (8, M⁺-C₂₂H₁₈N₅O); Anal. Calc. for C₂₆H₁₈N₆O (430.46): C, 72.55; H, 4.21; N, 19.52%, found: C, 72.48; H, 4.17; N, 19.47%.

(*E*)-3-{2-(2,5-*Diphenylpyrazolo*[1,5-*c*]*pyrimidin*-7-*yl*)*hydrazono*}-5-*methylindolin*-2-*one* (**3b**). Yield 88%; m.p. 330–332 °C; R_f 0.28 (3:1 benzene-EtOAc); IR (cm⁻¹): 3459 (NH), 1684 (indole ring C=O), 1631 (pyrazole ring C=N), 1547 (pyrimidine ring C=N) and 1460 (pyrimidine ring C=C); ¹H-NMR (DMSO-*d*₆, $\delta_{\rm H}$, ppm): 2.33 (s, 3H, CH₃), 7.18 (d, 1H aromatic-H) 7.23 (s, 1H, pyrazole-H), 7.44–7.56 (m, 8H, aromatic-H), 7.89 (s, 1H, pyrimidine-H), 8.11 (d, 1H, aromatic-H), 8.18 (t, 2H, aromatic-H), 8.22 (d, 1H, aromatic-H), 11.03, 11.15 (s, 1H, exchangeable NH, OH) and 10.80, 14.22 (s, 1H, exchangeable NH); MS, *m/z* (%): 444 (41, M⁺), 416 (36, M⁺-N₂), 339 (100, M⁺-C₇H₇N), 262 (1, M⁺-C₁₃H₁₀O), 234 (22, M⁺-C₁₄H₁₄N₂), 208 (4, M⁺-C₁₄H₁₀N₃O⁻), 165 (1, M⁺-C₁₆H₁₅N₄O), 146 (2, M⁺-C₁₉H₁₂N₃O), 139 (7, M⁺-C₁₇H₁₅N₅O), 88 (13, M⁺-C₂₂H₂₀N₄O), 77 (21, M⁺-C₂₁H₁₅N₆O) and 62 (2, M⁺-C₂₃H₂₀N₅O); Anal. Calc. for C₂₇H₂₀N₆O (444.49): C, 72.96; H, 4.54; N, 18.91%, found: C, 72.91; H, 4.51; N, 18.86%.

(*E*)-3-{2-(2,5-*Diphenylpyrazolo*[1,5-*c*]*pyrimidin*-7-*yl*)*hydrazono*}-5-*chloroindolin*-2-*one* (**3c**). Yield 86%; m.p. 320–322 °C; R_f 0.34 (3:1 benzene-EtOAc); IR (cm⁻¹): 3459 (NH), 1710 (indole ring C=O), 1631 (pyrazole ring C=N), 1539 (pyrimidine ring C=N) and 1459 (pyrimidine ring C=C); ¹H-NMR (DMSO-*d*₆, $\delta_{\rm H}$, ppm): 7.02 (d, 1H, aromatic-H), 7.16 (s, 1H, aromatic-H), 7.21 (s, 1H, pyrazole-H), 7.41–7.57 (m, 6H, aromatic-H), 7.68 (d, 1H, aromatic-H), 7.92 (s, 1H, pyrimidine-H), 8.11 (d, 2H, aromatic-H), 8.23 (d, 2H, aromatic-H), 11.36, 12.17 (s, 1H, exchangeable NH, OH) and 10.43, 14.19 (s, 1H, exchangeable NH); MS, *m/z* (%): 464 (29, M⁺), 436 (41, M⁺-N₂), 359 (100, M⁺-C₇H₇N), 282 (2, M⁺-C₁₃H₁₀O), 234 (51, M⁺-C₁₃H₁₁ClN₂), 228 (2, M⁺-C₁₄H₁₀N₃O⁻), 166 (7, M⁺-C₁₉H₁₂ClN₆O) and 62 (17, M⁺-C₂₂H₁₇ClN₅O); Anal. Calc. for C₂₆H₁₇ClN₆O (464.91): C, 67.17; H, 3.69; Cl, 7.63; N, 18.08%, found: C, 67.12; H, 3.65; Cl, 7.60; N, 17.95%.

3.2.2. (Z)-3-{2-(2,5-Diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-ones 3a-c

Method A: A suspension of (E)-3-{2-(2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-ones (E)-**3a**-c (0.0046 mol) in dioxane, xylene, pyridine, acetic acid or acetic anhydride (50 mL) was heated under reflux for twenty four hours. The products that separated out were filtered off, washed with ethanol, dried and crystallized from dioxane.

Method B: Stirring of (*E*)-3-{2-(2,5-diphenylpyrazolo[1,5-*c*]pyrimidin-7-yl)hydrazono}indolin-2ones (*E*)-**3a**–**c** in conc. sulfuric acid (5.0 mL) was set below 15 °C and left for 2 hours. The reaction mixture was poured onto crushed ice and the separated product were filtered off, washed with water, dried and crystallized from dioxane.

The products from method A and method B showed completely similar TLC, mp, mixed mp, IR, ¹H-NMR and MS spectra.

(*Z*)-3-{2-(2,5-Diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-one (**3a**). Yield 80%; m.p. 318–320 °C (crystallization from dioxane); $R_f 0.66$ (3:1 benzene-EtOAc); IR (cm⁻¹): 3467 (NH), 1692 (indole ring C=O), 1626 (pyrazole ring C=N), 1557 (pyrimidine ring C=N) and 1458 (pyrimidine ring C=C); ¹H-NMR (DMSO-*d*₆, δ_H , ppm): 7.01 (d, 1H, aromatic-H), 7.12 (t, 1H, aromatic-H), 7.19 (s, 1H, pyrazole-H), 7.37–7.71 (m, 8H, aromatic-H), 7.91 (s, 1H, pyrimidine-H), 8.11 (d, 2H, aromatic-H), 8.22 (d, 2H, aromatic-H), 11.27 (s, 1H, exchangeable NH) and 14.21 (s, 1H, exchangeable NH); MS, *m/z* (%): 430 (7, M⁺), 402 (1, M⁺-N₂), 325 (14, M⁺-C₇H₇N), 248 (1, M⁺-C₁₃H₁₀O), 234 (2, M⁺-C₁₃H₁₂N₂), 194 (1, M⁺-C₁₄H₁₀N₃O⁻), 165 (2, M⁺-C₁₅H₁₃N₄O), 139 (10, M⁺-C₁₆H₁₃N₅O), 132 (1, M⁺-C₁₉H₁₂N₃O), 88 (48, M⁺-C₂₁H₁₈N₄O), 77 (100, M⁺-C₂₀H₁₃N₆O) and 62 (17, M⁺-C₂₂H₁₈N₅O); Anal. Calc. for C₂₆H₁₈N₆O (430.46): C, 72.55; H, 4.21; N, 19.52%, found: C, 72.56; H, 4.12; N, 19.12%.

(*Z*)-3-{2-(2,5-*Diphenylpyrazolo*[1,5-*c*]*pyrimidin*-7-*yl*)*hydrazono*}-5-*methylindolin*-2-*one* (**3b**). Yield 86%; m.p. 328–330 °C (crystallization from dioxane); R_f 0.69 (3:1 benzene-EtOAc); IR (cm⁻¹): 3451 (NH), 1684 (indole ring C=O), 1629 (pyrazole ring C=N), 1558 (pyrimidine ring C=N) and 1459 (pyrimidine ring C=C); ¹H-NMR (DMSO-*d*₆, $\delta_{\rm H}$, ppm): 2.33 (s, 3H, CH₃), 6.87 (d, 1H aromatic-H) 7.17 (s, 1H, aromatic-H), 7.18 (s, 1H, pyrazole-H), 7.43–7.53 (m, 7H, aromatic-H), 7.88 (s, 1H, pyrimidine-H), 8.11 (d, 2H, aromatic-H), 8.22 (d, 2H, aromatic-H), 11.14 (s, 1H, exchangeable NH) and 14.23 (s, 1H, exchangeable NH); MS, *m/z* (%): 444 (30, M⁺), 416 (40, M⁺-N₂), 339 (100, M⁺-C₇H₇N), 262 (2, M⁺-C₁₃H₁₀O), 234 (31, M⁺-C₁₄H₁₄N₂), 208(5, M⁺-C₁₄H₁₀N₃O⁻), 165 (3, M⁺-C₁₆H₁₅N₄O), 146 (8, M⁺-C₁₉H₁₂N₃O), 139 (4, M⁺-C₁₇H₁₅N₅O), 88 (22, M⁺-C₂₂H₂₀N₄O), 77 (40, M⁺-C₂₁H₁₅N₆O) and 62 (10, M⁺-C₂₃H₂₀N₅O); Anal. Calc. for C₂₇H₂₀N₆O (444.49): C, 72.96; H, 4.54; N, 18.91%, found: C, 72.89; H, 4.52; N, 18.82%.

(Z)-3-{2-(2,5-Diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-chloroindolin-2-one (**3c**). Yield 91%; m.p. 312–314 °C (crystallization from dioxane); R_f 0.63 (3:1 benzene-EtOAc); IR (cm⁻¹): 3464 (NH), 1689 (indole ring C=O), 1628 (pyrazole ring C=N), 1556 (pyrimidine ring C=N) and 1455 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ_H , ppm): 7.03 (d, 1H, aromatic-H), 7.15 (s, 1H, aromatic-H), 7.22 (s, 1H, pyrazole-H), 7.43–7.59 (m, 6H, aromatic-H), 7.71 (d, 1H, aromatic-H), 7.95 (s, 1H, pyrimidine-H), 8.13 (d, 2H, aromatic-H), 8.27 (d, 2H, aromatic-H), 11.37 (s, 1H, exchangeable NH) and 14.22 (s, 1H, exchangeable NH); MS, *m/z* (%): 464 (26, M⁺), 436 (41, M⁺-N₂), 359 (100, M⁺-C₇H₇N), 282 (3, M⁺-C₁₃H₁₀O), 234 (56, M⁺-C₁₃H₁₁ClN₂), 228 (2, M⁺-C₁₄H₁₀N₃O⁻), 166 (9, M⁺-C₁₉H₁₂N₃O), 165 (6, M⁺-C₁₅H₁₂ClN₄O), 139 (21, M⁺-C₁₆H₁₂ClN₅O), 88 (39, M⁺-C₂₁H₁₇ClN₄O), 77 (72, M⁺-C₂₀H₁₂ClN₆O) and 62 (23, M⁺-C₂₂H₁₇ClN₅O); Anal. Calc. for C₂₆H₁₇ClN₆O (464.91): C, 67.17; H, 3.69; Cl, 7.63; N, 18.08%, found: C, 67.11; H, 3.63; Cl, 7.58; N, 17.91%.

3.2.3. (Z)-3-{2-(3-Bromo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-ones 4a-c

A solution of bromine (0.06 mL, 0.0012 mol) in acetic acid (10 mL) was gradually added to a suspension of (*E* or *Z*)-3- $\{2-(2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono\}$ indolin-2-ones **3a-c** (0.0010 mol) in acetic acid (10 mL) with stirring for three hours at room temperature. The reaction mixture was then poured onto crushed ice, filtered off, washed with water, dried and crystallized from dioxane as orange needles.

(Z)-3-{2-(3-Bromo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-one (4a) Yield 96%; m.p. 288–290 °C; R_f 0.65 (3:1 benzene-EtOAc); IR (cm⁻¹): 3460 (NH), 1687 (indole ring C=O), 1622 (pyrazole ring C=N), 1559 (pyrimidine ring C=N) and 1456 (pyrimidine ring C=C); ¹H-NMR (DMSO-*d*₆, $\delta_{\rm H}$, ppm): 6.98 (d, 1H, aromatic-H), 7.13 (t, 1H, aromatic-H), 7.39–7.71 (m, 8H, aromatic-H), 7.75 (s, 1H, pyrimidine-H), 8.05 (d, 2H, aromatic-H), 8.30 (d, 2H, aromatic-H), 11.29 (s, 1H, exchangeable NH) and 14.17 (s, 1H, exchangeable NH); MS, *m/z* (%): 510 (64, M⁺), 481 (26, M⁺-HN₂), 405 (52, M⁺-C₇H₇N), 403 (91, M⁺-C₆H₇N₂), 325 (100, M⁺-C₇H₇BrN), 312 10, M⁺-C₁₂H₁₂N₃), 271 (27, M⁺-C₁₄H₁₃N₃O⁻), 243 (23, M⁺-C₁₄H₁₃N₅O), 234 (27, M⁺-C₁₃H₁₂BrN₂), 165 (4, M⁺-C₁₅H₁₃BrN₄O), 140 (4, M⁺-C₂₁H₁₈N₆O), 139 (23, M⁺-C₁₆H₁₃BrN₅O), 131 (9, M⁺-C₁₉H₁₃BrN₃O), 88 (38, M⁺-C₂₁H₁₈BrN₄O), 76 (90, M⁺-C₂₀H₁₄BrN₆O) and 62 (35, M⁺-C₂₂H₁₈BrN₅O); Anal. Calc. for C₂₆H₁₇BrN₆O (509.36): C, 61.31; H, 3.36; Br, 15.69; N, 16.50%, found: C, 61.27; H, 3.32; Br, 15.52; N, 16.33%.

(Z)-3-{2-(3-Bromo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-methylindolin-2-one (**4b**) Yield 97%; m.p. 320–322 °C; R_f 0.77 (3:1 benzene-EtOAc); IR (cm⁻¹): 3465 (NH), 1689 (indole ring C=O), 1628 (pyrazole ring C=N), 1559 (pyrimidine ring C=N) and 1451 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 2.36 (s, 3H, CH₃), 6.88 (d, 1H aromatic-H) 7.19 (s, 1H, aromatic-H), 7.52–7.62 (m, 7H, aromatic-H), 7.73 (s, 1H, pyrimidine-H), 8.09 (d, 2H, aromatic-H), 8.16 (d, 2H, aromatic-H), 11.17 (s, 1H, exchangeable NH) and 14.22 (s, 1H, exchangeable NH); MS, *m/z* (%): 524 (98, M⁺), 495 (50, M⁺-HN₂), 419 (77, M⁺-C₇H₇N), 417 (100, M⁺-C₆H₇N₂), 339 (28, M⁺-C₇H₇BrN), 312 (22, M⁺-C₁₃H₁₄N₃), 285 (19, M⁺-C₁₄H₁₃N₃O⁻), 243 (11, M⁺-C₁₅H₁₅N₅O), 234 (16, M⁺-C₁₄H₁₄BrN₂), 165 (6, M⁺-C₁₆H₁₅BrN₄O), 145 (14, M⁺-C₁₉H₁₃BrN₃O), 140 (6, M⁺-C₂₂H₂₀N₆O), 139 (28, M⁺-C₁₇H₁₅BrN₅O), 88 (45, M⁺-C₂₂H₂₀BrN₄O), 76 (95, M⁺-C₂₁H₁₆BrN₆O) and 62 (29, M⁺-C₂₃H₂₀BrN₅O); Anal. Calc. for C₂₇H₁₉BrN₆O (523.38): C, 61.96; H, 3.66; Br, 15.27; N, 16.06%, found: C, 61.89; H, 3.63; Br, 15.18; N, 15.83%.

(*Z*)-3-{2-(3-Bromo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-chloroindolin-2-one (**4c**) Yield 94%; m.p. 304–306 °C; R_f 0.75 (3:1 benzene-EtOAc); IR (cm⁻¹): 3451 (NH), 1684 (indole ring C=O), 1630 (pyrazole ring C=N), 1560 (pyrimidine ring C=N) and 1447 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 7.03 (d, 1H, aromatic-H), 7.19 (s, 1H, aromatic-H), 7.42–7.57 (m, 6H, aromatic-H), 7.69 (d, 1H, aromatic-H), 7.93 (s, 1H, pyrimidine-H), 8.11 (d, 2H, aromatic-H), 8.25 (d, 2H, aromatic-H), 11.36 (s, 1H, exchangeable NH) and 14.20 (s, 1H, exchangeable NH); MS, *m/z* (%): 544 (53, M⁺), 515 (27, M⁺-HN₂), 439 (10, M⁺-C₇H₇N), 437 (100, M⁺-C₆H₇N₂), 359 (13, M⁺-C₇H₇BrN), 312 (11, M⁺-C₁₂H₁₁ClN₃), 305 (1, M⁺-C₁₄H₁₃N₃O⁻), 243 (18, M⁺-C₁₄H₁₂ClN₅O), 234 (2, M⁺-C₁₃H₁₁BrClN₂), 165 (15, M⁺-C₁₅H₁₂BrClN₄O), 140 (3, M⁺-C₂₁H₁₇ClN₆O), 139 (20, M⁺-C₁₆H₁₂BrClN₅O); Anal. Calc. for C₂₆H₁₆BrClN₆O (543.80): C, 57.42; H, 2.97; Br, 14.69; Cl, 6.52; N, 15.45%, found: C, 57.38; H, 2.95; Br, 14.51; Cl, 6.31; N, 15.23%.

3.2.4. (E)-3-{2-(3-Bromo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-ones 9a-c

A solution of 3-bromo-2,5-diphenyl-7-hydrazinopyrazolo[1,5-c]pyrimidine [45] (10, 0.46 g, 0.0012 mol) in dioxane (10 mL) was stirred with isatin (or isatin derivatives) 2 (0.0015 mol) for 24 h at room temperature. The products that separated out were filtered off, washed with methanol and dried.

(*E*)-3-{2-(3-Bromo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-one (**9a**). Yield 81%; m.p. 312–314 °C; R_f 0.27 (3:1 benzene-EtOAc); IR (cm⁻¹): 3442 (NH), 1707 (indole ring C=O), 1626 (pyrazole ring C=N), 1555 (pyrimidine ring C=N) and 1453 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 7.87–8.05 (m, 10H, aromatic-H), 7.74 (s, 1H, pyrimidine-H), 8.08 (d, 2H, aromatic-H), 8.25 (d, 2H, aromatic-H), 11.21, 11.29 (s, 1H, exchangeable NH, OH) and 10.92, 14.16 (s, 1H, exchangeable NH); MS, *m/z* (%): 510 (35, M⁺), 481 (28, M⁺-HN₂), 405 (81, M⁺-C₇H₇N), 403 (100, M⁺-C₆H₇N₂), 325 (33, M⁺-C₇H₇BrN), 312 (15, M⁺-C₁₂H₁₂N₃), 271 (3, M⁺-C₁₄H₁₃N₃O⁻), 243 (13, M⁺-C₁₄H₁₃N₅O), 234 (16, M⁺-C₁₉H₁₃BrN₂), 165 (7, M⁺-C₁₅H₁₃BrN₄O), 140 (4, M⁺-C₂₁H₁₈N₆O), 139 (22, M⁺-C₁₆H₁₃BrN₅O); Anal. Calc. for C₂₆H₁₇BrN₆O (509.36): C, 61.31; H, 3.36; Br, 15.69; N, 16.50%, found: C, 61.27; H, 3.30; Br, 15.46; N, 16.38%.

(*E*)-3-{2-(3-Bromo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-methylindolin-2-one (**9b**). Yield 79%; m.p. 300–302 °C; R_f 0.43 (3:1 benzene-EtOAc); IR (cm⁻¹): 3451 (NH), 1698 (indole ring C=O), 1630 (pyrazole ring C=N), 1543 (pyrimidine ring C=N) and 1460 (pyrimidine ring C=C); MS, m/z (%): 524 (81, M⁺), 495 (40, M⁺-HN₂), 419 (69, M⁺-C₇H₇N), 417 (86, M⁺-C₆H₇N₂), 339 (32, M⁺-C₇H₇BrN), 312 (17, M⁺-C₁₃H₁₄N₃), 285 (26, M⁺-C₁₄H₁₃N₃O⁻), 243 (15, M⁺-C₁₅H₁₅N₅O), 234 (16, M⁺-C₁₄H₁₄BrN₂), 165 (7, M⁺-C₁₆H₁₅BrN₄O), 145 (11, M⁺-C₁₉H₁₃BrN₃O), 140 (12, M⁺-C₂₂H₂₀N₆O), 139 (30, M⁺-C₁₇H₁₅BrN₅O), 88 (38, M⁺-C₂₂H₂₀BrN₄O), 76 (100, M⁺-C₂₁H₁₆BrN₆O) and 62 (21, M⁺-C₂₃H₂₀BrN₅O); Anal. Calc. for C₂₇H₁₉BrN₆O (523.38): C, 61.96; H, 3.66; Br, 15.27; N, 16.06%, found: C, 61.81; H, 3.51; Br, 15.05; N, 15.76%.

(*E*)-3-{2-(3-Bromo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-chloroindolin-2-one (**9c**). Yield 79%; m.p. 308–310 °C; R_f 0.42 (3:1 benzene-EtOAc); IR (cm⁻¹): 3464 (NH), 1700 (indole ring C=O), 1629 (pyrazole ring C=N), 1533 (pyrimidine ring C=N) and 1449 (pyrimidine ring C=C); MS, m/z (%): 544 (100, M⁺), 515 (44, M⁺-HN₂), 439 (91, M⁺-C₇H₇N), 437 (94, M⁺-C₆H₇N₂), 359 (29, M⁺-C₇H₇BrN), 312 (18, M⁺-C₁₂H₁₁ClN₃), 305 (1, M⁺-C₁₄H₁₃N₃O⁻), 243 (18, M⁺-C₁₄H₁₂ClN₅O), 234 (9, M⁺-C₁₃H₁₁BrClN₂), 165 (12, M⁺-C₁₅H₁₂BrClN₄O), 140 (5, M⁺-C₂₁H₁₇ClN₆O), 139 (36 M⁺-C₁₆H₁₂BrClN₅O), 88 (24, M⁺-C₂₁H₁₇BrClN₄O), 76 (98, M⁺-C₂₀H₁₃BrClN₆O) and 62 (35, M⁺-C₂₂H₁₇BrClN₅O); Anal. Calc. for C₂₆H₁₆BrClN₆O (543.80): C, 57.42; H, 2.97; Br, 14.69; Cl, 6.52; N, 15.45%, found: C, 57.21; H, 2.82; Br, 14.48; Cl, 6.25; N, 15.27%.

3.2.5. (Z)-3-{2-(3-Iodo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-ones 5a-c

A solution of iodine monochloride (0.20 g, 0.0012 mol) in acetic acid (10 mL) was gradually added to a suspension of (E or Z)-3**a**–**c** (0.001 mol) in acetic acid (10 mL) with stirring for three hours at room temperature. The reaction mixture was then poured onto crushed ice and the products that separated out were filtered off, washed with water, dried and crystallized from dioxan as orange needles.

(Z)-3-{2-(3-Iodo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-one (**5a**). Yield 92%; m.p. 280–282 °C; IR (cm⁻¹): 3454 (NH), 1684 (indole ring C=O), 1622 (pyrazole ring C=N), 1561 (pyrimidine ring C=N) and 1455 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 6.96 (d, 1H aromatic-H) 7.12 (t, 1H, aromatic-H), 7.36–7.69 (m, 8H, aromatic-H), 7.61 (s, 1H, pyrimidine-

H), 8.00 (d, 2H, aromatic-H), 8.27 (d, 2H, aromatic-H), 11.27 (s, 1H, exchangeable NH) and 14.12 (s, 1H, exchangeable NH); MS, m/z (%): 557 (95, M⁺), 529 (24, M⁺-N₂), 452 (100, M⁺-C₇H₇N), 374 (1, M⁺-C₁₃H₁₁O), 360 (22, M⁺-C₁₂H₁₁N₃), 325 (41, M⁺-C₇H₇IN), 320 (1, M⁺-C₁₄H₁₁N₃O), 257 (5, M⁺-C₁₉H₁₆N₄⁻), 234 (8, M⁺-C₁₃H₁₂IN₂), 188 (10, M⁺-C₂₁H₁₇N₆O), 165 (7, M⁺-C₁₅H₁₃IN₄O), 139 (41, M⁺-C₁₆H₁₃IN₅O), 131 (8, M⁺-C₁₉H₁₃IN₃O), 88 (7, M⁺-C₂₁H₁₈IN₄O), 76 (96, M⁺-C₂₀H₁₄IN₆O) and 62 (35, M⁺-C₂₂H₁₈IN₅O); Anal. Calc. for C₂₆H₁₇IN₆O (556.36): C, 56.13; H, 3.08; I, 22.81; N, 15.11%, found: C, 55.89; H, 2.99; I, 22.45; N, 14.78%.

(Z)-3-{2-(3-Iodo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-methylindolin-2-one (**5b**). Yield 98%; m.p. 314–316 °C; IR (cm⁻¹): 3443 (NH), 1684 (indole ring C=O), 1630 (pyrazole ring C=N), 1564 (pyrimidine ring C=N) and 1460 (pyrimidine ring C=C); MS, m/z (%): 571 (67, M⁺), 543 (14, M⁺-N₂), 466 (44, M⁺-C₇H₇N), 388 (2, M⁺-C₁₃H₁₁O), 360 (3, M⁺-C₁₃H₁₃N₃), 339 (25, M⁺-C₇H₇IN), 334 (8, M⁺-C₁₄H₁₁N₃O), 257 (4, M⁺-C₂₀H₁₈N₄⁻), 234 (3, M⁺-C₁₄H₁₄IN₂), 188 (5, M⁺-C₂₂H₁₉N₆O), 165 (5, M⁺-C₁₆H₁₅IN₄O), 145 (7, M⁺-C₁₉H₁₃IN₃O), 139 (11, M⁺-C₁₇H₁₅IN₅O), 88 (11, M⁺-C₂₂H₂₀IN₄O), 76 (100, M⁺-C₂₁H₁₆IN₆O) and 62 (13, M⁺-C₂₃H₂₀IN₅O); Anal. Calc. for C₂₇H₁₉IN₆O (570.38): C, 56.85; H, 3.36; I, 22.25; N, 14.73%, found: C, 56.73; H, 3.24; I, 21.83; N, 14.47%.

(Z)-3-{2-(3-Iodo-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-chloroindolin-2-one (5c). Yield 97%; m.p. 306–308 °C; IR (cm⁻¹): 3466 (NH), 1677 (indole ring C=O), 1625 (pyrazole ring C=N), 1558 (pyrimidine ring C=N) and 1447 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 7.01 (d, 1H, aromatic-H), 7.16 (s, 1H, aromatic-H), 7.39–7.66 (m, 7H, aromatic-H), 7.89 (s, 1H, pyrimidine-H), 8.11 (d, 2H, aromatic-H), 8.24 (d, 2H, aromatic-H), 11.33 (s, 1H, exchangeable NH) and 14.17 (s, 1H, exchangeable NH); MS, *m*/z (%): 591 (33, M⁺), 563 (12, M⁺-N₂), 486 (44, M⁺-C₇H₇N), 408 (1, M⁺-C₁₃H₁₁O), 360 (19, M⁺-C₁₂H₁₀ClN₃), 359 (63, M⁺-C₇H₇IN), 354 (10, M⁺-C₁₄H₁₁N₃O), 257 (9, M⁺-C₁₉H₁₅ClN₄⁻), 234 (20, M⁺-C₁₃H₁₁ClIN₂), 188 (10, M⁺-C₂₁H₁₆ClN₆O), 165 (12, M⁺-C₁₅H₁₂ClIN₄O), 139 (43, M⁺-C₁₆H₁₂ClIN₅O), 88 (32, M⁺-C₂₁H₁₇ClIN₄O), 76 (100, M⁺-C₂₀H₁₃ClIN₆O) and 62 (27, M⁺-C₂₂H₁₇ClIN₅O); Anal. Calc. for C₂₆H₁₆ClIN₆O (590.80): C, 52.86; H, 2.73; Cl, 6.00; I, 21.48; N, 14.22%, found: C, 52.77; H, 2.62; Cl, 4.68; I, 21.20; N, 13.93%.

3.2.6. (Z)-3-{2-(3-Nitro-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-ones 6a-c

A mixture of nitric acid (d 1.14, 1 mL) and sulfuric acid (d 1.84, 1 mL) in glacial acetic acid (10 mL) was added gradually to a suspension of (*E* or *Z*)-**3a–c** (0.001 mol) in acetic acid (10 mL) with stirring for three hours at room temperature. The reaction mixture was then poured onto crushed ice and the products that separated out were filtered off, washed with water, dried and crystallized from dioxane as orange needles.

(Z)-3-{2-(3-Nitro-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-one (**6a**). Yield 91%; m.p. 268–270 °C; IR (cm⁻¹): 3460 (NH), 1708 (indole ring C=O), 1624 (pyrazole ring C=N), 1560 (pyrimidine ring C=N), 1473 (pyrimidine ring C=C), and 1416, 1341 (NO₂); MS, *m/z* (%): 476 (1, M⁺), 447 (1, M⁺-HN₂), 371 (5, M⁺-C₇H₇N), 370 (2, M⁺-C₆H₆N₂), 325 (5, M⁺-C₇H₇N₂O₂), 291 (3, M⁺-C₁₃H₁₃O), 279 (3, M⁺-C₁₂H₁₁N₃⁻), 237 (3, M⁺-C₁₄H₁₃N₃O), 234 (5, M⁺-C₁₃H₁₂N₃O₂), 210 (3, M⁺-C₁₄H₁₂N₅O), 165 (5, M⁺-C₁₅H₁₃N₅O₃), 139 (3, M⁺-C₁₆H₁₃N₆O₃), 131 (5, M⁺-C₁₉H₁₃N₄O₃), 107

(9, M^+ - $C_{21}H_{17}N_6O$), 88 (8, M^+ - $C_{21}H_{18}N_5O_3$), 76 (7, M^+ - $C_{20}H_{14}N_7O_3$) and 62 (4, M^+ - $C_{22}H_{18}N_6O_3$); Anal. Calc. for $C_{26}H_{17}N_7O_3$ (475.46): C, 65.68; H, 3.60; N, 20.62%, found: C, 65.56; H, 3.57; N, 20.40%.

(Z)-3-{2-(3-Nitro-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-methylindolin-2-one (**6b**). Yield 95%; m.p. 318–320 °C; IR (cm⁻¹): 3465 (NH), 1697 (indole ring C=O), 1635 (pyrazole ring C=N), 1564 (pyrimidine ring C=N), 1487 (pyrimidine ring C=C), and 1419, 1381 (NO₂); MS, *m/z* (%): 490 (20, M⁺), 461 (7, M⁺-HN₂), 385 (35, M⁺-C₇H₇N), 384 (3, M⁺-C₆H₆N₂), 339 (5, M⁺-C₇H₇N₂O₂), 305 (1, M⁺-C₁₃H₁₃O), 279 (1, M⁺-C₁₃H₁₃N₃⁻), 251 (4, M⁺-C₁₄H₁₃N₃O), 234 (8, M⁺-C₁₄H₁₄N₃O₂), 210 (2, M⁺-C₁₅H₁₄N₅O), 165 (5, M⁺-C₁₆H₁₅N₅O₃), 145 (28, M⁺-C₁₉H₁₃N₄O₃), 139 (8, M⁺-C₁₇H₁₅N₆O₃), 107 (24, M⁺-C₂₂H₁₉N₆O), 88 (11, M⁺-C₂₂H₂₀N₅O₃), 76 (85, M⁺-C₂₁H₁₆N₇O₃) and 62 (16, M⁺-C₂₃H₂₀N₆O₃); Anal. Calc. for C₂₇H₁₉N₇O₃ (489.48): C, 66.25; H, 3.91; N, 20.03%, found: C, 66.02; H, 3.72; N, 19.84%.

(Z)-3-{2-(3-Nitro-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-chloroindolin-2-one (**6c**). Yield 97%; m.p. 330–332 °C; IR (cm⁻¹): 3460 (NH), 1693 (indole ring C=O), 1629 (pyrazole ring C=N), 1559 (pyrimidine ring C=N), 1487 (pyrimidine ring C=C), and 1416, 1363 (NO₂); MS, *m/z* (%): 510 (1, M⁺), 481 (3, M⁺-HN₂), 405 (1, M⁺-C₇H₇N), 404 (1, M⁺-C₆H₆N₂), 359 (1, M⁺-C₇H₇N₂O₂), 325 (5, M⁺-C₁₃H₁₃O), 279 (1, M⁺-C₁₂H₁₀ClN₃⁻), 271 (1, M⁺-C₁₄H₁₃N₃O), 234 (1, M⁺-C₁₃H₁₁ClN₃O₂), 210 (1, M⁺-C₁₄H₁₁ClN₅O), 165 (2, M⁺-C₁₅H₁₂ClN₅O₃), 139 (3, M⁺-C₁₆H₁₂ClN₆O₃), 107 (1, M⁺-C₂₁H₁₆ClN₆O), 88 (3, M⁺-C₂₁H₁₇ClN₅O₃), 76 (100, M⁺-C₂₀H₁₃ClN₇O₃) and 62 (13, M⁺-C₂₂H₁₇ClN₆O₃); Anal. Calc. for C₂₆H₁₆ClN₇O₃ (509.90): C, 61.24; H, 3.16; Cl, 6.95; N, 19.23%, found: C, 61.19; H, 3.02; Cl, 6.62; N, 18.91%.

3.2.7. (Z)-3-{2-(3-Phenyldiazenyl-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-ones 7a-c

An aqueous sodium hydroxide solution (10%, 8 mL) was added to a suspension of (*E* or *Z*)-**3a**–**c** (0.001 mol) in ethanol (15 mL). The reaction mixture was cooled to 5 °C and gradually treated with a solution of benzendiazonium chloride (prepared from 1 mL of aniline) with stirring for one hour. The target products that separated out were collected by filtration and crystallized from dioxan as reddishbrown needles.

(Z)-3-{2-(3-Phenyldiazenyl-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}indolin-2-one (7a). Yield 94%; m.p. 298–300 °C; IR (cm⁻¹): 3463 (NH), 1693 (indole ring C=O), 1625 (pyrazole ring C=N), 1557 (pyrimidine ring C=N) and 1458 (pyrimidine ring C=C); MS, m/z (%): 534(1, M⁺), 506 (1, M⁺-N₂), 431 (29, M⁺-C₇H₅N), 430 (2, M⁺-C₆H₄N₂), 353 (1, M⁺-C₁₃H₉O), 339 (1, M⁺-C₁₂H₉N₃), 325 (69, M⁺-C₁₃H₁₁N₃), 298 (1, M⁺-C₁₄H₁₀N₃O), 270 (7, M⁺-C₁₄H₁₀N₅O⁻), 234 (14, M⁺-C₁₉H₁₆N₄), 167 (6, M⁺-C₂₁H₁₅N₆O), 165 (5, M⁺-C₂₁H₁₇N₆O), 139 (17, M⁺-C₂₂H₁₇N₇O), 131 (6, M⁺-C₂₅H₁₇N₅O), 88 (44, M⁺-C₂₇H₂₂N₆O), 76 (100, M⁺-C₂₆H₁₈N₈O) and 62 (21, M⁺-C₂₈H₂₂N₇O); Anal. Calc. for C₃₂H₂₂N₈O (534.57): C, 71.90; H, 4.15; N, 20.96%, found: C, 71.79; H, 3.97; N, 20.62%. (*Z*)-3-{2-(3-Phenydiazenyl-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-methyl-indolin-2one (**7b**). Yield 94%; m.p. 338–340 °C; IR (cm⁻¹): 3460 (NH), 1689 (indole ring C=O), 1629 (pyrazole ring C=N), 1557 (pyrimidine ring C=N) and 1455 (pyrimidine ring C=C); MS, *m/z* (%): 548 (1, M⁺), 520 (3, M⁺-N₂), 445 (40, M⁺-C₇H₅N), 444 (3, M⁺-C₆H₄N₂), 367 (1, M⁺-C₁₃H₉O), 339 (100, M⁺-C₁₃H₁₁N₃), 312 (2, M⁺-C₁₄H₁₀N₃O), 270 (11, M⁺-C₁₅H₁₂N₅O⁻), 234 (29, M⁺-C₂₀H₁₈N₄), 167 (4, M⁺-C₂₂H₁₇N₆O), 165 (3, M⁺-C₂₂H₁₉N₆O), 145 (6, M⁺-C₂₅H₁₇N₅O), 139 (16, M⁺-C₂₃H₁₉N₇O), 88 (52, M⁺-C₂₈H₂₄N₆O), 76 (7, M⁺-C₂₇H₂₀N₈O) and 62 (8, M⁺-C₂₉H₂₄N₇O); Anal. Calc. for C₃₃H₂₄N₈O (548.60): C, 72.25; H, 4.41; N, 20.43%, found: C, 72.12; H, 4.20; N, 20.22%.

(Z)-3-{2-(3-Phenyldiazenyl-2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono}-5-chloro-indolin-2-one (**7c**). Yield 94%; m.p. 328–330 °C; IR (cm⁻¹): 3460 (NH), 1690 (indole ring C=O), 1626 (pyrazole ring C=N), 1553 (pyrimidine ring C=N) and 1451 (pyrimidine ring C=C); MS, *m/z* (%): 568 (2, M⁺), 540 (3, M⁺-N₂), 465 (45, M⁺-C₇H₅N), 464 (1, M⁺-C₆H₄N₂), 387 (5, M⁺-C₁₃H₉O), 359 (100, M⁺-C₁₃H₁₁N₃), 339 (5, M⁺-C₁₂H₈ClN₃), 332 (4, M⁺-C₁₄H₁₀N₃O), 270 (17, M⁺-C₁₄H₉ClN₅O⁻), 234 (46, M⁺-C₁₉H₁₅ClN₄), 167 (8, M⁺-C₂₁H₁₄ClN₆O), 165 (4, M⁺-C₂₁H₁₆ClN₆O), 139 (18, M⁺-C₂₂H₁₆ClN₇O), 88 (12, M⁺-C₂₇H₂₁ClN₆O), 76 (50, M⁺-C₂₆H₁₇ClN₈O) and 62 (13, M⁺-C₂₈H₂₁ClN₇O); Anal. Calc. for C₃₂H₂₁ClN₈O (569.02): C, 67.55; H, 3.72; Cl, 6.23; N, 19.69%, found: C, 67.36; H, 3.61; Cl, 5.82; N, 19.42%.

3.2.8. 2,5-Diphenylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazines 13a-c

A solution of (*E*)-**3** \mathbf{a} -**c** (0.0023 mol) in phosphorus oxychloride (15 mL) was heated at 70–80 °C for two hours. The mixture was cooled, poured onto crushed ice and made alkaline (pH = 9) with potassium hydrogen carbonate. The target products were filtered off, washed with water, dried and crystallized from dimethylformamide as reddish-brown needles.

2,5-Diphenylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazines (**13a**). Yield 93%; m.p. 308–310 °C; IR (cm⁻¹): 1647 (indole ring C=N), 1624 (pyrazole ring C=N), 1535 (triazine ring C=N) and 1470 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 7.24 (d, 1H, aromatic-H), 7.53 (s, 1H, pyrazole-H), 7.33–7.55 (m, 9H, aromatic-H), 7.91 (s, 1H, pyrimidine-H), 8.13 (d, 2H, aromatic-H), 8.20 (d, 2H, aromatic-H); MS, m/z (%): 412 (64, M⁺), 335 (2, M⁺-C₆H₅), 307 (15, M⁺-C₆H₅N₂), 281 (13, M⁺-C₈H₇N₂), 253 (8, M⁺-C₈H₇N₄), 228 (7, M⁺-C₁₂H₁₂N₂⁻), 217 (8, M⁺-C₁₃H₁₁N₂), 191 (4, M⁺-C₁₄H₁₁N₃), 176 (7, M⁺-C₁₄H₁₂N₄), 150 (12, M⁺-C₁₅H₁₂N₅), 114 (17, M⁺-C₂₀H₁₆N₃), 88 (27, M⁺-C₂₁H₁₆N₄), 76 (100, M⁺-C₂₀H₁₂N₆), 62 (11, M⁺-C₂₂H₁₆N₅) and 50 (34, M⁺-C₂₃H₁₆N₅); Anal. Calc. for C₂₆H₁₆N₆ (412.45): C, 75.71; H, 3.91; N, 20.38%, found: C, 75.49; H, 3.76; N, 20.08%.

2,5-Diphenyl-10-methylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazines (13b). Yield 96%; m.p. 286–288 °C; IR (cm⁻¹): 1648 (indole ring C=N), 1604 (pyrazole ring C=N), 1542 (triazine ring C=N) and 1474 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 2.44 (s, 3H, CH₃), 7.11 (d, 1H, aromatic-H), 7.42 (s, 1H, pyrazole-H), 7.33–7.53 (m, 8H, aromatic-H), 7.55 (s, 1H, pyrimidine-H), 8.01 (d, 2H, aromatic-H), 8.13 (d, 2H, aromatic-H); MS, m/z (%): 426 (100, M⁺), 349 (2, M⁺-C₆H₅), 321 (2, M⁺-C₆H₅N₂), 295 (2, M⁺-C₈H₇N₂), 267 (7, M⁺-C₈H₇N₄), 242 (12, M⁺-C₁₂H₁₂N₂⁻), 217 (5, M⁺-C₁₄H₁₃N₂), 191 (5, M⁺-C₁₅H₁₃N₃), 190 (10, M⁺-C₁₄H₁₂N₄), 164 (9, M⁺-C₁₅H₁₂N₅), 114 (35, $M^+-C_{21}H_{18}N_3$), 88 (25, $M^+-C_{22}H_{18}N_4$), 76 (71, $M^+-C_{21}H_{14}N_6$), 62 (17, $M^+-C_{23}H_{18}N_5$) and 50 (33, $M^+-C_{24}H_{18}N_5$); Anal. Calc. for $C_{27}H_{18}N_6$ (426.47): C, 76.04; H, 4.25; N, 19.71%, found: C, 75.90; H, 4.15; N, 19.36%.

2,5-Diphenyl-10-chloroindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazines (13c). Yield 94%; m.p. 276–278 °C; IR (cm⁻¹): 1645 (indole ring C=N), 1619 (pyrazole ring C=N), 1563 (triazine ring C=N) and 1453 (pyrimidine ring C=C); MS, m/z (%): 446 (2, M⁺), 369 (1, M⁺-C₆H₅), 341 (2, M⁺-C₆H₅N₂), 315 (5, M⁺-C₈H₇N₂), 287 (10, M⁺-C₈H₇N₄), 262 (8, M⁺-C₁₂H₁₂N₂⁻), 217 (4, M⁺-C₁₃H₁₀ClN₂), 210 (3, M⁺-C₁₄H₁₂N₄), 191 (3, M⁺-C₁₄H₁₀ClN₃), 184 (2, M⁺-C₁₅H₁₂N₅), 114 (4, M⁺-C₂₀H₁₅ClN₃), 88 (3, M⁺-C₂₁H₁₅ClN₄), 76 (100, M⁺-C₂₀H₁₁ClN₆), 62 (3, M⁺-C₂₂H₁₅ClN₅) and 50 (44, M⁺-C₂₃H₁₅ClN₅); Anal. Calc. for C₂₆H₁₅ClN₆ (446.89): C, 69.88; H, 3.38; Cl, 7.93; N, 18.81%, found: C, 69.69; H, 3.16; Cl, 7.70; N, 18.42%.

3.2.9. 4-Bromo-2,5-diphenylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazines 14a-c

A solution of bromine (0.06 mL, 0.0012 mol) in acetic acid (10 mL) was gradually added to a suspension of 13a-c (0.001 mol) in acetic acid (10 mL) with stirring for three hours at room temperature. The reaction mixture was then poured onto crushed ice. The products that separated out were filtered off, washed with water, dried and crystallized from dimethylformamide as brown needles.

4-Bromo-2,5-diphenylindolo[*2,3-e*]*pyrazolo*[*1',5':3",4"*]*pyrimido*[*2",1"-c*][*1,2,4*]*triazine* (**14a**). Yield 91%; m.p. 282–284 °C; IR (cm⁻¹): 1659 (indole ring C=N), 1616 (pyrazole ring C=N), 1551 (triazine ring C=N) and 1462 (pyrimidine ring C=C); ¹H-NMR (DMSO-*d*₆, δ , ppm): 7.26 (d, 1H, aromatic-H), 7.33 (s, 1H, pyrazole-H), 7.36–7.63 (m, 9H, aromatic-H), 8.05 (d, 2H, aromatic-H), 8.20 (d, 2H, aromatic-H); MS, *m/z* (%): 491 (1, M⁺), 307 (1, M⁺-C₇H₆BrN), 306 (1, M⁺-C₆H₅BrN₂), 281 (1, M⁺-C₈H₆BrN₂), 253 (1, M⁺-C₈H₆BrN₄), 228 (2, M⁺-C₁₂H₁₁BrN₂⁻), 217 (1, M⁺-C₁₃H₁₀BrN₂), 191 (1, M⁺-C₁₄H₁₀BrN₃), 176 (2, M⁺-C₁₄H₁₁BrN₄), 150 (2, M⁺-C₁₅H₁₁BrN₅), 114 (2, M⁺-C₂₀H₁₅BrN₃), 88 (5, M⁺-C₂₁H₁₅BrN₄), 76 (100, M⁺-C₂₀H₁₁BrN₆), 62 (5, M⁺-C₂₂H₁₅BrN₅) and 50 (33, M⁺-C₂₃H₁₅BrN₅); Anal. Calc. for C₂₆H₁₅BrN₆ (491.34): C, 63.56; H, 3.08; Br, 16.26; N, 17.10%, found: C, 63.41; H, 2.86; Br, 15.94; N, 16.72%.

4-Bromo-2,5-diphenyl-10-methylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazine

(14b). Yield 92%; m.p. 308–310 °C; IR (cm⁻¹): 1674 (indole ring C=N), 1631 (pyrazole ring C=N), 1562 (triazine ring C=N) and 1477 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 2.43 (s, 3H, CH₃), 7.11 (d, 1H, aromatic-H), 7.28 (s, 1H, pyrazole-H), 7.34-7.64 (m, 7H, aromatic-H), 7.92 (d, 2H, aromatic-H), 7.99 (s, 1H, aromatic-H), 8.13 (d, 2H, aromatic-H); MS, m/z (%): 505 (8, M⁺), 321 (1, M⁺-C₇H₆BrN), 320 (5, M⁺-C₆H₅BrN₂), 295 (1, M⁺-C₈H₆BrN₂), 267 (1, M⁺-C₈H₆BrN₄), 242 (1, M⁺-C₁₂H₁₁BrN₂⁻), 217 (1, M⁺-C₁₄H₁₂BrN₂), 191 (1, M⁺-C₁₅H₁₂BrN₃), 190 (6, M⁺-C₁₄H₁₁BrN₄), 164 (3, M⁺-C₁₅H₁₁BrN₅), 114 (19, M⁺-C₂₁H₁₇BrN₃), 88 (17, M⁺-C₂₂H₁₇BrN₄), 76 (100, M⁺-C₂₁H₁₃BrN₆), 62 (8, M⁺-C₂₃H₁₇BrN₅) and 50 (27, M⁺-C₂₄H₁₇BrN₅); Anal. Calc. for C₂₇H₁₇BrN₆ (505.37): C, 64.17; H, 3.39; Br, 15.81; N, 16.63%, found: C, 64.07; H, 3.24; Br, 15.53; N, 16.29%.

4-Bromo-2,5-diphenyl-10-chloroindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazine (14c). Yield 92%; m.p. 240–242 °C; IR (cm⁻¹): 1667 (indole ring C=N), 1616 (pyrazole ring C=N), 1550 (triazine ring C=N) and 1449 (pyrimidine ring C=C); MS, *m/z* (%): 525 (1, M⁺), 341 (2, M⁺-C₇H₆BrN), 340 (1, M⁺-C₆H₅BrN₂), 315 (1, M⁺-C₈H₆BrN₂), 287 (13, M⁺-C₈H₆BrN₄), 262 (3, M⁺-C₁₂H₁₁BrN₂⁻), 217 (1, M⁺-C₁₃H₉BrClN₂), 210 (1, M⁺-C₁₄H₁₁BrN₄), 191 (1, M⁺-C₁₄H₉BrClN₃), 184 (2, M⁺-C₁₅H₁₁BrN₅), 114 (2, M⁺-C₂₀H₁₄BrClN₃), 88 (8, M⁺-C₂₁H₁₄BrClN₄), 76 (100, M⁺-C₂₀H₁₀BrClN₆), 62 (14, M⁺-C₂₂H₁₄BrClN₅) and 50 (59, M⁺-C₂₃H₁₄BrClN₅); Anal. Calc. for C₂₆H₁₄BrClN₆ (525.79): C, 59.39; H, 2.68; Br, 15.20; Cl, 6.74; N, 15.98%, found: C, 59.16; H, 2.57; Br, 14.73; Cl, 6.34; N, 15.71%.

3.2.10. 3-Bromo-2,5-diphenylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazines 17a-c

A solution of (*Z*)-4**a**–**c** (0.0005 mol) in phosphorus oxychloride (5 mL) was heated at 70–80 °C for two hours. The mixture was cooled and poured onto crushed ice and basified with potassium hydrogen carbonate to pH = 9. The products were filtered off, washed with water, dried and crystallized from dimethylformamide.

3-Bromo-2,5-diphenylindolo[*2,3-e*]*pyrazolo*[*1',5':3",4"*]*pyrimido*[*2",1"-c*][*1,2,4*]*triazine* (**17a**). Yield 90%; m.p. 302–304 °C; IR (cm⁻¹): 1641 (indole ring C=N), 1619 (pyrazole ring C=N), 1561 (triazine ring C=N) and 1474 (pyrimidine ring C=C); ¹H-NMR (DMSO-*d*₆, δ , ppm): 6.93 (d, 1H, aromatic-H), 7.01–7.92 (m, 9H, aromatic-H), 7.94 (s, 1H, pyrimidine-H), 8.05 (d, 2H, aromatic-H), 8.28 (d, 2H, aromatic-H); MS, *m/z* (%): 491 (1, M⁺), 307 (13, M⁺-C₇H₆BrN), 306 (1, M⁺-C₆H₅BrN₂), 281 (4, M⁺-C₈H₆BrN₂), 253 (13, M⁺-C₈H₆BrN₄), 228 (18, M⁺-C₁₂H₁₁BrN₂⁻), 217 (6, M⁺-C₁₃H₁₀BrN₂), 191 (5, M⁺-C₁₄H₁₀BrN₃), 176 (5, M⁺-C₁₄H₁₁BrN₄), 150 (10, M⁺-C₁₅H₁₁BrN₅), 114 (31, M⁺-C₂₀H₁₅BrN₃), 88 (2, M⁺-C₂₁H₁₅BrN₄), 76 (2, M⁺-C₂₀H₁₁BrN₆), 62 (1, M⁺-C₂₂H₁₅BrN₅) and 50 (100, M⁺-C₂₃H₁₅BrN₅); Anal. Calc. for C₂₆H₁₅BrN₆ (491.34): C, 63.56; H, 3.08; Br, 16.26; N, 17.10%, found: C, 63.41; H, 2.92; Br, 15.83; N, 16.79%.

3-Bromo-2,5-diphenyl-10-methylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazine (17b). Yield 90%; m.p. 200–202 °C; IR (cm⁻¹): 1667 (indole ring C=N), 1619 (pyrazole ring C=N), 1567 (triazine ring C=N) and 1454 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 2.34 (s, 3H, CH₃), 7.12 (d, 1H, aromatic-H), 7.19–7.67 (m, 8H, aromatic-H), 7.69 (s, 1H, pyrimidine-H), 8.00 (d, 2H, aromatic-H), 8.09 (d, 2H, aromatic-H); MS, m/z (%): 505 (1, M⁺), 321 (1, M⁺-C₇H₆BrN), 320 (1, M⁺-C₆H₅BrN₂), 295 (1, M⁺-C₈H₆BrN₂), 267 (1, M⁺-C₈H₆BrN₄), 242 (1, M⁺-C₁₂H₁₁BrN₂⁻), 217 (1, M⁺-C₁₄H₁₂BrN₂), 191 (1, M⁺-C₁₅H₁₂BrN₃), 190 (4, M⁺-C₁₄H₁₁BrN₄), 164 (2, M⁺-C₁₅H₁₁BrN₅), 114 (30, M⁺-C₂₁H₁₇BrN₃), 88 (12, M⁺-C₂₂H₁₇BrN₄), 76 (100, M⁺-C₂₁H₁₃BrN₆), 62 (19, M⁺-C₂₃H₁₇BrN₅) and 50 (69, M⁺-C₂₄H₁₇BrN₅); Anal. Calc. for C₂₇H₁₇BrN₆ (505.37): C, 64.17; H, 3.39; Br, 15.81; N, 16.63%, found: C, 63.70; H, 3.24; Br, 15.52; N, 16.20%.

3-Bromo-2,5-diphenyl-10-chloroindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazine (**17c**). Yield 90%; m.p. 248–250 °C; IR (cm⁻¹): 1667 (indole ring C=N), 1625 (pyrazole ring C=N), 1564 (triazine ring C=N) and 1456 (pyrimidine ring C=C); MS, *m/z* (%): 525 (2, M⁺), 341 (1, M⁺-C₇H₆BrN), 340 (1, M⁺-C₆H₅BrN₂), 315 (1, M⁺-C₈H₆BrN₂), 287 (2, M⁺-C₈H₆BrN₄), 262 (1, M⁺-C₁₂H₁₁BrN₂⁻), 217 (3, M⁺-C₁₃H₉BrClN₂), 210 (2, M⁺-C₁₄H₁₁BrN₄), 191 (4, M⁺-C₁₄H₉BrClN₃), 184 (5, $M^+-C_{15}H_{11}BrN_5$), 114 (8, $M^+-C_{20}H_{14}BrClN_3$), 88 (15, $M^+-C_{21}H_{14}BrClN_4$), 76 (100, $M^+-C_{20}H_{10}BrClN_6$), 62 (12, $M^+-C_{22}H_{14}BrClN_5$) and 50 (36, $M^+-C_{23}H_{14}BrClN_5$); Anal. Calc. for $C_{26}H_{14}BrClN_6$ (525.79): C, 59.39; H, 2.68; Br, 15.20; Cl, 6.74; N, 15.98%, found: C, 59.12; H, 2.49; Br, 14.72; Cl, 6.31; N, 15.54%.

3.2.11. 4-Iodo-2,5-diphenylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazines 15a,b

A solution of iodine monochloride (0.20 g, 0.0012 mol) in acetic acid (10 mL) was gradually added to a suspension of **13a,b** (0.001 mol) in acetic acid (10 mL) with stirring for three hours at room temperature. The reaction mixture was then poured onto crushed ice and the products that separated out were filtered off, washed with water, dried and crystallized from dimethylformamide.

4-Iodo-2,5-diphenylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazine (**15a**). Yield 90%; m.p. 314–316 °C; IR (cm⁻¹): 1652 (indole ring C=N), 1620 (pyrazole ring C=N), 1567 (triazine ring C=N) and 1438 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 7.22 (d, 1H, aromatic-H), 7.37 (t, 1H, aromatic-H), 7.41 (s, 1H, pyrazole-H), 7.42-7.59 (m, 8H, aromatic-H), 8.16 (d, 2H, aromatic-H), 8.20 (d, 2H, aromatic-H); MS, m/z (%): 538 (1, M⁺), 307 (3, M⁺-C₇H₆IN), 306 (2, M⁺-C₆H₅IN₂), 281 (2, M⁺-C₈H₆IN₂), 253 (1, M⁺-C₁₄H₁₁IN₄), 228 (1, M⁺-C₁₂H₁₁IN₂⁻), 217 (1, M⁺-C₁₃H₁₀IN₂), 191 (1, M⁺-C₁₄H₁₀IN₃), 176 (1, M⁺-C₁₄H₁₁IN₄), 150 (1, M⁺-C₁₅H₁₁IN₅), 114 (4, M⁺-C₂₀H₁₅IN₃), 88 (4, M⁺-C₂₁H₁₅IN₄), 76 (100, M⁺-C₂₀H₁₁IN₆), 62 (7, M⁺-C₂₂H₁₅IN₅) and 50 (29, M⁺-C₂₃H₁₅IN₅); Anal. Calc. for C₂₆H₁₅IN₆ (538.34): C, 58.01; H, 2.81; I, 23.57; N, 15.61%, found: C, 57.82; H, 2.66; I, 23.19; N, 15.14%.

4-Iodo-2,5-diphenyl-10-methylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazine (**15b**). Yield 89%; m.p. 298–300 °C; IR (cm⁻¹): 1689 (indole ring C=N), 1622 (pyrazole ring C=N), 1560 (triazine ring C=N) and 1449 (pyrimidine ring C=C); ¹H-NMR (DMSO- d_6 , δ , ppm): 2.31 (s, 3H, CH₃), 6.83 (d, 1H, aromatic-H), 7.47 (s, 1H, pyrazole-H), 7.09–7.58 (m, 8H, aromatic-H), 8.00 (d, 2H, aromatic-H), 8.25 (d, 2H, aromatic-H); MS, m/z (%): 552 (1, M⁺), 321 (1, M⁺-C₇H₆IN), 320 (1, M⁺-C₆H₅IN₂), 295 (1, M⁺-C₈H₆IN₂), 267 (1, M⁺-C₈H₆IN₄), 242 (2, M⁺-C₁₂H₁₁IN₂⁻), 217 (1, M⁺-C₁₄H₁₂IN₂), 191 (1, M⁺-C₁₅H₁₂IN₃), 190 (1, M⁺-C₁₄H₁₁IN₄), 164 (2, M⁺-C₁₅H₁₁IN₅), 114 (8, M⁺-C₂₁H₁₇IN₃), 88 (4, M⁺-C₂₂H₁₇IN₄), 76 (100, M⁺-C₂₁H₁₃IN₆), 62 (12, M⁺-C₂₃H₁₇IN₅) and 50 (37, M⁺-C₂₄H₁₇IN₅); Anal. Calc. for C₂₇H₁₇IN₆ (552.37): C, 58.71; H, 3.10; I, 22.97; N, 15.21%, found: C, 58.58; H, 2.89; I, 22.62; N, 14.94%.

3.2.12. 4-Nitro-2,5-diphenyl-10-methylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4] triazines **16b,c**

A mixture of nitric acid (d 1.14, 1 mL) and sulfuric acid (d 1.84, 1 mL) in glacial acetic acid (10 mL) was added gradually to a suspension of **13b**, **c** (0.001 mol) in acetic acid (10 mL) with stirring for three hours at room temperature. The reaction mixture was then poured onto crushed ice and the products that separated out were filtered off, washed with water, dried and crystallized from dimethylformamide.

4-Nitro-2,5-diphenyl-10-methylindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazine (16b). Yield 92%; m.p. 312–314 °C; IR (cm⁻¹): 1650 (indole ring C=N), 1617 (pyrazole ring C=N),

1555 (triazine ring C=N), 1449 (pyrimidine ring C=C) and 1421, 1391 (NO₃; MS, *m/z* (%): 471 (2, M⁺), 321 (2, M⁺-C₇H₆N₂O₂), 320 (2, M⁺-C₆H₅N₃O₂), 295 (2, M⁺-C₈H₆N₃O₂), 267 (2, M⁺-C₈H₆N₅O₂), 242 (2, M⁺-C₁₂H₁₁N₃O₂⁻), 217 (3, M⁺-C₁₄H₁₂N₃O₂), 191 (3, M⁺-C₁₅H₁₂N₄O₂), 190 (2, M⁺-C₁₄H₁₁N₅O₂), 164 (3, M⁺-C₁₅H₁₁N₆O₂), 114 (3, M⁺-C₂₁H₁₇N₄O₂), 88 (4, M⁺-C₂₂H₁₇N₅O₂), 76 (70, M⁺-C₂₁H₁₃N₇O₂), 62 (4, M⁺-C₂₃H₁₇N₆O₂) and 50 (100, M⁺-C₂₄H₁₇N₆O₂); Anal. Calc. for C₂₇H₁₇N₇O₂ (471.47): C, 68.78; H, 3.63; N, 20.80%, found: C, 68.49; H, 3.52; N, 20.49%.

4-Nitro-2,5-diphenyl-10-chloroindolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4]triazine (16c). Yield 92%; m.p. 226–228 °C; IR (cm⁻¹): 1681 (indole ring C=N), 1622 (pyrazole ring C=N), 1530 (triazine ring C=N), 1442 (pyrimidine ring C=C), and 1426,1342 (NO₂); MS, *m/z* (%): 491 (1, M⁺), 341 (1, M⁺-C₇H₆N₂O₂), 340 (1, M⁺-C₆H₅N₃O₂), 315 (4, M⁺-C₈H₆N₃O₂), 287 (2, M⁺-C₈H₆N₅O₂), 262 (2, M⁺-C₁₂H₁₁N₃O₂⁻), 217 (2, M⁺-C₁₃H₉ClN₃O₂), 210 (2, M⁺-C₁₄H₁₁N₅O₂), 191 (3, M⁺-C₁₄H₉ClN₄O₂), 184 (1, M⁺-C₁₅H₁₁N₆O₂), 114 (9, M⁺-C₂₀H₁₄ClN₄O₂), 88 (4, M⁺-C₂₁H₁₄ClN₅O₂), 76 (100, M⁺-C₂₀H₁₀ClN₇O₂), 62 (8, M⁺-C₂₂H₁₄ClN₆O₂) and 50 (30, M⁺-C₂₃H₁₄ClN₆O₂); Anal. Calc. for C₂₆H₁₄ClN₇O₂ (491.89): C, 63.49; H, 2.87; Cl, 7.21; N, 19.93%, found: C, 63.27; H, 2.71; Cl, 6.83; N, 19.54%.

3.3. Biological Screening: Antibacterial Activity Tests

The antibacterial activities of compounds 3–7 and 13–16 were tested against three Gram-positive (*Bacillus subtilis, Micrococcus luteus*, and *Staphylococcus aureus*) and two Gram-negative (*Escherichia coli*, and *Pseudomonas aeruginosa*) clinical multidrug resistant (MDR) test bacteria isolated from diabetic foot ulcers. Used clinical bacteria are with MIC > 256 μ g/mL for amino- glycosides, penicillins, 1st–3rd generations of cephalosparins and ciprofloxacin and ofloxacin fluoro quinolines.

Bioactivities (Minimum Inhibitory Concentration, MIC) were determined according to the recommendations of NCCLS [36] and Massoud *et al.* [37].

All compounds were first dissolved in DMSO and serially diluted to have final concentrations from $256-1 \mu g/mL$ culture medium at 1.5 dilution factor. The MIC value of a compound is the lowest concentration that inhibits the bacterial growth. The smaller the MIC value the more active is the compound. Compounds with MIC values above $256 \mu g/mL$ are considered to be inactive. It should be taken into consideration, before discussing the bioactivity of this set of compounds, that the used bacteria, being MDR, are highly resistant to the antibiotics of choice that are commonly used to treat infections by these bacteria.

From the data presented in Table 1, it is clear that from the 28 tested compounds, twelve compounds were active, six active against *B. subtilis*, four active against *M. luteus*, two active against *S. aureus*, none active against *E. coli* and three active against *Ps. aeruginosa*. (*E*)-**3b**, **7a** and **14a** were active against two of the tested bacteria and other were active against only one. This means that none of the tested compounds have broad antibacterial spectrum except (*E*)-**3b**.

Compound	Gram-positive			Gram-negative	
No.	B. subtilis	M. luteus	S. aureus	E. coli	Ps. aeruginosa
	MIC (µg/mL)				
(E)- 3a	>256	>256	>256	>256	>256
(E) -3b	>256	24	>256	>256	48
(<i>E</i>)-3c	>256	>256	>256	>256	>256
(Z)- 3 a	>256	>256	>256	>256	>256
(Z)- 3b	>256	32	>256	>256	>256
(Z)-3c	>256	>256	>256	>256	>256
(Z)-4a	>256	>256	>256	>256	>256
(Z)-4b	>256	>256	>256	>256	16
(Z)-4c	>256	>256	>256	>256	>256
(Z)-5a	>256	>256	>256	>256	>256
(Z)-5b	>256	>256	>256	>256	>256
(Z)-5c	12	>256	>256	>256	>256
(Z)-6a	>256	>256	>256	>256	>256
(Z)-6b	>256	>256	>256	>256	>256
(Z)-6c	>256	>256	>256	>256	24
(Z)-7a	>256	32	48	>256	>256
(Z)-7b	24	>256	>256	>256	>256
(Z)-7c	>256	>256	>256	>256	>256
13a	>256	>256	>256	>256	>256
13b	16	>256	>256	>256	>256
13c	>256	>256	>256	>256	>256
14a	>256	24	32	>256	>256
14b	>256	>256	>256	>256	>256
14c	32	>256	>256	>256	>256
15a	32	>256	>256	>256	>256
15b	>256	>256	>256	>256	>256
16b	48	>256	>256	>256	>256
16c	>256	>256	>256	>256	>256

Table 1. Minimum inhibitory concentration (MIC) (μ g/mL) of compounds 3–7 and 13–16 against selected bacterial strains.

The previous results showed clearly the structure activity relationships. Thus, the presence of methyl group at position-5 of the indolinone ring (*E* and *Z*)-**3b** generates antibacterial activity. Also, the presence of electron attracting group (Br, I, NO₂ and C₆H₅N₂) at position-3 or position-4 **4b**, **5c**, **6c**, **7a**, **7b**, **14a**, **14c**, **15a** and **16b** produces antibacterial activities.

4. Conclusions

In conclusion, the two geometrical isomers (*E* and *Z*)-3- $\{2-(2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-yl)hydrazono<math>\}$ indolin-2-ones and their substituted derivatives have been synthesized. The target compounds 2,5-diphenylindolo[2,3-*e*]pyrazolo[1',5':3",4"]pyrimido[2",1"-*c*][1,2,4]-triazines were achieved by dehydrative cyclisation of pyrazolopyrimidinoindolinonehydrazones and their reactivity towards electrophilic substitution reactions were also studied. Some of the synthesized compounds

were found to possess slight to moderate activity against the microorganisms *Bacillus subtilis*, *Micrococcus luteus*, *Staphylococcus aureus*, *Escherichia coli* and *Pseudomonas aeruginosa*.

Acknowledgment

The authors are grateful to Yousry M. Gohar of Medicinal Microbiology, Microbiology Branch, Faculty of Science, Alexandria University for facilities allowed, valuable discussion and characterizing our synthesized compounds.

References and Notes

- 1. Clark, J.; Shohhet, M.S.; Korakas, D.; Varvounis, G. Synthesis of thieno[2,3-*d*]pyrimidines from 4,6-dichloropyrimidine-5-carbaldehydes. *J. Heterocycl. Chem.* **1993**, *30*, 1065-1072.
- Kogowwra, I.Y.; Yimatsusita, N.N.; Pfkador, J.K. Syntheses of substituted 2,4-dioxothienopyrimidin-1-acetic acids and their evaluation as aldose reductase inhibitors. *Eur. J. Med. Chem.* 1993, 28, 769-781.
- 3. Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and anti-inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives. *Il Farmaco* **1999**, *54*, 588-593.
- Quiroga, J.; Insuasty, B.; Craz, S.; Herrandez, P.; Bolafios, A.; Moreno, R.; Hormoza, A.; DeAlmeidas, R.H. A new tautomeric zwitterion form of 2-acylamino-4*H*-1,3,4-oxadiazino[5,6*b*]quinoxalines in solution. *J. Heterocycl. Chem.* 1998, 35, 1333-1338.
- 5. Santagati, M.; Modica, M.; Santagati, A.; Russo, F.; Spampinato, S. Synthesis of aminothienopyrimidine and thienotriazolopyrimidine derivatives as potential anticonvulsant agents. *Pharmazie* **1996**, *51*, 7-11.
- 6. Ahluwalia, V.K.; Chopra, M.; Chandra, R. A Convenient Synthesis of Novel Pyrimidine Analogues of o-Hydroxy Chalcones and Pyrano[2,3-d]pyrimidines and Their Biological Activities. J. Chem. Res. 2000, 2000, 162-163.
- 7. Nargund, L.V.G.; Badiger, V.V.; Yarnal, S.U. Synthesis and antibacterial activity of substituted 4-aryloxypyrimido[5,4-*c*]cinnolines. *Eur. J. Med. Chem.* **1994**, *29*, 245-247.
- 8. Vanlaar, M.; Volerts, E.; Verbaten, M. Subchronic effects of the GABA-agonist lorazepam and the 5-HT2A/2C antagonist ritanserin on driving performance, slow wave sleep and daytime sleepiness in healthy volunteers. *Psychopharmacology* **2001**, *154*, 189-197.
- 9. Danel, K.; Pedersen, E.B.; Nielsen, C. Synthesis and anti-HIV-1 activity of novel 2,3-dihydro-7H-thiazolo[3,2-a]pyrimidin-7-ones. *J. Med. Chem.* **1998**, *41*, 191-198.
- 10. Nehad, A.A.; Nermien, M.S.; Ashraf, M.M.; Abdulla, M.M. Synthesis, Analgesic, and Antiparkinsonian Profiles of Some Pyridine, Pyrazoline, and Thiopyrimidine Derivatives. *Monatsh. Chem.* **2007**, *138*, 715-724.
- 11. Ahmed, F.A.S.; Abdulla, M.M.; Amr, A.E.; Azza, A.H. Synthesis, Reactions, and Antiarrhythmic activity of Substituted Heterocyclic Systems Using 5-Chloroanisic Acid as Starting Material. *Monatsh. Chem.* **2007**, *138*, 1019-1027.
- 12. Hammam, A.G.; Fahmy, A.F.M.; Amr, A.E.; Mohamed, A.M. Synthesis of novel tricyclic heterocyclic compounds as potential anticancer agents using chromanone and thiochromanoneas synthons. *Indian J. Chem.* **2003**, *42B*, 1985-1993.

- Amr, A.E.; Hegab, M.I.; Ibrahim, A.A.; Abdalah, M.M. Synthesis and Reactions of Some Fused Oxazinone, Pyrimidinone, Thiopyrimidinone, and Triazinone Derivatives with a Thiophene Ring as Analgesic, Anticonvulsant, and Antiparkinsonian Agents. *Monatsh. Chem.* 2003, *134*, 1395-1409.
- 14. Amr, A.E.; Abdulla, M.M. Synthesis and pharmacological screening of some new pyrimidine and cyclohexenone fused steroidal derivatives. *Indian J. Heterocycl. Chem.* **2002**, *12*, 129-134.
- Nehad, A.A.; Amr, A.E.; Alhusien, A.I. Synthesis, Reactions, and Pharmacological Screening of Heterocyclic Derivatives Using Nicotinic Acid as a Natural Synthon. *Monatsh. Chem.* 2007, *138*, 559-567.
- Amr, A.E.; Nermien, M.S.; Abdulla, M.M. Synthesis, Reactions, and Anti-inflammatory Activity of Heterocyclic Systems Fused to a Thiophene Moiety Using Citrazinic Acid As Synthon. *Monatsh. Chem.* 2007, 138, 699-707.
- Amr, A.E.; Ashraf, M.M.; Salwa, F.M.; Nagla, A.A.; Hammam, A.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. *Bioorg. Med. Chem.* 2006, 14, 5481-5488.
- Amr, A.E.; Sayed, H.H.; Abdulla, M.M. Synthesis and Reactions of Some New Substituted Pyridine and Pyrimidine Derivatives as Analgesic, Anticonvulsant and Antiparkinsonian Agents. *Arch. Pharm.* 2005, 338, 433-440.
- 19. Elliott, R.J.; Gardner, D.L. Proline determination with isatin, in the presence of amino acids. *Anal. Biochem.* **1976**, *70*, 268-273.
- 20. Kapyla, M. Testing the age and viability of airborne pollen. Grana 1991, 30, 430-433.
- Shah, A.; Rahman, S.S.; deBiasi, V.; Camilleri, P. Development of Colorimetric Method for the Detection of Amines Bound to Solid Support. *Anal. Commun.* 1997, 34, 325-328.
- 22. Yamaguchi, Y. Non-chromatographic screening test for hyperprolinemia. *Clin. Chem.* **1978**, *12*, 2178-2179.
- 23. Broadhurst, A.V.; Roberts, N.A.; Ritchie, A.J.; Handa, B.K.; Kay, C. Assay of HIV-1 proteinase: A colorimetric method using small peptide substrates. *Anal. Biochem.* **1991**, *193*, 280-286.
- 24. Bonte, W.; Johansson, J.; Garbe, G.; Berg, S. Determination of the amino acid spectrum as an aid in the up-dating of skeletal findings. *Arch. Kriminol.* **1976**, *158*, 163-174.
- 25. Dochinets, D.I.; Zorya, B.P.; Petrenko, V.V.; Klyuev, N.A. New analytical reagents for 3-oxosteroids. Ukr. Khim. Zh. (Russ. Ed.) 1989, 55, 389-392 [Chem. Abstr. 1989, 111, 160356j].
- Dochinets, D.I.; Petrenko, V.V.; Zorya, B.P. Isatin 3-hydrazone as a new reagent for determination of 3-oxosteroids. *Zh. Anat. Khim.* 1989, 44, 510-513 [*Chem. Abstr.* 1989, *110*, 219165f].
- 27. Atta, K.F.; El-Massry, A.M.; Abdel Hamid, H.; El Ashry, E.S.H. Synthesis of 4-(pyrazol-3-yl)[1,2,4-triazolo[4,3-*a*]quinoxalines and tetrazolo analog. *J. Heterocycl. Chem.* **1994**, *31*, 549-552.
- 28. Atta, K.F.M.; El Ashry, E.S.H. Synthesis of 4-(1-phenyl-1H-pyrazol-3-yl)-[1,2,4]triazolo[4,3*a*]quinoxalines and their 4-halogenopyrazoyl analogs. *J. Heterocycl. Chem.* **2011**, *48*, 1216-1223.
- 29. Atta, K.F.M.; Marei, M.G.; Mohamed, F.A.M. Synthesis and reactions of a new series of 1,2,4-triazolo[4,3-c]quinazolines. *Heterocycles* **2011**, *83*, 339-349.
- Atta, K.F.M.; Marei, M.G.; Abd El Magiad, S.M.; El-Nashar, F.H.A. Annulation and Evaluation of Antibacterial Activity of The New Fused Tricyclic(5,5,6) Ring System of Pyrazolo[1,5-c]-1,2,4-triazolo[4,3-a]pyrimidines. *Heterocycles* 2011, *83*, 1873-1888.

- 31. Atta, K.F.M. Synthesis and Electrophilic Substitutions of Novel Pyrazolo[1,5-*c*]-1,2,4-triazolo[4,3-*a*]pyrimidines. *Molecules* **2011**, *16*, 7081-7096.
- 32. Atta, K.F.M. Study of the reaction of 5-aryl-7-hydrazino-2-phenylpyrazolo[1,5-*c*]pyrimidines with 1,3-dicarbonyl compounds. *Chin. J. Chem.* **2011**, *29*, 2451-2460.
- Marei, M.G.; Mishrikey, M.M.; Aly, D.M. New Synthesis of Pyrazolo(1,5-c)pyrimidines from Acetylenic β- Diketones. *Bull. Chem. Soc. Jpn.* 1992, 65, 3419-3422.
- Marei, M.G.; El-Ghanam, M. ChemInform Abstract: Reaction of pyrazolo[1,5-c]pyrimidinethiones with hydrazine: Synthesis of novel substituted pyrazolo[1,5-c]pyrimidine and pyrazolo[1,5c]tetrazolo[1,5-a]pyrimidine derivatives. *ChemInform* 1993, 24, doi:10.1002/chin.199351206.
- 35. Rehn, S. Synthesis of Indole and Oxindole Derivatives Incorporating Pyrrolidino, Pyrrolo or Imidazolo Moities. Ph.D. Thesis. Karolinska University: Stockholm, Sweden, December 2004.
- 36. National Committee for Clinical Laboratory Standards. *Performance Standards for Antimicrobial Susceptibility Testing. The 9th International Supplement, M100-S9*; NCCLS: Villanova, PA, USA, 1999.
- Massoud, A.A.; Gohar, Y.M.; Langer, V.; Lincoln, P.; Svensson, F.R.; Jänis, J.; Gårdebjer, S.T.; Haukka, M.; Jonsson, F.; Aneheim, E.; *et al.* Bis 4,5-diazafluoren-9-one silver(I) nitrate: Synthesis, X-ray structures, solution chemistry, hydrogel loading, DNA coupling and antibacterial screening. *New J. Chem.* 2011, *35*, 640-648.

Sample Availability: Samples of the compounds 3–17 are available from the authors.

 \bigcirc 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).