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Abstract: The Leydig cells of the testis have the capacity to biosynthesize testosterone 

from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone 

are critical for the development of male reproductive system and spermatogenesis. At least 

four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side 

chain cleavage enzyme (CYP11A1) for the conversion of cholesterol into pregnenolone 

within the mitochondria, 3β-hydroxysteroid dehydrogenase (HSD3B), for the conversion 

of pregnenolone into progesterone, 17α-hydroxylase/17,20-lyase (CYP17A1) for the 

conversion of progesterone into androstenedione and 17β-hydroxysteroid dehydrogenase 

(HSD17B3) for the formation of testosterone from androstenedione. Testosterone is also 

metabolically activated into more potent androgen dihydrotestosterone by two isoforms  

5α-reductase 1 (SRD5A1) and 2 (SRD5A2) in Leydig cells and peripheral tissues.  

Many endocrine disruptors act as antiandrogens via directly inhibiting one or more 

enzymes for testosterone biosynthesis and metabolic activation. These chemicals include 

industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone) 

and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and 

prochloraz) and plant constituents (genistein and gossypol). This paper reviews these 

endocrine disruptors targeting steroidogenic enzymes. 
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1. Introduction 

Leydig cells reside in the interstitial compartment of the testis and are responsible for the production 

of testosterone (T). T is required for sexual development and testis descent during fetal period [1],  

the production of sperm in the seminiferous tubules [2] and the maintenance of accessory sex organs [3] 

and sexual behavior [4] at adulthood. There are two distinct populations of Leydig cells: Fetal and 

adult Leydig cells. Fetal Leydig cells originate in the fetal testis, and produce T. T is converted by  

5α-reductase (SRD5A) to more potent androgen dihydrotestosterone (DHT) in some fetal reproductive 

tissues. T and DHT are required for the development of male reproductive tract and testis descent [1]. 

Adult Leydig cells develop during puberty and produce T that is required for maintaining 

spermatogenesis and male secondary sexual characteristics in adult life. Although Leydig cells only 

account for about 5% of all cell types in the testis at adulthood, T produced by them make over 95% of 

circulatory T. Chemicals that affect these cells dramatically affect androgen-dependent tissues. 

There are reports of increasing incidence of cryptorchidism, hypospadias, testicular cancers and 

reduced fertility over the past 35 years [5,6]. Concerns have risen about the possible association of 

exposures to endocrine disruptors (EDs) with reproductive tract anomalies and poor sperm quality [7]. 

During the past decades, many environmental chemicals are considered to meet the criteria for 

classification as EDs, including compounds such as plasticizers (phthalates, bisphenol A), surfactants 

(perfluoroalkyl substances), pesticides (methoxychlor) and plant constituents (genistein and gossypol). 

Many EDs are classified as antiandrogens, which act against normal function of androgen-related 

tissues. Antiandrogenic chemicals suppress androgen production in Leydig cells, reduce their numbers, 

or bind to the androgen receptors (ARs) so as to block activation by androgens. In the present review, 

we focus on antiandrogenic EDs that directly interfere with T biosynthetic pathway and/or metabolic 

activation pathway. We’ll discuss the inhibition of EDs on human and rodent (rat and mouse) enzymes. 

2. T Biosynthetic and Metabolic Activation Pathways 

In both fetal and adult Leydig cells, at least four steroidogenic enzymes are involved in T 

biosynthesis. T biosynthesis starts with the substrate cholesterol. The first steroidogenic enzyme is 

cholesterol side chain cleavage enzyme (CYP11A1) that is located in the inner membrane of the 

mitochondria [8]. The enzyme catalyzes three sequential reactions from cholesterol into pregnenolone. 

Pregnenolone diffuses from the mitochondria into the surrounding smooth endoplasmic reticulum, 

where other three steroidogenic enzymes are located, including 3β-hydroxysteroid dehydrogenase 

(HSD3B), cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) and 17β-hydroxysteroid 

dehydrogenase 3 (HSD17B3) [9]. Pregnenolone is finally converted to T by sequential reactions of 

these three steroidogenic enzymes. The steroid intermediates differ according to species depending 

upon whether the 4 or 5 pathways predominate. The 4 pathway (pregnenolone  progesterone  

androstenedione  T) was first demonstrated in the rat testis [9] (Scheme 1). The 5 pathway 
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(pregnenolone  17α-hydroxypregnenolone  dehydroepiandrosterone  androstenedione  T)  

is predominant in human testis, although 4 pathway also exists [9] (Scheme 1). When T is formed, T 

is metabolized to more potent androgen DHT in Leydig cells or peripheral tissues by several types of  

5α-reductases (SRD5A1, 2 and 3), particularly SRD5A2 that has high affinity for T [10]. DHT is very 

critical for male reproductive tract development in male fetus, and the mutation of SRD5A2 gene can 

cause malformation of male reproductive tract [11,12]. An ED that directly inhibits one and/or more of 

these steroidogenic enzymes leads to lower androgen, thus as an antiandrogen. 

Scheme 1. Testosterone biosynthetic and metabolic activation pathways. 
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3. Enzymes for T Biosynthesis and Metabolic Activation 

3.1. CYP11A1 

CYP11A1 is the first-step enzyme for the conversion of cholesterol to pregnenolone. It is encoded 

by human CYP11A1 or rat Cyp11a1. The reaction by this enzyme occurs on the inner membrane of the 

mitochondria. The enzyme catalyzes three sequential reactions with each step using one molecule of 

cofactor NADPH. NADPH carries the energy, which is delivered by the mitochondrial electron 

transfer system [9]. During the catalysis, two hydroxyl groups are added to cholesterol (at C20 and C22) 

followed by cleavage between the added hydroxyl groups, resulting in the formation of pregnenolone [9]. 

3.2. HSD3B 

HSD3B is an enzyme to catalyze the conversion of pregnenolone to progesterone in the presence of 

cofactor NAD+. It is a critical enzyme for the biosynthesis of all biologically active steroids including 

those in Leydig cells, adrenal, ovary and placenta [13]. HSD3B catalysis has two steps, catalyzing 

dehydrogenation and isomerization of a double bond in the steroid molecule, with the first 

dehydrogenase step being rate-limiting. There are several isoforms, with some expressed in non-classic 

steroidogenic tissues [9]. Two human HSD3B genes have been identified with 81.9% identity.  

Human HSD3B1 is primarily present in placenta, while HSD3B2 is predominantly expressed in adrenal 

and Leydig cells. Therefore, the review focuses on human HSD3B2 activity. In the patients with 

HSD3B2 mutation [14,15], pregnenolone is not converted into progesterone in the male. In this 

disorder, males show varying degrees of feminization, including the development of a vagina and 

breast at puberty, because serum T levels are very low. Four isoforms of HSD3B in the rat have been 

identified [9], with each of these isoforms is the product of a distinct gene [9]. In rat Leydig cells, 

HSD3B1 (encoded by Hsd3b1) is the primary enzyme for formation of progesterone [16]. 

3.3. CYP17A1 

CYP17A1 is encoded by CYP17A1 (human) or Cyp17a1 (rat), one enzyme with two activities. 

Unlike CYP11A1, which is found in the mitochondria, CYP17A1 is found in the smooth endoplasmic 

reticulum (SER) of Leydig cells and catalyzes two functional oxidase reactions of progesterone to  

17α-hydroxyprogesterone by 17α-hydroxylase, and further 17α-hydroxyprogesterone into androstenedione 

by 17,20-lyase [17]. Each reaction requires cofactor NADPH [9]. The microsomal electron transfer 

protein cytochrome P450 oxidoreductase transfers electrons [9]. CYP17A1 catalyzes both pregnenolone 

and progesterone (Figure 1). Although CYP17A1 catalyzes both hydroxylation and lysis reactions, 

there are species-dependent differences in the utilization of either 17α-hydroxypregnenolone (Δ5) or 

17α-hydroxyprogesterone (Δ4) as substrate for the lyase reaction. The human CYP17A1 uses  

17α-hydroxypregnenolone as the preferential substrate to yield dehydroepiandrosterone, whereas rat 

enzyme utilizes 17α-hydroxyprogesterone as the substrate to yield androstenedione. A mutation of 

CYP17A1 alters the conversion of progesterone to androstenedione in the male, leading to defective 

masculinization that can range from partial to complete pseudohermaphroditism and breast 

enlargement [18,19]. 
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3.4. HSD17B3 

There are over fourteen 17β-hydroxysteroid dehydrogenase isoforms [16]. Only HSD17B3 is 

located in Leydig cells for the final conversion of androstenedione into T [20]. HSD17B3 is encoded 

by human HSD17B3 or rat Hsd17b3. HSD17B3 requires NADPH as its cofactor. The production of T 

is considered an end-product. The mutation of HSD17B3 causes various phenotypes including 

pseudohermaphroditism with very low circulating T in males [21,22]. 

3.5. SRD5A2 

SRD5A2 is encoded by SRD5A2 (human) and Srd5a2 (rat). To date, three distinct SRD5As have 

been characterized. Human genes encode type 1 (SRD5A1), 2 (SRD5A2) and 3 (SRD5A3) 5α-reductases, 

which catalyze the conversion of T into DHT [23-25]. Rat genes have the similar designation (Srd5a1, 

Srd5a2 and Srd5a3). The SRD5A uses NADPH as a cofactor [20,26]. A cDNA encoding human 

SRD5A1 was first cloned [27]. So far, no clear mutation of SRD5A1 has been found to be associated 

with any human diseases. However, when human SRD5A2 was cloned, the mutation of this enzyme 

was found to be associated with male pseudohermaphroditism [28]. SRD5A2 gene is localized to 

human chromosome 2 [29]. Recently, human SRD5A3 was identified after a genome wide screening of 

hormone-refractory prostate cancer cDNAs [30]. SRD5A3 is found not only to catalyze the formation 

of DHT but also to convert polyprenol to dolichol, and its mutation causes congenital glycosylation 

disorder, which does not affect reproduction [25]. Therefore, only SRD5A2 is associated with the 

development of male reproductive tract. 

4. EDs with Direct Inhibition on Enzymes for T Biosynthesis and Metabolic Activation 

Environmental chemicals can directly alter the T biosynthetic or the metabolic activation pathways. 

Altering one or more steps in the steroidogenesis has the potential to cause reproductive toxicity, 

including abnormal reproductive tract, diminished fertility and hypogonadism [31]. We list examples 

of chemicals that directly alter key steps in the steroidogenic pathway (Table 1). The spectrum  

of inhibitors has been expanded to many categories of chemicals including industrial materials 

(perfluoroalkyl substances, phthalates, bisphenol A), insecticides/biocides (methoxychlor and prochloraz) 

and plant constituents (isoflavone and gossypol). Although some other toxicants (like PCB congeners) 

that also interfere with steroidogenic machinery, they are not included in this review because none 

were reported to directly inhibit steroidogenic enzymes. 

Table 1. Inhibitors of enzymes for testosterone biosynthesis and metabolic activation. 

 Enzyme Chemicals Use Mode of inhibition 
Enzymes for Testosterone Biosynthesis 

 CYP11A1 Methoxychlor & HPTE Insecticide Non-competitive 
  Gossypol Plant constituent Mixed type  
  Lindane Insecticide Unknown 
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Table 1. Cont. 

 Enzyme Chemicals Use Mode of inhibition 
 HSD3B Perfluorooctane sulfonate Surfactant Competitive 
  Perfluorooctane acid Surfactant Competitive 
  Phthalates Plasticizers Competitive 
  Bisphenol A Plasticizer Competitive 
  Methoxychlor & HPTE Insecticide Non-competitive 
  Triphenyltin Biocide Unknown 
  Tributyltin Biocide Unknown 
  Genistein Plant constituent Competitive 
  Gossypol Plant constituent Competitive 
 CYP17A1 Bisphenol A Plasticizer Competitive 
  Triphenyltin Biocide Unknown 
  Tributyltin Biocide Unknown 
  1,2-Dibromo-3-chloropropane Insecticide Unknown 
  Prochloraz Biocide Unknown 
  Gossypol Plant constituent Unknown 
 HSD17B3 Perfluorooctane sulfonate Surfactant Non-competitive 
  Perfluorooctane acid Surfactant Non-competitive 
  Phthalates Plasticizers Unknown 
  Bisphenol A Plasticizer Competitive 
  Benzophenones UV blocker Unknown 
  Methoxychlor & HPTE Insecticide Non-competitive 
  Triphenyltin Biocide Unknown 
  Tributyltin Biocide Unknown 
  Gossypol Plant constituent Competitive 

Enzyme for Testosterone Metabolic Activation 
 SRD5A2 Triphenyltin Biocide Non-competitive 
  Tributyltin Biocide Non-competitive 
  Genistein Food constituent Unknown 
  Gossypol Plant constituent Unknown 

HPTE: 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane. 

4.1. Industrial Materials 

4.1.1. Perfluoroalkyl Substance (PFASs) 

PFASs are polyfluoroalkyl compounds that are widely used for industrial and consumer products 

because of their unique properties of extreme stability and surface activity [32]. These chemicals are 

used as surfactants, adhesives and insecticides such as coatings of textiles, paper and upholstery and as 

reaction additives in various processes [33-35]. These chemicals are persistent in the environment 

because they are not broken down chemically and have become widespread in the environment and 

accumulated in wildlife and humans. Some PFASs, including perfluorooctane sulfonate (PFOS,  

8 carbons + 1 sulfur), perfluorooctane acid (PFOA, 8 carbons) and perfluorohexane sulfonate (PFHxS, 

6 carbons + 1 sulfur) have been classified as persistent organic pollutants in the general population 

rates are over 4 years in humans [36]. The levels of PFOS, PFOA and PFHxS in the blood of human 
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subjects are related to the exposure level and duration. The serum levels of PFOS, PFOA and PFHxS 

in the United States in 2006 are about 14.7, 3.4 and 1.5 ng/mL, respectively [37]. A short carbon chain 

perfluorobutane sulfonate (PFBS, 4 carbons + 1 sulfur) has been introduced recently to replace PFOA, 

PFOS and PFHxS compounds. The serum elimination of PFBS is expected to be more rapid than that 

of PFOA or PFOS [38], thus becoming less accumulation in human bodies. 

There is growing evidence that PFASs may act as EDs, interfering with the reproductive system in 

males. Workers in 3M in Cottage Groove of the United States that produced PFOA had higher serum 

level of PFOA and decreased serum T concentrations [39,40]. Laboratory animal studies also showed 

that rats exposed to PFOA and related chemicals had lower T levels [41,42]. One of the mechanisms 

by PFASs may be caused by their direct inhibition on some T biosynthetic enzymes. Apparently, 

PFOS and PFOA directly inhibit rat Leydig cell HSD3B. Structure activity response analysis of the 

inhibitory actions on rat testicular HSD3B by PFASs showed that PFASs had clear structure activity 

response depending on the length of carbon plus sulfur chain, with inhibitory potency of PFOS  

(IC50 = 1.3 μM) > PFOA (IC50 = 53.2 μM) > PFHxS (no inhibition at 250 μM) = PFBS (no inhibition 

at 250 μM) [32]. The mode of the inhibition on rat HSD3B is competitive against substrate 

pregnenolone [32]. Surprisingly, PFASs have almost no inhibitory effects on human testicular HSD3B 

activity [32]. In the contrast, PFOS is a very potent human testicular HSD17B3 inhibitor. The potencies 

are PFOS (IC50 = 6.0 μM) > PFOA (IC50 = 127.6 μM) > PFHxS (no inhibition at 250 μM) = PFBS  

(no inhibition at 250 μM) [32]. PFOS shows a non-competitive inhibition of human HSD17B3 [32].  

Of these PFASs, only PFOA potently inhibits rat Leydig cell HSD17B3 with IC50 value of 17 μM [43]. 

The inhibition of HSD3B and HSD17B3 activities in rat Leydig cells clearly leads to the decrease of  

T production in Leydig cells [43]. No reports have been shown concerning the effects of PFASs on 

CYP11A1, CYP17A1 and SRD5A2 activities. 

4.1.2. Phthalates 

Phthalates are synthetic compounds, which are widely used as plasticizers and solvents in a variety 

of polyvinyl chloride consumer products [44]. Phthalates are not chemically bound to polyvinyl 

chloride and easily leached out. The leached phthalates in the environment are significant because 

phthalates usually make up to 40% of the volume of the plastics [45]. Worldwide, manufacturers 

produce an estimated one billion pounds of phthalates per year [46]. Dozens of phthalates are 

manufactured and their difference depends on length carbon chain in the alcohol moiety. For example, 

dimethyl phthalate (DMP) has one carbon, and di-n-butyl phthalates (DBP) has four carbons  

in the alcohol moiety. The most abundant are diethylhexyl phthalate (DEHP) and DBP [47].  

When absorbed into human body, phthalate diesters are rapidly converted into monoester metabolites [48]. 

Some monoester metabolites are believed to be more potent than their parent compounds for their 

toxicity. For example, the monoethylhexyl phthalate (MEHP), the metabolite of DEHP, has been found 

to be 10 times more potent than DEHP for its toxicity [49]. 

Phthalates have been classified as antiandrogens. Apparently, phthalates act not via blocking the 

androgen receptor, since they do not bind to androgen receptor [47]. In vivo studies using animal 

models have shown that DEHP and DBP indeed are antiandrogens, causing various androgen-deficient 

reproductive malformations, including hypospadia and indecent testis after birth, when male fetus are 
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exposed to phthalates during gestation [50-55]. Epidemiological studies also claim that exposure to 

phthalates may be linked to abnormal reproductive development in human male embryos [56-58]. 

Although many mechanisms account for the reduction of T after in vivo or in vitro exposure to 

phthalates [47,52,53,56,57], the direct inhibitory effects of phthalates on some T biosynthetic enzymes 

may also be involved. It was found that the treatment of dipentyl phthalate can cause a significant 

decrease of CYP17A1 activity [59]. We also demonstrate that dipropyl phthalate, DBP, dipentyl phthalate, 

dicyclohexyl phthalate, benzyloctyl phthalate and butylbenzyl phthalate significantly inhibit both 

human and rat testicular HSD3B and HSD17B3 activities at concentrations of 100 μM (unpublished data). 

In vitro, the DBP metabolite monobutyl phthalate does not appear to inhibit 22-OH-cholesterol-induced 

T production in the fetal rat testis, indicating monobutyl phthalate does not inhibit CYP11A1 activity [60]. 

DEHP is not the SRD5A inhibitor either [61]. 

4.1.3. Bisphenol A (BPA) 

BPA is a synthetic compound that is used primarily in the manufacture of polycarbonate plastic and 

epoxy resins, and as a non-polymer additive to other plastics. Sources of human exposure to BPA 

include indoor air, dust ingestion and contamination of foods [62]. Various studies have demonstrated 

significant exposure to humans with 95% of detection in human urine samples [63-65]. There is clear 

sex differences regarding to serum BPA levels, which are significantly higher in normal men (1.49 ng/mL) 

compared to those of women (0.64 ng/mL). This gender difference in serum BPA levels are possibly 

due to difference in the androgen-related metabolism of BPA [66]. 

Many studies propose BPA as an estrogenic compound because it weakly binds to estrogen  

receptor [67,68]. BPA is also an antiandrogen, as it binds to human androgen receptor and blocks 

DHT-induced androgen receptor transcription activity [67,68]. Its antiandrogenic potency is 

comparable to the androgen receptor antagonist flutamide [67,68]. Both in vivo and in vitro exposures 

to BPA in rodents caused significant decreases of T production [69,70]. The inhibition of T production 

in rat Leydig cells has been shown to be associated with its direct inhibition on T biosynthetic enzyme 

activities. Although BPA has no direct inhibitory effects on CYP11A1 activity [71], it inhibits other 

three T biosynthetic enzymes by various degrees [72]. BPA inhibits human and rat testicular HSD3B 

with IC50s of 7.9 and 26.5 μM, and human and rat CYP17A1 activities with IC50s of 18.9 and 64.6 μM, 

respectively. BPA is also a weak human and rat HSD17B3 inhibitor with IC50s about 100 μM [72]. 

BPA is a competitive inhibitor for both HSD3B [72] and CYP17A1 [72,73] against each steroid substrate, 

possibly because it has very similar chemical structure to steroid substrates. 

4.1.4. Benzophenone (BP) 

Benzophenones are the synthesized chemicals that block UV and are widely used in inks, imaging, 

and clear coatings in the printing industry. BPs are exposed because they migrate into food from 

packing [74]. Many BPs may have antiandrogenic activities. Of nine BPs (1–8 and 12) tested, BP-1 is 

the most potent inhibitor of human HSD17B3 activities with IC50 of 1 μM, while others have IC50s 

around 47–111 μM [75]. Apparently, the inhibition of BP-1 on human HSD17B3 activity is selective, 

since it inhibits HSD17B1 and HSD17B2 activities with IC50 over 20 μM and has no inhibition on 
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HSD17B5 activity [75]. Rodent models also show BP-1 significantly inhibits T production in mouse 

and rat testes [75]. 

4.2. Insecticides and Fungicides 

4.2.1. Methoxychlor (MXC) 

The organochlorine pesticide MXC is developed as a replacement for the banned pesticide  

2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is widely used. MXC is a known ED to cause  

the reduction of luteinizing hormone (LH)-stimulated T production in rodent Leydig cells [76-78].  

Some effects of MXC is believed to be mediated by its bioactive metabolite, 2,2-bis(p-hydroxyphenyl)-

1,1,1-trichloroethane (HPTE) [77]. Both MXC and HPTE have estrogenic activities via binding to 

estrogen receptor [79]. MXC is also an antiandrogen. The androgenic effects of MXC and its 

metabolite HPTE are mediated via direct inhibition of T biosynthetic enzymes. MXC and HPTE 

directly inhibit T production in rat Leydig cells via inhibiting CYP11A1 activities starting at 100 nM [80]. 

Using purified pig CYP11A1, [14C]MXC was found to irreversibly bind to CYP11A1 and abolish the 

enzyme activity [81], suggesting that MXC is non-competitive inhibitor of CYP11A1. MXC also 

inhibits human and rat testicular HSD3B activities, with IC50s of 53.2 µM (human) and 46.15 µM (rat). 

It seems that HPTE is more potent than MXC, because it has IC50s of 8.2 µM (human) and 13.8 μM 

(rat) for HSD3B activity. The mode of MXC and HPTE on HSD3B activity is non-competitive against 

the substrate pregnenolone. At the concentration as high as 100 µM, MXC does not have inhibitory 

effects on human and rat HSD17B3 activities, while HPTE significantly inhibits human and rat 

HSD17B3 activities with IC50s of 12.1 µM (human) and 32.0 µM (rat), suggesting that MXC is 

metabolically activated into HPTE to inhibit HSD17B3 activity. 

4.2.2. Organotins 

Organotins are the organometallic compounds and have been widely used as antifouling biocides 

for ships and fishing nets, agricultural fungicides and rodent repellents [82]. Their widespread uses 

have resulted in the release of increasing amounts of organotins into the environment. Organotins have 

been shown to be antiandrogens. For example, tributyltin causes serious defects in testicular 

development and function in vivo [68]. Studies have shown that organotins directly inhibited many  

T biosynthetic and metabolizing enzymes. Organotins tributyltin and triphenyltin inhibit pig CYP17A1 

activities with IC50s of about 117 μM [83]. Tributyltin inhibits rat CYP17A1 with IC50 of about  

50 μM [83]. Tributyltin is a primarily competitive inhibitor of rat testicular HSD3B activity with Ki of 

2.4 μM [84]. Triphenyltin and tributyltin inhibited HSD17B3 activities from pig Leydig cells with 

IC50s of 48 and 148 nM, respectively [83]. Lo et al. [85] investigated the in vitro effects of triphenyltin on 

human T biosynthetic and metabolizing enzymes including HSD3B2, HSD17B3 and SRD5A2 activities. 

The IC50s of inhibiting HSD3B2, HSD17B3 and SRD5A2 are 4.0, 4.2 and 0.95 μM, respectively [85]. 

The inhibition of SRD5A2 activity may be mediated by the interaction of triphenyltin with critical 

cysteine residues of the enzymes [85]. The T metabolism is also performed on effects of tributyltin 

chloride, which inhibits human SRD5A1 and SRD5A2 with IC50 of 19.9 and 10.8 µM, respectively [86]. 

Both isoforms are not affected by tetrabutyltin or monobutyltin indicating that at least two butyl groups 
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bound to the positively charged Sn are required for the interaction of butyltin with the enzymes [86]. 

The inhibition of tributyltin on SRD5A1 is competitive while that on SRD5A2 activity is irreversible [86]. 

4.2.3. 1,2-Dibromo-3-chloropropane (DBCP) 

DBCP is a pesticide, which has been used for over 20 years to control plant worms. It was banned 

by the US Environmental Protection Agency in 1977, because it was shown to be antiandrogen to 

cause infertility in male workers [87-89]. DBCP-exposed males may develop oligospermia and 

hypogonadism, but the cause is reversible [90-92]. The route of exposure seems to be a critical factor 

for the testicular toxicity of DBCP [87-89,93-96]. Although, many studies concluded that Leydig cells 

in the testis were secondary targets for DBCP toxicity, Kelce et al. [97] demonstrated that DBCP also had a 

direct inhibitory effect on the 17α-hydroxylase activity of CYP17A1 but not the 17,20-lyase activity [97]. 

4.2.4. Lindane 

Lindane is an organochlorine insecticide. Lindane was found in the human and rat testis after 

exposure [98,99]. It has been shown that lindane adversely affected male reproductive function in rats 

after in utero exposure and therefore it is classified as an antiandrogen [100-104]. Lindane inhibited 

human chorionic gonadotropin-stimulated T production by rat Leydig cells [101,102], suggesting that 

the compound might affect testicular steroidogenesis [105]. Indeed, lindane inhibits mouse CYP11A1 

activity [106]. 

4.2.5. Prochloraz 

Prochloraz is an imidazole fungicide widely used for horticulture and agriculture. The action of 

imidazoles (e.g., ketoconazole) used as fungicides is based on the inhibition of the cytochrome  

P450-dependent 14α-demethylase activity that catalyzes the conversion of lanosterol to ergosterol, an 

essential component of fungal cell membranes [107]. Prochloraz is classified as an antiandrogen. 

Maternal exposure to prochloraz caused malformation of male reproductive tracts in fetal male rats and 

reduced steroidogenesis in the testis [108]. Prochloraz also decreased serum T levels and delayed 

puberty in males during the pubertal exposure [109]. This may be contributed by the direct inhibition 

of prochloraz on some T biosynthetic enzymes. Indeed, prochloraz inhibited rat testicular CYP17A1 

activity with Ki around 1 μM [108]. Using human adrenal H295R cells, prochloraz also concentration-

dependently inhibited human CYP17A1 activity [110], and the inhibition was more selective since it did 

not inhibit another CYP enzyme CYP11B1, which is required for glucocorticoid biosynthesis [110]. 

4.3. Plant Active Constituents 

4.3.1. Isoflavone (Genistein) 

Genistein, a soy isoflavone, is classified as a phytoestrogen. It is widely distributed in human and 

animal diet. It possesses a structure similar to estrogen 17β-estradiol and can either mimic or antagonize 

estrogen [111]. The highest amount of flavonoids has been found in soybeans and soy food [112]. 

Several studies have reported on an influence by isoflavones on Leydig cell function by decreasing T 
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production [113]. Although the exact mechanisms of genistein on T production are not clear, the direct 

inhibitions of some T biosynthetic enzyme activities may account for. Genistein is a potent competitive 

inhibitor of human and rat testicular HSD3B activity with the IC50 of 0.09 μM (human) and 0.64 μM 

(rat) [114]. Another isoflavone equol is far less potent, and it inhibited human testicular HSD3B by 

42% at 100 μM. In contrast to its potent inhibition of testicular HSD3B activity, genistein had less 

potent inhibition on human and rat HSD17B3, and the IC50s are ≥100 μM [114]. Genistein inhibited 

human SRD5A2 activity too, and it is a much potent inhibitor of SRD5A2 than SRD5A1 [115].  

Given the increasing intake of soy-based food products and their potential effect on blood androgen 

level, these findings are greatly relevant to public health. 

4.3.2. Gossypol 

Gossypol is a yellowish polyphenolic compound isolated from cotton seeds, and it was once tested 

as a very effective male contraceptive in China [116]. Because of its possible side effects such as 

hypokalemia and irreversible suppression of spermatogenesis, gossypol would not be acceptable as a 

male contraceptive, after evaluation by World Health Organization [117]. The exposure to gossypol 

could be from ingestion of cotton seed oils and materials. Food and animal agricultural industries must 

manage cotton-derivative product levels to avoid gossypol toxicity. 

Gossypol has direct inhibition on some steroidogenic enzymes. Gossypol at 17–34 μM significantly 

inhibited the conversion of 25-hydroxycholesterol into pregnenolone and pregnenolone into progesterone 

in bovine luteal cells, suggesting that gossypol inhibits CYP11A1 and HSD3B activities [118]. Indeed, 

gossypol inhibited CYP11A1 from bovine adrenal mitochondria at 30 μM [119]. Gossypol is the very 

potent inhibitor of human and rat testicular HSD3B activities with IC50s of 3–5 µM for human and  

0.2 µM for rat’s enzyme [120]. Gossypol potently inhibited human and rat HSD17B3 with clear 

enantiomer-specific differences. (−)-Gossypol inhibited human and rat HSD17B3 activities with  

IC50s of 0.36 and 3.43 μM, respectively, while the (+)-gossypol is slightly less potent and inhibited 

human and rat HSD17B3 activities with IC50 of 1.13 μM and 10.93 μM, respectively [120].  

Gossypol inhibited T metabolizing enzymes SRD5A, and its inhibitory effect is more potent for 

SRD5A1 than SRD5A2 activity [115]. 

5. Summary and Conclusions 

Leydig cells of the testis are responsible for the biosynthesis and secretion of androgens, which is 

critical for developmental and reproductive function in the male. Disruption of T biosynthesis and 

metabolic activation by EDs can cause sexual dysfunction, infertility or sterility. Many EDs were 

found to act directly on enzyme activity in Leydig cells. The impaired function of Leydig cells is 

displayed by a decrease in T production as a consequence of the suppressed CYP11A1, CYP17A1, 

HSD3B and HSD17B3 activities. The direct inhibition on SRD5A2 may also contribute to the 

abnormal development of male reproductive tract. However, our knowledge on the different EDs for 

disruption of particular target molecules involved in steroidogenesis is still limited, further studies are 

warranted to assess the effects of EDs on male fertility. 
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