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Abstract: In a cell-based screen of novel anticancer agents, the hit compound 1a which 

bears a pyrazolo[3,4-d]pyrimidine scaffold exhibited high inhibitory activity against a 

panel of four different types of tumor cell lines. In particular, the IC50 for A549 cells was 

2.24 µM, compared with an IC50 of 9.20 µM for doxorubicin, the positive control. Four 

synthetic routes of the key intermediate 3 of 1a were explored and 1a was prepared via 

route D on the gram scale for further research. Two analogs of 1a were synthesized and 

their preliminary structure-activity relationships were studied. Flow cytometric analysis 

revealed that compound 1a could significantly induce apoptosis in A549 cells in vitro at 

low micromolar concentrations. These results suggest that the target compound 1a and its 

analogs with the pyrazolo[3,4-d]pyrimidine scaffold might potentially constitute a novel 

class of anticancer agents, which requires further studies. 
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1. Introduction 

Cancer is a major health problem worldwide. Improvements in treatment and prevention have led to 

a decrease in cancer deaths, but the number of new diagnoses continues to rise [1]. Chemotherapy is 

one of the most commonly used treatment options, especially for unresectable patients. However, the 

use of conventional cytotoxic drugs, including doxorubicin, cisplatin and fluorouracil, has not shown 

any improvement in survival, and severe adverse effects have been frequently observed in treated 

patients [2]. Thus, it is urgent to develop novel chemotherapeutic agents for the treatment of cancer. 

Our research group has been interested in the design, screening, synthesis and biological evaluation 

of novel tumor growth inhibitors and apoptosis inducers as potential anticancer agents [3-7]. Recently, 

a series of promising hit compounds, such as 1a [8], 1b [9] and 1c [10], etc. (Figure 1) have been 

found in a cell-based screen of anticancer agents. Among them, compound 1a with a pyrazolo[3,4-d]- 

pyrimidine scaffold showed broad-spectrum anticancer activity in vitro. Low micromolar inhibition 

potency was demonstrated against several tumor cell lines including A549, MCF-7, HepG2 and PC-3 

using the MTT assay (Table 1). For example, the IC50 for the A549 cell line was 2.24 µM. 

Figure 1. The hit compounds in the cell-based screening of anticancer agents. 

 

Table 1. The anti-proliferation activities of compounds 1a, 1d and 1e against various cancer cell lines. 

Compound 
IC50 (µM) a 

HepG2 MCF-7 A549 PC-3 
1a 13.9 42.3 2.24 26.6  
1d 25.2 1.74 5.20 >100 
1e >100 >100 47.0 >100 

Doxorubicin 0.54 0.75 9.20 0.60 
a The cytotoxicity effects of compounds on various cancer cell lines were determined by the MTT 
assay [30]. The results were expressed as the IC50, and were the means calculated from three 
independent experiments. 

Pyrazolo[3,4-d]pyrimidine derivatives demonstrate various biological activities, such as inhibition 

of phosphodiesterase-5 (PDE5) [11], modulation of the human adenosine receptor [12], growth 

inhibition of Gram-positive (Gr+) bacteria [13], memory modulation [14], etc. To the best of our 

knowledge, although the antitumor activity of pyrazolo[3,4-d]pyrimidine derivatives has been  

reported [15-17], the antitumor activity of 2- methyl thioether-substituted pyrazolo[3,4-d]pyrimidine 

derivatives such as 1a is being reported for the first time by our group [18]. Based on the promising  

in vitro activity of 1a and its structural novelty, we examined its antitumor activity further. Herein, we 

report the exploratory synthesis of the key intermediate 3 of 1a, the subsequent synthesis of 1a 
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together with its analogs, preliminary structure-activity relationships (SARs) and biological evaluation 

of this novel class of anticancer agents. 

2. Results and Discussion 

2.1. Chemistry 

To the best of our knowledge, the synthesis of 1a has not been previously reported [18]. Therefore, 

the synthetic route of 1a had to be designed to provide enough sample to gain insight into the SAR 

followed by further studies examining its antitumor activity. According to the retrosynthetic analysis 

(Scheme 1), the target compound 1a could be obtained through the condensation under basic 

conditions of 3 (3a, 3b or 3c) and 2, which is commercially available. Thus, the key to synthesizing 

compound 1a lay in the acquisition of the key intermediate 3. 

Scheme 1. The retrosynthetic analysis of 1a. 
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The only synthesis report [19] available for the key intermediate compound 3a was route A in 

Scheme 2, in which readily available compound 4 [20] reacted with 2-chloroacetyl chloride to yield 

acylated product 5, which underwent subsequent ring closure under basic conditions to produce 3a. 

However, we were unable to obtain the annulated product 3a following this literature method. We then 

attempted to produce 3a via route B in Scheme 2: Compound 6, which is also the precursor of 4 was 

subjected to acylation and ring closure under oxidative conditions [21]. We were also unable to obtain 

3a by this method. 

Scheme 2. The synthetic routes A and B to 3a. 
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We concluded that the failure of of 5 or 7 to cyclize might result from the bulky phenyl group on 

the pyrazole ring. Thus, bromination of the methyl group of known compound 9 [22], which has a  

N-phenyl substituted pyrazolo[3,4-d]pyrimidine scaffold, was attempted in order to generate brominated 

product 3b (Route C in Scheme 3). Under mild bromination conditions (Br2/HAc at 60 °C) [23], we 

obtained 3b with approximately 10% conversion of 9 according to the 1H-NMR and MS analysis of 

the crude product. The conversion of compound 9 into 3a under harsher bromination conditions 

(Br2/HAc at 90 °C) was aborted due to the presence of unidentified impurities that were too difficult to 

remove to obtain the purified product. 

Scheme 3. The synthetic route C and D of 3b. 

 

We then used route D in Scheme 3 to generate 3b. A 60% yield of compound 3b was obtained by 

reduction of 10 to give 11 [24] followed by substitution of the hydroxyl group by a Br atom with 

CBr4/Ph3P [25] to generate 3b. Thus, the practical synthesis of target compound 1a was achieved 

(Scheme 4). 

Scheme 4. Synthetic route D to 1a. 
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Reagents and conditions: (a) PhNHNH2, 80%; (b) NaOH, EtOH, reflux, 1–2 h, 90%; (c) (CO2Et)2, 
reflux, 4 h, 50%; (d) CaCl2, NaBH4 THF-EtOH, rt, 89%; (e) CBr4, Ph3P, CH2Cl2, 0 °C to rt, 50%;  
(f) compound 2, aq. NaOH(2N), DMF, 80 °C, 70%. 
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As shown in Scheme 4, treatment of the commercially available starting material 12 with 

phenylhydrazine gave the pyrazole derivative 6 with a yield of 80%. Then, 6 was readily converted to 

its amide derivative 4 in refluxing ethanol in the presence of sodium hydroxide [26]. Treatment of 4 

with neat diethyl oxalate under reflux [27] generated the annulated product 10 in 40% yield, followed 

by reduction with sodium borohydride and calcium chloride in THF-ethanol [28] to give 11. The key 

intermediate 3b could be then generated by bromination of 11 with carbon tetrabromide and 

triphenylphosphine. Finally, 3b was condensed with 2 under the action of potassium carbonate in DMF 

to give 1a with a yield of 76% on the gram scale. The structure of 1a was characterized by 1H-NMR 

and ESI-MS analysis. 

2.2. Anticancer Activity 

To provide insight into the SAR for further research, two analogs of 1a, that is 1d and 1e (Figure 2), 

were synthesized following a similar synthetic route to that used for 1a [29]. 

Figure 2. The structure of compound 1a and its analogs 1d and 1e. 
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The antiproliferative activities of compounds 1a, 1d and 1e were examined in a range of cancer cell 

lines including human hepatoma HepG2, breast cancer cell line MCF-7, lung cancer cell line A549, 

and prostate cancer cell line PC-3 using the MTT assay with doxorubicin as a positive control. The 

experimental data are summarized in Table 1. 

As expected, the biological activity of 1e in which the characteristic pyrazolo[3,4-d]pyrimidine 

scaffold was changed decreased significantly, suggesting that the pyrazolo[3,4-d]pyrimidine scaffold is 

pivotal to the anti-proliferative activity. It is noteworthy that the analog 1d with the pyrazolo[3,4-d]- 

pyrimidine scaffold inhibited proliferation of the human breast MCF-7 cells with an IC50 value of  

1.74 µM (compared with the parent compound 1a, whose IC50 was 42.3 µM). These results suggest 

that the target compound 1a and its analogs with the pyrazolo[3,4-d]pyrimidine scaffold might 

potentially constitute a novel class of anticancer agents, which require further studies. 

To further disclose the anti-proliferative mechanism of 1a, flow cytometric analysis was used to 

identify and measure the apoptotic cells (sub-G1 cells) and the cell cycle after propidium iodide (PI) 

staining, as described previously [31]. The data are shown in Figure 3. 

Exposure of A549 cells to compound 1a (2.0–4.0 µM) for 48 h resulted in a distinct sub-G1 peak 

that represents the population of apoptotic cells [32]. The percentage of cells in the sub-G1 phase was 

25.1%–41.0% for compound 1a (2.0–4.0 µM) and 5.1% for the control. These results suggest that 

compound 1a could significantly induce apoptosis in the lung cancer cell line A549 in vitro at low 

micromolar concentrations. 
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Figure 3. Effect of 1a on the induction of apoptosis in A549 cells. Cells were treated with 

2.0 µM and 4.0 µM of 1a for 48 h. The cells in the sub-G1 phase were considered to be 

apoptotic cells (n = 5). 

 

3. Experimental 

General 

All solvents and reagents were analytical grade pure and used without further purification. 1H-NMR 

spectra were recorded on a Bruker Avance (Varian Unity Inova) 400 MHz spectrometer using TMS as 

internal reference chemical shift in δ, ppm. Low resolution ESI-MS spectra were carried out on a 

Waters triquadrupole mass spectrometer. 

5-Amino-1-phenyl-1H-pyrazole-4-carbonitrile (6). To a solution of 2-(ethoxymethylene)malononitrile 

12 (1.50 g, 12.3 mmol) in ethanol (10.0 mL) was added phenylhydrazine (2.66 g, 24.6 mmol) 

dropwise. After stirring at room temperature for 1 h and then under reflux for 2.5 h, the reaction 

mixture was poured into water, and the residue after concentration in vacuo was cooled overnight. The 

precipitate was collected by filtration, washed with water and dried to afford 1.81g of a yellow solid. 

Yield: 80%. 1H-NMR (DMSO-d6): δ 7.79 (s, 1H), 7.52–7.56 (m, 4H), 7.41–7.51 (m, 1H), 6.70 (s, 2H). 

ESI-MS: m/z 183.11[M-H]+. 

5-Amino-1-phenyl-1H-pyrazole-4-carboxamide (4). To a solution of 6 (1.22 g, 11.3 mmol) in ethanol 

(10.0 mL) was added dropwise a solution of 33.3% sodium hydroxide (12.0 mL, 24.6 mmol). The 

mixture was then heated under reflux for 5 h. After cooling to room temperature, the reaction mixture 

was concentrated under vacuum and 6.00 mol/L HCl solution were added until pH 4. After cooling in 

ice water for 4 h, the precipitated solid was filtered, washed with water and dried to give 1.21 g of 

white product (90% yield).1H-NMR (DMSO-d6): δ 8.32 (s, 1H), 7.50–7.90 (m, 4H), 7.32–7.40 (m, 

1H), 6.85 (s, 2H), 6.37 (s, 2H). ESI-MS: m/z 201.16 [M-H]+. 

Ethyl 4-oxo-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidine-6-carboxylate (10). A mixture of 4 

(2.50 g, 12.40 mmol) and diethyl oxalate (8.2 mL) was refluxed for 5 h and the reaction mixture was 

allowed to cool to room temperature overnight. The precipitate was collected, washed with petroleum 
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ether and dried to give 1.75 g of a white solid. Yield: 50%. 1H-NMR (DMSO-d6): δ 12.87 (s, 1H), 8.44 

(s, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.60 (t, J = 7.8 Hz, 2H), 7.45 (t, J = 7.8 Hz, 1H), 4.39 (q, J = 7.2 Hz, 

2H), 1.35 (t, J = 7.2 Hz, 3H). ESI-MS: m/z 283.20 [M-H]+. 

6-(Hydroxymethyl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5-H)-one (11). To a solution of 10  

(2.29 g, 8.06 mmol) in THF/H2O (170 mL/55 mL) was added calcium chloride anhydrous (1.78 g, 

16.10 mmol) and sodium borohydride (1.23 g, 32.2 mmol), the resulting mixture was stirred at room 

temperature overnight. The reaction mixture was poured in ethyl acetate (150 mL) and the organic 

phase separated was washed twice with brine (50 mL) and then dried over sodium sulfate. The residue 

after evaporating in vacuo was recrystallized from ethanol to afford 1.74 g of a solid. Yield: 89%.  
1H-NMR (DMSO-d6): δ 12.04 (s, 1H), 8.30 (s, 1H), 8.06–8.08 (d, J = 8.8 Hz, 2H), 7.54–7.59 (t, J = 8.8 

Hz, 2H), 7.37–7.42 (t, J = 1.2 Hz, 1H), 5.74 (s, br, 1H,), 4.45 (s, 2H). ESI-MS: m/z 241.15 [M-H]+. 

6-(Bromomethyl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (3b). 11 (166 mg, 1.0 mmol) and 

carbon tetrabromide (331.6 mg, 2.00 mmol) were dissolved in dichloromethane (5.0 mL), a solution of 

triphenyl phosohine (656 mg, 2.50 mmol) in dichloromethane (1.5 mL) was dropped in at 0 °C. After 

stirring at room temperature for 3 h, the reaction mixture were concentrated in vacuo and the residue is 

chromatographed on silica gel using ethyl acetate/petroleum ether (1/4 by volume) as eluent to afford 

63.0 mg of a white solid. Yield: 50%. 1H-NMR (DMSO-d6): δ 12.76 (s, 1H), 8.35 (s, 1H), 8.02–8.05 

(m, 2H), 7.55–7.62 (m, 2H), 7.40–7.44 (m, 1H), 4.47 (s, 2H). ESI-MS: m/z 305.29 [M-H]+. 

2-((4-Oxo-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-6-yl)methylthio)quinazolin-4(3H)-one (1a). 

To a solution of ethyl 2-mercaptoquinazolin-4(3H)-one (2) (34.5 mg, 0.21 mmol) in ethanol (2.5 mL) 

was added 2 mol/L solution of NaOH (0.2 mL), the temperature was raised to 50 °C. And (3b) (62.5 mg, 

0.21 mmol) was added. About 3 h later, the reaction mixture was cooled and poured into a solution of 

2 mol/L NaHSO4 (2.0 mL). The precipitated solid was collected and crystallized to give 57.6 mg of a 

green solid. Yield: 70%. 1H-NMR (DMSO-d6): δ 12.80 (s, 1H), 12.73 (s, 1H), 8.36 (s, 1H), 8.05–8.11 

(m, 3H), 7.82–7.86 (m, 1H), 7.38–7.59 (m, 5H), 4.63 (s, 2H). ESI-MS: m/z 401.00 [M-H]+. 

6-((6-Oxo-1,6-dihydropyrimidin-2-ylthio)methyl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (1d). 

To a solution of 2-mercaptopyrimidin-4(3H)-one (76.9 mg, 0.60 mmol) in ethanol (3.0 mL) was added 

2 mol/L solution of NaOH (0.3 mL), the temperature was raised to 60 °C and then 3b (183.0 mg,  

0.60 mmol) was added. About 10 h later, the reaction mixture was cooled and NaHSO4 (0.06 g) was 

added followed by agitation. The precipitated solid was collected and chromatographed on silica gel 

with ethyl acetate/petroleum ether (1/4 by volume) as eluent to afford 93.8 mg of a green solid. Yield: 

53%. 1H-NMR (DMSO-d6): δ 11.00–14.12 (br, 2H), δ 8.30 (s, 1H), 8.05 (d, J = 7.6 Hz, 2H), 7.75 (d,  

J = 6.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.39 (d, J = 7.6 Hz, 1H), 5.94 (d, J = 6.4 Hz, 1H), 4.32 (s, 

2H). ESI-MS: m/z 353.07 [M-H]+. 

2-((4-Oxo-3,4-dihydroquinazolin-2-yl)methylthio)quinazolin-4(3H)-one (1e). To a solution of  

2-mercaptopyrimidin-4(3H)-one (213.9 mg, 1.11 mmol) in ethanol (6.0 mL) was added a 2 mol/L 

solution of NaOH (1.0 mL), the temperature was raised to 50 °C and 2-chloroquinazolin-4(3H)-one 

(194.6 mg, 1.08 mmol) was added to the resulting mixture. After stirring overnight, the reaction 
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mixture was cooled and NaHSO4 (0.12 g) was added. The precipitated solid was collected and and 

chromatographed on silica gel with ethyl acetate/petroleum ether (1/4 by volume) as eluent to afford 

299.5 mg of a white solid. Yield: 83%. 1H-NMR (DMSO-d6): δ 12.70 (s, br, 2H), 8.10 (d, J = 8.0 Hz, 

1H), 8.03 (d, J = 7.6 Hz, 1H), 7.77 (q, J = 7.2 Hz, 2H), 7.62 (d, J = 8.4 Hz, 1H), 7.50 (t, J = 9.2 Hz, 

2H), 7.40 (t, J = 7.6 Hz, 1H). ESI-MS: m/z 337.17 [M-H]+. 

4. Conclusions 

In conclusion, four synthetic routes to 3a, which is the key intermediate of a promising target 

compound 1a found in a cell-based screen of anticancer agents, were examined. Based on these 

findings, 1a was prepared on the gram scale for further research. Compound 1a exhibited high 

anticancer activity in vitro, especially for the lung cancer cell line A549 (the IC50 for A549 cells was 

2.24 µM). Flow cytometric analysis of compound 1a revealed that it could significantly induce 

apoptosis in A549 cells in vitro at low micromolar concentrations. Moreover, two analogs of 1a were 

synthesized and their in vitro anticancer activities were tested. Further SAR and mechanism studies are 

currently in progress. 
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