Next Article in Journal
Irving-Williams Order in the Framework of Connectivity Index 3χv Enables Simultaneous Prediction of Stability Constants of Bivalent Transition Metal Complexes
Previous Article in Journal
Antioxidant Activity of β-Carotene Compounds in Different in Vitro Assays
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Compilation of Secondary Metabolites from Bidens pilosa L.

by
Fabiana Lima Silva
1,2,*,
Dominique Corinne Hermine Fischer
2,
Josean Fechine Tavares
1,
Marcelo Sobral Silva
1,
Petronio Filgueiras de Athayde-Filho
1 and
Jose Maria Barbosa-Filho
1,*
1
Laboratório de Tecnologia Farmacêutica, Universidade Federal da Paraíba, Cx. Postal 5009, 58051-970, João Pessoa, PB, Brazil
2
Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, Bloco 15, 05580-900, São Paulo, SP, Brazil
*
Authors to whom correspondence should be addressed.
Molecules 2011, 16(2), 1070-1102; https://doi.org/10.3390/molecules16021070
Submission received: 11 November 2010 / Revised: 13 January 2011 / Accepted: 24 January 2011 / Published: 26 January 2011
(This article belongs to the Section Natural Products Chemistry)

Abstract

:
Bidens pilosa L. is a cosmopolitan annual herb, known for its traditional use in treating various diseases and thus much studied for the biological activity of its extracts, fractions and isolated compounds. Polyacetylenes and flavonoids, typical metabolite classes in the Bidens genus, predominate in the phytochemistry of B. pilosa. These classes of compounds have great taxonomic significance. In the Asteraceae family, the acetylene moiety is widely distributed in the Heliantheae tribe and some representatives, such as 1-phenylhepta-1,3,5-triyne, are noted for their biological activity and strong long-wave UV radiation absorbance. The flavonoids, specifically aurones and chalcones, have been reported as good sub-tribal level markers. Natural products from several other classes have also been isolated from different parts of B. pilosa. This review summarizes the available information on the 198 natural products isolated to date from B. pilosa.

Graphical Abstract

Introduction

The genus Bidens (Asteraceae: Heliantheae) comprises about 240 species with cosmopolitan distribution [1]. Many of these species have been investigated chemically to contribute to the classification of Asteraceae [2,3,4]. Interesting relationships within the Heliantheae, as well as its relationship with other tribes have been proposed on the basis of various types of compounds found in the tribe, especially acetylenes, sesquiterpene lactones and flavonoids [4,5]. The interest in these classes of compounds also has gone beyond chemotaxonomy. The biological activities, including antiparasitic, antifungal and antioxidant properties, of the predominant components in the tribe Heliantheae have been widely reported, and the investigation of these species for the discovery of new active compounds has expanded [6,7,8,9,10,11,12].
Bidens pilosa L. (Figure 1) stands out among the species of the genus due to the large number of natural products characterized in it and the biological activities reported for its extracts, fractions and compounds. Therefore, in continuation of our research on bioactive molecules from the various species of the different families cited [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43], we offer this compilation of the chemical constituents of B. pilosa.

Bidens pilosa L.

B. pilosa is an annual, erect and ruderal herb originating from South America and now found in almost all tropical and subtropical region countries [44,45,46]. It grows to a height of up to 1.5 m, branching from the base and its yellow flowers have 5-15 mm diameter [44,46].
Figure 1. Bidens pilosa L.
Figure 1. Bidens pilosa L.
Molecules 16 01070 g001
It is a cosmopolitan herb, considered invasive of annual and perennial crops and widely distributed in disturbed areas and along roadsides in tropical and subtropical climates [46]. Nevertheless, this plant is commonly used in the traditional medicine. In Martinique, the decoction of the whole plant is used for its anti-inflammatory and hypoglycemic effects [47]. Aqueous preparations of the leaves are used by Zulu people for the treatment of dysentery, diarrhea and colic [48]. B. pilosa has been popularly used in China as a herbal tea ingredient or in traditional medicine for treating various disorders, such as diabetes, inflammation, enteritis, bacillary dysentery and pharyngitis [49]. In Brazil, it is widely used as a folk medicine by indigenous people to treat a variety of illnesses including pain, fever, angina, diabetes, edema, infections and inflammation [50,51]. In addition, in the Amazon and regions in the South of Brazil, hydroalcoholic solutions of B. pilosa roots are also regarded as useful in the treatment of malaria [52] and even tumors [53].
Studies of B. pilosa plant extracts have shown it has anti-hyperglycemic [54,55], antihypertensive [56,57,58], antiulcerogenic [45], hepatoprotective [59], antipyretic [60], immunosuppressive and anti-inflammatory [8,61,62], anti-leukemic [63,64], anti-malarial [50], anti-bacterial [48], antioxidant [65,66] and antitumor [67] effects. These proven biological activities have led countries like Brazil to include B. pilosa in the official list of medicinal plants with potential for development of herbal use by the public health system [68].
Because the biological activities of some extracts and fractions obtained from different parts of B. pilosa, several isolated constituents of the plant have been studied, referring to anti-inflammatory activity, immunosuppressive [44,49,61,69,70], hepatoprotective [59], anti-bacterial [44,71], antifungal [71] anti-malarial [50,71,72], anticancer [72], antiparasitic [73], anti-hyperglycemic activities [49,54,70,74,75,76], anti-angiogenic [77,78], antioxidant [79] and cercaricidal [80].

The Phytochemistry of Bidens pilosa L.

B. pilosa has been extensively studied since the early 1900s. Among the classes of compounds reported polyacetylenes and flavonoids, typical metabolite classes in the Bidens genus, predominate [4,81]. These are also the most reported classes of compounds when referring to the biological activities [49,50,54,61,74,75,82,83]. A number of earlier studies also have reported the isolation of sterols [44,84,85], terpenoids [46,85,86], phenylpropanoids [62,83,87,88,89,90] and hydrocarbons [44,85,91].
There have been a few reviews of B. pilosa [6,51,92,93], however the phytochemical data have not included all classes of metabolites. To date almost 198 compounds have been described from this species. These secondary metabolites are listed in Table 1, where they were grouped based on the classification adopted by a standard reference work, the Dictionary of Natural Products [94].
The order begins with the structurally most simple metabolites, derived from aliphatic natural produts (branched, unbranched, saturated or unsaturated hydrocarbons), and among these, the acetylenes are highlighted. Next the derivatives of simple aromatic hydrocarbons and the phenylpropanoids, in which a C3 substituent is attached to the aromatic unit (C6), form a biosynthetically distinct group of aromatic metabolites. The flavonoids, also considered a large group of metabolites in B. pilosa are subdivided into aurones, chalcones, flavanones, flavones and flavonols. The terpenoids group is divided according to the number of carbons, starting in sesquiterpenes and continuing with diterpenes, sterols, triterpenes and finally tetraterpenes. Finally, porphyrins, nitrogen and sulphur-containing natural products, one disaccharide and miscellaneous compounds are arranged.
Table 1. Compounds isolated from Bidens pilosa L.
Table 1. Compounds isolated from Bidens pilosa L.
N°.NameAlternative nameStructurePlant partCountryRef.
Aliphatic natural products
Saturated unbranched hydrocarbons
1heneicosane CH3(CH2)19CH3APTanzania[44]
2dodosane CH3(CH2)20CH3APTanzania[44]
3tricosane CH3(CH2)21CH3APTanzania[44]
4tetracosane CH3(CH2)22CH3APTanzania[44]
5pentacosane CH3(CH2)23CH3APTanzania[44]
6hexacosane CH3(CH2)24CH3APTanzania[44]
7heptacosane CH3(CH2)25CH3APTanzania[44]
8octacosane CH3(CH2)26CH3NFTaiwan[91]
APTanzania[44]
9nonocosane CH3(CH2)27CH3NFTaiwan[91]
APTanzania[44]
10triacontane CH3(CH2)28CH3NFTaiwan[91]
APTanzania[44]
11hentriacontane CH3(CH2)29CH3NFTaiwan[91]
APTanzania[44]
12dotriacontane CH3(CH2)30CH3NFTaiwan[91]
APTanzania[44]
13tritriacontane CH3(CH2)31CH3NFTaiwan[91]
APTanzania[44]
Saturated unbranched alcohols
142-butoxy-ethanol CH3(CH2)3OCH2CH2OHEPTaiwan[85]
15tetracosan-1-ol CH3(CH2)22CH2OHAPTanzania[44]
16hexacosan-1-ol CH3(CH2)24CH2OHAPTanzania[44]
171-octacosanol CH3(CH2)26CH2OHAPTanzania[44]
181-hentriacontanol CH3(CH2)29CH2OHNFTaiwan[91]
Saturated unbranched carboxylic acids
19tetradecanoic acid myristic acidCH3(CH2)12CO2HAPTanzania[44]
20hexadecanoic acid palmitic acidCH3(CH2)14CO2HAPTanzania[44]
21octadecanoic acid stearic acidCH3(CH2)16CO2HAPTanzania[44]
22eicosanoic acid arachidic acidCH3(CH2)18CO2HAPTanzania[44]
23docosanoid acid behenic acidCH3(CH2)20CO2HLFnot stated[84]
Unbranched aliphatic carboxylic acid esters
242-butenedioic acid Molecules 16 01070 i001APChina[121]
APChina[102]
25(Z)-9-octadecenoic acid oleic acid Molecules 16 01070 i002APTanzania[44]
26(E)-9-octadecenoic acid elaidic acid Molecules 16 01070 i003LFnot stated[84]
27(Z,Z)-9,12-octadecadienoic acid linolic acid/linoleic acid Molecules 16 01070 i004APTanzania[44]
EPTaiwan[85]
28(Z,Z,Z)-9,12,15-octadecatrienoic acid α-linolenic acid Molecules 16 01070 i005EPTaiwan[85]
29(Z,Z)-9,12-octadecadienoic acid, ethyl ester ethyl linoleate Molecules 16 01070 i006EPTaiwan[85]
30(Z,Z,Z)-9,12,15-octadecatrienoic acid, methyl ester methyl linolenate Molecules 16 01070 i007EPTaiwan[85]
31(Z,Z,Z)-9,12,15-octadecatrienoic acid, ethyl ester ethyl linolenate Molecules 16 01070 i008EPTaiwan[85]
32(Z)-9-octadecenoic acid, 2-butoxyethyl ester2-butoxyethyl oleate Molecules 16 01070 i009EPTaiwan[85]
332-butoxyethyl linoleate Molecules 16 01070 i010EPTaiwan[85]
34(Z,Z,Z)-9,12,15-octadecatrienoic acid, butoxyrthyl ester2-butoxyethyl linolenate Molecules 16 01070 i011EPTaiwan[85]
Acetylenic hydrocarbons
351,7E,9E,15E-heptadecatetraene-11,13-diyneheptadeca-2E,8E,10E,16-tetraen-4,6-diyne Molecules 16 01070 i012NFChina[99]
361,11-tridecadiene-3,5,7,9-tetrayne Molecules 16 01070 i013RTnot stated[2]
371-tridecaene-3,5,7,9,11-pentayne pentayneene Molecules 16 01070 i014LFnot stated[2]
NFEgypt[86]
385-tridecaene-7,9,11-triyne-3-ol Molecules 16 01070 i015NFEgypt[86]
392,10,12-tridecatriene-4,6,8-triyn-1-ol Molecules 16 01070 i016PNSnot stated[51]
402,12-tridecadiene-4,6,8,10-tetrayn-1-ol1,11-tridecadiene-3,5,7,9-tetrayn-13-ol Molecules 16 01070 i017RTnot stated[2]
NFEgypt[86]
412,12-tridecadiene-4,6,8,10-tetraynal1,11-tridecadiene-3,5,7,9-tetrayne-13-al Molecules 16 01070 i018RTGermany[122]
422,12-tridecadiene-4,6,8,10-tetrayn-1-ol,1-acetate1,11-tridecadiene-3,5,7,9-tetrayne-13-acetate Molecules 16 01070 i019RTnot stated[2]
43(5E)-1,5-tridecadiene-7,9-diyn-3,4,12-triol Molecules 16 01070 i020APChina[100]
44(6E,12E)-3-oxo-tetradeca-6,12-dien-8,10-diyn-1-ol Molecules 16 01070 i021APChina[100]
45(E)-5-tridecene-7,9,11-triyne-1,2-diol1,2-dihydroxy-5(E)-tridecene-7,9,11-triyne Molecules 16 01070 i022EPTaiwan[78]
46(E)-6-tetradecene-8,10,12-triyne-1,3-diol1,3-dihydroxy-6(E)-tetradecene-8,10,12-triyne Molecules 16 01070 i023EPTaiwan[77]
EPTaiwan[65]
EPTaiwan[78]
47(2R,3E,11E)-3,11-tridecadiene-5,7,9-triyne-1,2-diol safynol Molecules 16 01070 i024NFEgypt[86]
NFChina[99]
485,7,9,11-tridecatetrayne-1,2-diol 1,2-dihydroxy-trideca-5,7,9,11-tetrayne Molecules 16 01070 i025EPTaiwan[77]
EPTaiwan[78]
49(R)-3,5,7,9,11-tridecapentayne-1,2-diol(R)-1,2-dihydroxy-trideca-3,5,7,9,11-pentayne Molecules 16 01070 i026APJapan[71]
50(4E)-1-(hydroxyl-methyl)-4-dodecene-6,8,10-triyn-1-yl-β-D-glucopyranoside2-β-D-gluco-pyranosyloxy-1-hydroxy-5(E)-tridecene-7,9,11-triyne Molecules 16 01070 i027APUSA[54]
EPTaiwan[75]
EPTaiwan[123]
EPTaiwan[65]
EPTaiwan[49]
LFTaiwan[124]
51(4E)-1-(2-hydroxy-ethyl)-4-dodecene-6,8,10-triyn-1-yl-β-D-glucopyranoside3-β-D-gluco-pyranosyloxy-1-hydroxy-6(E)-tetradecene-8,10,12-triyne Molecules 16 01070 i028APUSA[54]
APChina[102]
EPTaiwan[75]
EPTaiwan[123]
EPTaiwan[65]
EPTaiwan[49]
LFTaiwan[124]
APChina[100]
523-hydroxy-6-tetra-decene-8,10,12-triynyl-β-D-gluco-pyranosideβ-D-gluco-pyranosyloxy-3-hydroxy-6E-tetradecene-8,10,12-triyne Molecules 16 01070 i029EPMexico[53]
531-(hydroxymethyl)-4,6,8,10-dodeca-tetrayn-1-yl-β-D-glucopyranoside2-β-D-gluco-pyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne , cytopiloyne Molecules 16 01070 i030EPTaiwan[49]
EPnot stated[82]
LFTaiwan[124]
542-O-D-glucosyltrideca-11E-en-3,5,7,9-tetrayn-1,2-diol Molecules 16 01070 i031LFBrazil[61]
55(R)-1-(hydroxy-methyl)-2,4,6,8,10-dodecapentayn-1-yl-β-D-glucopyranoside2-β-D-gluco-pyranosyloxy-1-hydroxytrideca-3,5,7,9,11-pentayne Molecules 16 01070 i032APChina[102]
APJapan[71]
561-[[(carboxy-acetyl)oxy]methyl]-4,6,8,10-dodeca-tetraynyl-β-D-glucopyranoside Molecules 16 01070 i033APJapan[125]
57(4E)-1-[[(carboxy-acetyl)oxy]-methyl]-4-dodecene-6,8,10-triynyl-β-D-gluco-pyranoside Molecules 16 01070 i034APJapan[125]
58(4E)-1-[[(carboxy-acetyl)oxy]-ethyl]-4-dodecene-6,8,10-triynyl-β-D-gluco-pyranoside Molecules 16 01070 i035APJapan[125]
59(5E)-5-heptene-1,3-diyn-1-yl-benzene1-phenylhepta-1,3-diyn-5-en Molecules 16 01070 i036EP Taiwan [85]
607-phenyl-2(E)-heptene-4,6-diyn-1-ol Molecules 16 01070 i037RTnot stated[2]
APChina[100]
617-phenyl-2(E)-heptene-4,6-diyn-1-ol-acetate Molecules 16 01070 i038RTnot stated[2]
RTBrazil[50]
RTBrazil[52]
627-phenyl-4,6-heptadiyn-2-ol(-)-pilosol A Molecules 16 01070 i039EPAPTaiwanChina[85]
[100]
637-phenylhepta-4,6-diyn-1,2-diol Molecules 16 01070 i040APChina[100]
641,3,5-heptatriyn-1-yl-benzene1-phenylhepta-1,3,5-triyne Molecules 16 01070 i041LFnot stated[2]
LTCnot stated[97]
APTanzania[44]
APChina[121]
EPTaiwan [85]
RTBrazil[52]
APChina[100]
657-phenyl-2,4,6-heptatriyn-1-ol Molecules 16 01070 i042LFnot stated[2]
APChina[100]
667-phenyl-2,4,6-heptatriyn-1-ol-acetate Molecules 16 01070 i043LFnot stated[2]
675-(2-phenylethynyl)-2-thiophene methanol Molecules 16 01070 i044APChina[100]
685-(2-phenylethynyl)-2β-glucosylmethyl-thiophene Molecules 16 01070 i045APChina[100]
Simple aromatic hydrocarbons
Simple phenols
691,2-benzenediolpyrocatechin Molecules 16 01070 i046EPJapan[87]
704-ethyl-1,2-benzenediolpyrocatechol Molecules 16 01070 i047EPJapan[87]
71dimethoxyphenol Molecules 16 01070 i048RTJapan[87]
724-ethenyl-2-methoxy-phenolp-vinylguaiacol Molecules 16 01070 i049EPJapan[87]
732-hydroxy-6-methylbenzaldehyde6-methyl-salicylaldehyde Molecules 16 01070 i050EPJapan[87]
74benzene-ethanol 2-phenyl-ethanol Molecules 16 01070 i051EPTaiwan[85]
Simple aryl aldehydes
754-hydroxy-3-methoxy-benzaldehydevanillin Molecules 16 01070 i052APJapan[87]
763-hydroxy-4-methoxy-benzaldehydevanillin, iso Molecules 16 01070 i053LFJapan[87]
Simple benzoic acids and their homologues
774-hydroxy-benzoic acidp-hydroxybenzoic acid Molecules 16 01070 i054EPJapan[87]
782-hydroxy-benzoic acidsalicylic acid Molecules 16 01070 i055ST/RTJapan[87]
793,4-dihydroxy-benzoic acidprotocatechuic acid Molecules 16 01070 i056EPJapan[87]
804-hydroxy-3-methoxy-benzoic acidvanillic acid Molecules 16 01070 i057APUganda [110]
RTJapan[87]
813,4,5-trihydroxy-benzoic acidgallic acid Molecules 16 01070 i058EPChina[126]
Phenylpropanoids
Simple phenylpropanoids
823-(4-hydroxyphenyl)-2-propenoic acidp-coumaric acid Molecules 16 01070 i059EPJapan[87]
832-methoxy-4(2-propen-1-yl)-phenoleugenol Molecules 16 01070 i060LF/RTJapan[87]
843-(4-hydroxy-3-methoxyphenyl)-2propenoic acidferulic acid Molecules 16 01070 i061EPJapan[87]
853-(3,4-dihydroxy-phenyl)-2-propenoic acidcaffeic acid Molecules 16 01070 i062EPJapan[87]
APJapan[62]
863-propyl-3-[(2,4,5-trimetoxyphenyl)-methoxy]-2,4-pentanedione3-propyl-3-(2,4,5-trimethoxy)benzyloxy-pentan-2,4-dione Molecules 16 01070 i063LFIndia[90]
Coumaric and caffeoyl esters
873-(3,4-dihydroxy-phenyl)-2-propenoic acid, ethyl ester caffeate, ethyl Molecules 16 01070 i064NFTaiwan[127]
EPTaiwan[65]
EPTaiwan[78]
882-[[3-(3,4-dihydroxy-phenyl)-1-oxo-2-propenyl]oxy]-3,4-dihydroxy-2-methyl-butanoic acidd-erythronic acid, 2-O-caffeoyl-2-C-methyl Molecules 16 01070 i065LFJapan[88]
892-[[3-(3,4-dihydroxy-phenyl)-1-oxo-2-propenyl]oxy]-3,4-dihydroxy-2-methyl-butanoic acid,methyl esterd-erythronate, methyl 2-O-caffeoyl-2-C-methyl Molecules 16 01070 i066LFJapan[88]
903-[[3-(3,4-dihydroxy-phenyl)-1-oxo-2-propenyl]oxy]-2,4-dihydroxy-2-methyl-butanoic acid,methyl esterd-erythronate, methyl 3-O-caffeoyl-2-C-methyl Molecules 16 01070 i067LFJapan[88]
914-(acetyloxy)-3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]-2-hydroxy-2-methyl-butanoic acid Molecules 16 01070 i068NFJapan[70]
923-(3,4-dihydroxyphenyl)- tetrahydro-4-hydroxy-4-methyl-5-oxo-3-furanyl ester-2 propenoic acid 3-O-caffeoyl-2-C-methyl-D-erythrono-1,4-lactone Molecules 16 01070 i069LFJapan[88]
933-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]-1,4,5-trihydroxy-cyclo-hexanecarboxylic acidchlorogenic acid Molecules 16 01070 i070APJapan[83]
EPTaiwan[79]
APJapan[62]
944-[[3-(3,4-dihydroxy-phenyl)-1-oxo-2-propen-1-yl]-oxy]-1,3,5-trihydroxy-cyclo-hexanecarboxylic acid4-O-caffeoylquinic acid Molecules 16 01070 i071APJapan[83]
953,4-bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]-oxy]-1,5-dihydroxy-cyclohexane--carboxylic acid3,4-di-O-caffeoylquinic acid Molecules 16 01070 i072APJapan[83]
EPTaiwan[79]
EPTaiwan[75]
EPTaiwan[65]
963,5-bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]-oxy]-1,4-dihydroxy-cyclohexane-carboxylic acid3,5-di-O-caffeoylquinic acid Molecules 16 01070 i073APJapan[83]
EPTaiwan[79]
EPTaiwan[75]
EPTaiwan[65]
973,4-bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]-oxy]-1,5-dihydroxy-cyclohexane-carboxylic acid4,5-di-O-caffeoylquinic acid Molecules 16 01070 i074EPTaiwan[79]
EPTaiwan[75]
EPTaiwan[65]
983-[4-[[6-O-[3-(4-hydroxyphenyl)-1-oxo-2-propen-1-yl]-β-D-glucopyranosyl]-oxy]-phenyl]-2-propenoic acidβ-D-p-coumaric acid, 4-O-(6-O-p-coumaroyl-glucopyranosyl) Molecules 16 01070 i075LFJapan[89]
993-[4-[[2-O-acetyl-6-O-[3-(4-hydroxyphenyl)-1-oxo-2-propen-1-yl]-β-D-glucopyranosyl]-oxy]-phenyl]-2-propenoic acidβ-D-p-coumaric acid, 4-O-(2-O-acetyl-6-O-p-coumaroyl-glucopyranosyl) Molecules 16 01070 i076LFJapan[89]
APChina[121]
Coumarins
1006,7-dihydroxy-2H-1-benzopyran-4-oneesculetin Molecules 16 01070 i077NFEgypt[86]
Flavonoids
Aurones
1012-[(3,4-dihydroxy-phenyl)-methylene]-6-hydroxy-3(2H)-benzofuranonesulfuretin Molecules 16 01070 i078APChina[102]
1022-[(3,4-dihydroxy-phenyl)-methylene]-6,7-dihydroxy-3(2H)-benzofuranoneaurone, (Z)-6,7,3’,4’-tetrahydroxy; maritimetin Molecules 16 01070 i079APChina[102]
1032-[(3,4-dihydroxy-phenyl)-methylene]-6-(β-D-glucopyranos-yloxy)-7-hydroxy-3(2H)-benzofuranoneaurone, (Z)-6-O-β-D-glucopyranosyl-6,7,3',4'-tetrahydroxy; maritimein Molecules 16 01070 i080LFAPLFJapan[89]
China[102]
China[59]
1042-[(3,4-dihydroxy-phenyl)-methylene]-7-(β-D-glucopyranos-yloxy)-6-hydroxy-3(2H)-benzofuranoneaurone, (Z)-7-O-β-D-glucopyranosyl-6,7,3',4'-tetrahydroxy Molecules 16 01070 i081LFJapan[89]
1056-[(6-O-acetyl-β-D-glucopyranosyl)oxy]-2-[(3,4-dihydroxy-phenyl)-methylene]-7-hydroxy-3(2H)-benzofuranoneaurone, (Z)-6-O-( 6-O-acetyl-β-D-glucopyranosyl)-6,7,3’,4’-tetrahydroxy Molecules 16 01070 i082LF APJapan[89]
China[102]
1066-[(3,6-di-O-acetyl-β-D-glucopyranosyl)-oxy]-2-[(3,4-di-hydroxyphenyl)-methylene]-7-hydroxy-3(2H)-benzofuranoneaurone, (Z)-6-O-(3,6-di-O-acetyl-D-glucopyranosyl)-6,7,3’,4’-tetrahydroxy; bidenoside A Molecules 16 01070 i083LFChina[59]
1076-[(4,6-di-O-acetyl-β-D-glucopyranosyl)-oxy]-2-[(3,4-di-hydroxyphenyl)-methylene]-7-hydroxy-3(2H)-benzofuranoneaurone, (Z)-6-O-(4”,6”-diacetyl-β-D-glucopyranosyl)-6,7,3’,4’-tetrahydroxy Molecules 16 01070 i084LF not stated [128]
APChina[121]
APChina[102]
1082-[(3,4-dihydroxy-phenyl)-methylene]-7-hydroxy-6-[(2,4,6-tri-O-acetyl-β-D-gluco-pyranosyl)-oxy-3(2H)-benzofuranone]aurone, (Z)-6-O-(2”,4”,6”-triacetyl-β-D-glucopyranosyl)-6,7,3’,4’-tetrahydroxy Molecules 16 01070 i085LFnot stated [128]
APChina[121]
1092-[(3,4-dihydroxy-phenyl)-methylene]-7-hydroxy-6-[(3,4,6-tri-O-acetyl-β-D-gluco-pyranosyl)-oxy]-3(2H)-benzofuranoneaurone, (Z)-6-O-(3”,4”,6”-triacetyl-β-D-glucopyranosyl)-6,7,3’,4’-tetrahydroxy Molecules 16 01070 i086APChina[121]
APChina[102]
1102-[(3,4-dihydroxy-phenyl)-methylene]-7-hydroxy-6-[[6-O-[3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-β-D-glucopyranosyl]oxy]-3(2H)-benzofuranoneaurone, (Z)-6-O-(6-O-p-coumaroyl-β-D-glucopyranosyl)-6,7,3',4'-tetrahydroxy Molecules 16 01070 i087LFJapan[89]
Chalcones
1111-[2-(β-D-gluco-pyranosyloxy)-4-hydroxyphenyl]-2-hydroxy-3-(3-hydroxyphenyl)- 2-propen-1-onechalcone, α,3,2’,4’-tetrahydroxy-2’-O-β-D-glucopyranosyl Molecules 16 01070 i088APChina[102]
1121-(2,4-dihydroxy-phenyl)-3-(3,4-dihydroxy-phenyl)-2-propen-1-onebutein Molecules 16 01070 i089APChina[102]
1133-(3,4-dihydroxy-phenyl)-1-(2,3,4-trihydroxy-phenyl)-2-propen-1-oneokanin Molecules 16 01070 i090LFChina[59]
1143-(3,4-dihydroxy-phenyl)-1-[3-(β-D-glucopyranosyloxy)-2,4-dihydroxyphenyl]-2-propen-1-oneokanin 3’-O-β-D-glucoside Molecules 16 01070 i091LFGermany[129]
LFGermany[130]
FLGermany[109]
1153-(3,4-dihydroxy-phenyl)-1-[4-(β-D-glucopyranosyloxy)-2,3-dihydroxyphenyl]-2-propen-1-oneokanin 4’-O-β-D-glucopyranoside; marein Molecules 16 01070 i092FLGermany[109]
LFJapan[89]
116okanin 4’-O-β-D-(6”-O-acetylglucoside) Molecules 16 01070 i093FLGermany[109]
1171-[4-[(4,6-di-O-acetyl-β-D-glucopyranosyl)-oxy]-2,3-dihydroxy-phenyl]-3-(3,4-di-hydroxyphenyl)-2-propen-1-oneokanin 4’-O-β-D-(4”,6”-diacetyl)-glucopyranoside Molecules 16 01070 i094APChina[121]
118okanin 4’-O-β-D-(2”,4”,6”-triacetyl)-glucoside Molecules 16 01070 i095LFGermany[129]
119okanin 4’-O-β-D-(3”,4”,6”-triacetyl)-glucoside Molecules 16 01070 i096APChina[121]
1201-[2,3-dihydroxy-4-[[6-O-[3-(4-hydroxy-phenyl)-1-oxo-2-propenyl]-β-D-glucopyranosyl]oxy]-phenyl]-3-(3,4-dihydroxyphenyl)-2-propen-1-oneokanin 4’-O-β-D-(6”-trans-p-coumaroyl) glucoside Molecules 16 01070 i097LFGermany[129]
121okanin 4’-O-β-D-(4”-acetyl-6”-trans-p-coumaroyl)-glucoside Molecules 16 01070 i098LFGermany[131]
122okanin 4’-O-β-D-(2”,4”-diacetyl-6”-trans-p-coumaroyl)-glucoside Molecules 16 01070 i099LFGermany[131]
123okanin 4’-O-β-D-(3”,4”-diacetyl-6”-trans-p-coumaroyl)-glucopyranoside Molecules 16 01070 i100LFGermany[131]
124okanin 4’-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside] Molecules 16 01070 i101FLGermany[109]
125okanin 3’,4’-di-O-β-D-glucoside Molecules 16 01070 i102FLGermany[109]
1261-[3-(β-D-gluco-pyranosyloxy)-2,4-dihydroxyphenyl]-3-(3-hydroxy-4-methoxyphenyl)-2-propen-1-oneokanin 4-methyl ether-3’-O-β-D-glucopyranoside Molecules 16 01070 i103LFGermany[130]
APChina[102]
127okanin 4-methyl ether-3’,4’-di-O-β-(4”,6”,4’’’,6’’’-tetracetyl)-glucopyranoside Molecules 16 01070 i104APChina[100]
128chalcone, 2’,4’,6’-trimethoxy-4-O-D-glucopyranosyl-dihydro NFLFChina[59]
Flavanones
1292-(3,4-dihydroxy-phenyl)-2,3-dihydro-7,8-dihydroxy-4H-1-benzopyran-4-oneokanin,iso Molecules 16 01070 i105LFChina[59]
1302-(3,4-dihydroxy-phenyl)-2,3-dihydro-8-hydroxy-7-[(2,4,6-tri-O-acetyl-β-D-gluco-pyranosyl)oxy]-4H-1-benzopyran-4-oneokanin 7-O-β-D-(2”,4”,6”-triacetyl)-glucopyranoside, iso Molecules 16 01070 i106APChina[121]
Flavones
1315,7-dihydroxy-2-(4-hydroxyphenyl)- 4H-1-benzopyran-4-oneapigenin Molecules 16 01070 i107APTanzania[44]
APChina[100]
1327-(β-D-glucopyranos-yloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-oneapigenin 7-O-glucopyranoside Molecules 16 01070 i108APTanzania[44]
1332-(3,4-dihydroxy-phenyl)-5,7-dihydroxy-4H-1-benzopyran-4-oneluteolin Molecules 16 01070 i109APTanzania[44]
APChina[121]
APChina[102]
APChina[100]
APVietnam[132]
1342-(3,4-dihydroxy-phenyl)-7-(β-D-gluco-pyranosyloxy)-5-hydroxy-4H-1-benzopyran-4-oneluteolin 7-O-β-D-glucopyranoside Molecules 16 01070 i110APTanzania[44]
1355,7-dimethoxy-6-(5-methoxy-6-methyl-4-oxo-4H-pyran-3-yl)-2-phenyl-4H-1-benzopyran-4-one5-O-methylhoslundin Molecules 16 01070 i111APUganda[110]
Flavonols
1363-(β-D-gluco-pyranosyloxy)-5,7-dihydroxy-2-(4-hydroxyphenyl)- 4H-1-benzopyran-4-oneastragalin; kaempferol-3-O-β-D-glucopyranoside Molecules 16 01070 i112APChina[102]
137kaempferol 3-(2,3-di-E-p-coumaroyl-α-L-rhamnopyranoside) NFAPVietnam[132]
1382-(3,4-dihydroxy-phenyl)-7-(β-D-glucopyranosyloxy)-5-hydroxy-3,6-dimethoxy-4H-1-benzopyran-4-oneaxillaroside Molecules 16 01070 i113APChina[100]
1395,7-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)-3,6-di-methoxy-4H-1-benzopyran-4-onecentaureidin Molecules 16 01070 i114EPTaiwan[74]
1407-(β-D-glucopyranos-yloxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6-dimethoxy-4H-1-benzopyran-4-onecentaurein Molecules 16 01070 i115APJapan[83]
EPTaiwan[79]
EPTaiwan[74]
141 eupatorin, isoNFNFChina[99]
1422-(3,4-dimethoxy-phenyl)-7-(β-D-glucopyranosyloxy)-3,5-dihydroxy-8-methoxy-4H-1-benzopyran-4-one Molecules 16 01070 i116NFJapan[70]
1437-(β-D-glucopyranos-yloxy)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,8-dimethoxy-4H-1-benzopyran-4-one Molecules 16 01070 i117NFJapan[70]
144 isorhamnetin 3-[O-α-L-rhamno-pyranosyl-(1-2)-β-D-glucopyranoside]NFAPVietnam[132]
1457-[(6-deoxy-α-L-mannopyranosyl)oxy]-3-(β-D-glucopyranos-yloxy)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-1-benzopyran-4-oneluteoside Molecules 16 01070 i118APChina[100]
146luteolin 3-O-β-D-glucopyranoside Molecules 16 01070 i119APTanzania[44]
1475,7-dihydroxy-2-(4-hydroxy-3-methoxy-phenyl)-3,6-di-methoxy-4H-1-benzopyran-4-onequercetagetin 3,6,3′-trimethyl ether Molecules 16 01070 i120APChina[100]
148 quercetagetin 3,7,3’-trimethyl ether-6-O-β-glucoside Molecules 16 01070 i121APChina[100]
1497-(β-D-glucopyranos-yloxy)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6-dimethoxy-4H-1-benzopyran-4-onejacein; quercetagetin 3,6,3′-trimethyl ether-7-O-β-glucoside Molecules 16 01070 i122APJapan[83]
EPTaiwan[79]
APChina[100]
1502-(3,4-dihydroxy-phenyl)-3,5,7-trihydroxy- 4H-1-benzopyran-4-onequercetin Molecules 16 01070 i123APChina[102]
LFChina[59]
EPChina[133]
1512-(3,4-dihydroxy-phenyl)-3-(β-D-galactopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-onequercetin 3-O-β-D-galactoside; hyperin; hyperoside Molecules 16 01070 i124APTanzania[44]
APJapan[83]
NFChina[99]
APJapan[62]
LFChina[59]
EPChina[133]
1522-(3,4-dihydroxy-phenyl)-3-(β-D-glucopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-onequercetin 3-O-β-D-glucopyranoside Molecules 16 01070 i125APTanzania[44]
LFJapan[89]
APChina[102]
APJapan[62]
1532-(3,4-dihydroxy-phenyl)-5,7-dihydroxy-4-oxo-4H-1-benzo-pyran-3-yl-β-D-glucopyranosiduronic acidquercetin 3-O-β-D-glucuronopyranoside Molecules 16 01070 i126APTanzania[44]
APJapan[83]
1543-[[6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-galactopyranosyl]oxy]-2-(3,4-dihydroxy-phenyl)-5,7-dihydroxy- 4H-1-benzopyran-4-onequercetin 3-O-robinobioside Molecules 16 01070 i127APJapan[83]
EPTaiwan[79]
1567-(β-D-glucopyranos-yloxy)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-methoxy-4H-1-benzopyran-4-onequercetin 3,3’-dimethyl ether 7-O-β-D-glucopyranoside Molecules 16 01070 i128RTBrazil[134]
RTBrazil[52]
RTBrazil[135]
1577-[[6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl]oxy]-5-hydroxy-2-(4-hydroxy-3-methoxy-phenyl)-3-methoxy-4H-1-benzopyran-4-onequercetin 3,3’-dimethyl ether 7-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside Molecules 16 01070 i129RTBrazil[134]
RTBrazil[52]
1587-[[6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl]oxy]-5-hydroxy-2-(3-hydroxy-4-methoxy-phenyl)-3-methoxy-4H-1-benzopyran-4-onequercetin 3,4’-dimethyl ether-7-O-rutinoside Molecules 16 01070 i130APChina[121]
APChina[102]
1592-(3,4-dihydroxy-phenyl)-3-(β-D-glucofuranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-oneisoquercitrin Molecules 16 01070 i131APJapan[83]
APChina[102]
Terpenoids
Sesquiterpenes
1603,7,11,11-tetramethyl-bicyclo[8.1.0]undeca-2,6-dienebicyclogermacrene Molecules 16 01070 i132LFBrazil[46]
1614,11,11-trimethyl-8-methylenebicyclo-[7.2.0]undec-4-eneE-caryophyllene Molecules 16 01070 i133LFBrazil[46]
1621-methyl-5-methylene-8-(1-methylethyl)-1,6-cyclodecadienegermacrene-D Molecules 16 01070 i134LFBrazil[46]
1634-(1,5-dimethyl-4-hexen-1-ylidene)-1-methyl-cyclohexeneZ-γ-bisabolene Molecules 16 01070 i135LFBrazil[46]
164decahydro-1,1,4-trimethyl-7-methylene-1H-cycloprop[e]-azulene β-gurjunene Molecules 16 01070 i136LFBrazil[46]
1652,6,6,9-tetramethyl-1,4,8-cycloundeca-trieneα-humulene;α-caryophyllene Molecules 16 01070 i137LFBrazil[46]
166 δ-muurolene Molecules 16 01070 i138LFBrazil[46]
1671,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl-2-(1-methylethylidene)-naphthaleneselina-3,7(11)-diene Molecules 16 01070 i139LFBrazil[46]
Diterpenes
168(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-olphytol Molecules 16 01070 i140EPTaiwan[85]
1693,7,11,15-tetramethyl-2-hexadecenoic acidphytenic acid Molecules 16 01070 i141EPTaiwan[85]
1703,7,11,15-tetramethyl-2-hexadecenyl ester-heptanoic acidphythyl heptanoate Molecules 16 01070 i142LFnot stated[84]
Steroids
171 campestrol Molecules 16 01070 i143APTanzania[44]
172 phytosterin-BNFNFTaiwan[112]
NFEgypt[86]
173stigmast-5-en-3-olβ-sitosterol Molecules 16 01070 i144NFTaiwan[91]
APTanzania[44]
EPTaiwan[85]
174 β-sitosterol glucoside Molecules 16 01070 i145NFEgypt[86]
1755α-stigmasta-7-en-3β-ol Molecules 16 01070 i146EPTaiwan[85]
1765α-stigmasta-7,22t-dien-3β-ol Molecules 16 01070 i147EPTaiwan[85]
177stigmasta-5,22-dien-3-olstigmasterol Molecules 16 01070 i148NFTaiwan[91]
APTanzania[44]
LFnot stated[84]
EPTaiwan[85]
Triterpenes
178lup-20(29)-en-3-ollupeol Molecules 16 01070 i149NFEgypt[86]
179lup-20(29)-en-3-ol, acetatelupeol acetate Molecules 16 01070 i150NFEgypt[86]
180olean-12-en-3-olβ-amirin Molecules 16 01070 i151NFEgypt[86]
1815,9,13-trimethyl-24,25,26-trinoroleanan-3-olfriedelan-3β-ol Molecules 16 01070 i152APTanzania[44]
1825,9,13-trimethyl-24,25,26-tri-noroleanan-3-onefriedelin; friedelan-3-one Molecules 16 01070 i153APTanzania[44]
1832,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaenesqualene Molecules 16 01070 i154APTanzania[44]
LFnot stated[84]
EPTaiwan[85]
Tetraterpenes
184β,β-carotene β-carotene Molecules 16 01070 i155LFnot stated[113]
Porphyrins
185(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexa-decen-1-yl ester-(15S,16S)-10-ethenyl-5-ethyl-1,16,18,20-tetrahydro-6,11,15,22-tetramethyl-18,20-dioxo-15H-9,12-imino-21,2-metheno-4,7:17,14-dinitrilo-pyrano[4,3-b]azacyclo-nonadecine-16-propanoic acidaristophyll-C Molecules 16 01070 i156LFTaiwan[90]
186(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-yl ester-(2S,18S,19S,20bR)-13-ethenyl-8-ethyl-2a,18,19,20b-tetrahydro-20b-(methoxycarbonyl)-9,14,18,24-tetra-methyl-4H-12,15-imino-3,5-metheno-7,10:20,17-dinitrilo-1,2-dioxeto-[3',4':3,4]-cyclo-pent[1,2b]aza-cyclo-nonadecine-19-propanoic acidbidenphytin A Molecules 16 01070 i157LFTaiwan[90]
187(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexa-decen-1-yl ester-(2S,18S,19S,20bR)-13-ethenyl-8-ethyl-2a,18,19,20b-tetrahydro-2a-hydroxy-20b-(methoxy-carbonyl)-9,14,18,24-tetramethyl-4H-12,15-imino-3,5-metheno-7,10:20,17-dinitrilo-1,2-dioxeto[3',4':3,4]-cyclo-pent[1,2-b]-azacyclononadecine-19-propanoic acidbidenphytin B Molecules 16 01070 i158LFTaiwan[90]
188(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-yl ester-(3R,4S,21R)-14-ethyl-21-hydroxy-21-(methoxycarbonyl)-4,8,9,13,18-penta-methyl-20-oxo-3-phorbinepropanoic acid(132R)-132-hydroxy-pheophytin a Molecules 16 01070 i159LFTaiwan[90]
189(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-yl ester-(3R,4S,21S)-14-ethyl-21-hydroxy-21-(methoxycarbonyl)-4,8,9,13,18-pentamethyl-20-oxo-3-phorbinepropanoic acid(132S)-132-hydroxy-pheophytin a Molecules 16 01070 i160LFTaiwan[90]
190(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexa-decen-1-yl ester-(3R,4S,21R)-14-ethyl-13-formyl-21-hydroxy-21-(methoxycarbonyl)-4,8,9,18-tetramethyl-20-oxo-3-phorbine-propanoic acid,(132R)-132-hydroxy-pheophytin b Molecules 16 01070 i161LFTaiwan[90]
191(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-yl ester-(3R,4S,21S)-14-ethyl-13-formyl-21-hydroxy-21-(methoxycarbonyl)-4,8,9,18-tetramethyl-20-oxo-3-phorbine-propanoic acid(132 S)-132-hydroxy-pheophytin b Molecules 16 01070 i162LFTaiwan[90]
192(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexa-decen-1-yl ester-(3S,4S,21R)-9-ethenyl-14-ethyl-21-(methoxy-carbonyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acidpheophytin a Molecules 16 01070 i163LFTaiwan[90]
Nitrogen and Sulphur-containing Natural Products
1933,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dionecaffeine Molecules 16 01070 i164APUganda[110]
194thymidine Molecules 16 01070 i165NFChina[99]
1951-(2-thienyl)-ethanone2-acetyl-thiophene Molecules 16 01070 i166RTGermany[122]
Carbohydrates/ disaccharides
196 heptanyl 2-O-β-xylofuranosyl-(1→6)-β-glucopyranoside Molecules 16 01070 i167EPTaiwan[79]
Miscellaneous
1972-[(3R,7R,11R)-3-hydroxy-3,7,11,15-tetramethylhexadecyl]-3,5,6-trimethyl-2,5-cyclohexadiene-1,4-dioneα-tocopheryl quinone Molecules 16 01070 i168EPTaiwan[85]
198 7-O-(4”,6”-diacetyl)-β-D-glucopyranosideNFLFChina[59]
AP, Aerial part; LF, Leaf; ST, Steam; EP, Entire plant; FL, Flowers; RT, Root; SD, Seed; LTC, Leaves of tissue culture; PNS, Part not specified; NF, Not found.

Acetylene compounds

The acetylenes are one class of aliphatic hydrocarbons that has a taxonomically interesting distribution pattern in higher plant families; they occur regularly in only five families, namely the Campanulaceae, Asteraceae, Araliaceae, Pittosporaceae and Umbelliferae [95]. Within the Asteraceae family, these compounds are widely distributed in the Heliantheae tribe [2,4]. The genus Bidens is known to produce compounds of this class [5]. They occur in all parts of the plant, often accumulating in roots [96].
To date 34 acetylenes (compounds 35–68) were isolated from B. pilosa (Table 1). The C13-polyacetylenes are the most abundant in the species and among them, ene-tetryn-ene 36 and its alcohol, acetyl and aldehyde oxygenated derivatives 4042, C13-phenylacetylenes 5966 and C13-acetylenes with an ene-triyn-diene chromophore 39 are typical constituents within the genus Bidens [2,4,96,97].
The principal representative of the C13-polyacetylenes is 1-phenylhepta-1,3,5-triyne (64). This C13-phenylacetylene is abundant in B. pilosa and is present in leaves, stems and roots of the species [5,73,96,97]. The compound is biologically active and several studies have reported that it strongly absorbs long-wave UV radiation, and the activity is altered upon exposure to light (photo activation) [98].
The occurrence of C17-acetylenes is rare in the genus, being limited to the Hawaiian species of Bidens [4], while one compound (35) was related to B. pilosa grown in China [2,99]. Also, three C14-acetylenes 39,44,46, with one (46) being common in species of genus Coreopsis, and another (44), a new compound, were reported first in B. pilosa [4,51,100].
Another group of polyacetylenes isolated from B. pilosa are the polyacetylene glucosides (PAGs), which are glycosides of polyacetylenes in which a sugar moiety (glycose or rhamnose) is joined to a polyacetylene through an -O- glucosidic linkage. Of even more restricted distribution, these have been reported for only two families, Asteraceae and Campanulaceae. So far 22 PAGs are known, however most of them have been isolated from Bidens species [101].
Studies report the isolation of nine PAGs (50–58) from different parts from B. pilosa. Four compounds (50, 53–55) have the common C13-acetylene linkage to glycoside portion in the C2 position [49,54,61,102], however the glycoside derivates of C14-acetylene have the linkage to the glycoside portion in the terminal portion (52) and C3 (51) [53,54]. Other unusual three PAGs have also been reported for B. pilosa. Two C16-acetylenes (56,57) and one C17-acetylene (58) having an ester in the terminal portion linkage to a carboxylic acid [70].
Phenylthiophenes, classified as C13-acetylene and related compounds [4], are related to only occur in Coreopsis and in Hawaiian Bidens [4,103], however a phenylthiophene 67 and its glycosylate 68 were reported for B. pilosa growing in China [100].

Flavonoids

Flavonoids are the class of compound of higher occurrence in the species and are described as chemotaxonomic markers at lower hierarchical levels of the Asteraceae [104]. According to the Bidens genus, the flavonoid profile of B. pilosa is a complex one that includes aurones, chalcones, flavanones, flavones and flavonols with a wide variety of O-methylation patterns and glycosylations [105], totaling 58 different compounds isolated to date (Table 1).
Anthochlors (aurones and chalcones) are found in a number of plant families, including the Asteraceae. However research indicates that, despite some variations, anthochlors are good markers for the taxonomic subtribe Coreopsidinae (Heliantheae tribe), thus representing the only case in the family Asteraceae in which a certain type of flavonoid is taxonomically diagnostic at the sub tribal level [106].
Species of Bidens typically contain the chalcones butein (3,4,3’,4’-tetrahydroxychalcone, 112), okanin (3,4,2’,3’,4’-pentahydroxychalcone, 113) and their 4’-glycosides [3]. Of the aurones, maritimetin (6,7,3',4'-tetrahydroxyaurone, 102) and sulfuretin (6,3',4'-tetrahydroxyaurone, 101) and their glycosides are commonly found in the genus [107]. These compounds have been reported for B. pilosa [108].
In B. pilosa, the glycosides aurones are frequent in position 6 (103110) and rare in 7 (104) while the glycosides derived from chalcones (111,114128)are in the positions 3’ and 4’. Two chalcone glycosides, one in position 2’ (111) and other in 4 (128) were also found to the specie [59,102]. Most of these compounds are acylated with p-coumaric and/or acetic acid on the sugar moiety and are relatively non-polar; however more polar aurones (103,104) and chalcones (111,114,115,124,128), mono- and diglucosides were isolated from aerial parts [109]. Two B-ring methylated chalcones (126127) [80,100] were also found in the species, but this kind of derivatives is rarely reported in the Bidens genus [3].
Flavones and flavonols identified from members of Bidens are for the most part commonly encountered compounds, i.e., glycosides of apigenin, luteolin, kaempferol and quercetin [105]. B. pilosa maintains that standard, however some flavonols present methoxy substitutent groups at their positions 3, 6, 7, 3’ and/or 4’, as in jacein (149), centaureidin (139) and its glycoside centaurein (140) [74,79]. Among the flavones 5-O-methylhoslundin (135) was reported, a compound previously isolated only from Hoslundia opposite (Lamiaceae) [110]. This unusual compound presents methoxy substituted groups in C5 and C7 and a pyranone derivative at C6.

Other compound classes

Several other compound classes have been isolated from different parts of B. pilosa and are listed in Table 1. Among these, aliphatic hydrocarbon derivatives and simple aromatic hydrocarbons have been reported, although these constituents are rather ubiquitous in plants.Long chain saturated unbranched hydrocarbons between C21 and C33 (1–13) have been isolated of B. pilosa [44,91]. Of the saturated unbranched alcohols, the compound 2-butoxyethanol (14) is the only ether-ethanol, while for the unbranched aliphatic carboxylic acid and ester group, three compounds have ether-ester functions (32–34). The simple aromatic hydrocarbons and simple phenylpropanoid compounds form two small groups of natural products in B. pilosa. In the first, vanillic (80), salicylic (78) and protocatechuic (79) acids and their derivatives are predominant [87], while the phenylpropanoids are represented by coumaric (82), ferulic (84) and caffeic (85) acid. In this group, one new disubstituted acetylacetone (86) was described for B. pilosa growing in India [90].
Also in the phenylpropanoids group, caffeoyl ester derivatives 8797 are fairly reported for the specie, and some esters formed by the combination of two caffeic acids to one quinic acid (9397) [79,83] or one caffeic acid to one erythronic acid (8892) [88]. The only coumarin (100) described for B. pilosa is usually found in other species of the family [86].
Of the mevalonate pathway, several sesquiterpenes (160–167), sterols (171–177) and triterpenes (178–183) have been isolated of leaves from B. pilosa [44,51,86]. The sesquiterpenes reported were characterized by GC-MS [46]. These are divided into mono- and bicyclic, commonly found in leaf extracts from Asteraceae. In the diterpenes, acyclic phytane diterpenoids have been reported; among them phytyl heptanoate (170) is an unusual compound that has an aliphatic chain of seven carbon atoms linked to the terminal acid portion [84].
The most abundant sterols from B. pilosa are stigmasterol (177) and sitosterol (173), which are ubiquitous compounds of plant cell membranes [111]. Stigmasterol derivates (175,176), sitosterol glucoside (174) [85,91] and phytosterin B (172), a phytosterin first isolated in B. pilosa [112] has also been reported. Among the triterpenes, only squalene (183) is an acyclic one. The friedelanes 181,182 and lupeol derivatives 178, 179 are the more common triterpenes reported for B. pilosa [44,86]. Among the tetraterpenes β-carotene (184) is reported to be present in high concentration in young leaves of B. pilosa [113].
Chlorin (=2,3-dihydroporphyrin) and its derivatives – including chlorophyll, pheophytin, chlorophyllin, pheophobide, and many other closely related analogues – are found in most higher plants, algae, and even bacteria [114]. For B. pilosa two new pheophytins (186,187), with peroxide functionalities in ring E were reported, besides another six pheophytins (185,188–192), already known [114].
Only two representatives of the class of nitrogen-containing natural products, one being the nucleoside thymidine (194) are reported [122]. One thyophene (195) was reported from B. pilosa [99]. One disaccharide (196) was isolated from an entire B. pilosa. Also, two miscellaneous representatives were reported, a quinone linked to an aliphatic chain (197) [85] and one compound of unidentified structure (198) [59].
The content of essential oil from flowers, leaves and stems of B. pilosa has been analyzed by GC-MS in China, Japan, USA, Cameroon, Nigeria and Iran [66,115,116,117,118,119,120,136]. In this review, the series of components identified as being commonly found in plants containing essential oils and present mostly in very small quantities are not listed. It is then just a brief comment about the main and unusual constituents. In the species a series of mono- and sesquiterpenes have been detected [66,116,117,118,119]. The major constituents are the sesquiterpenes germacrene-D and β-caryophyllene. Polyacetylenes (36,59,60,64), including 1-phenylhepta-1,3,5-tryin (64) have been identified in root oil and aerial parts [117,119]. A chromone, known as precocene I, isolated from oil of the leaves from B. pilosa also was reported [116].

Acknowledgements

The authors are grateful to CNPq/RENORBIO and CAPES/Brazil for financial support and research fellowships.

References

  1. Karis, P.O.; Ryding, O. Asteraceae: Cladistics and Classification; Bremer, K., Ed.; Tember Press: Portland, OR, USA, 1994; pp. 559–569. [Google Scholar]
  2. Bohlmann, F.; Burkhardt, T.; Zdero, C. Naturally Occurring Acetylenes; Academic Press: New York, NY, USA, 1973; pp. 356–359. [Google Scholar]
  3. McCormick, S.P.; Bohm, B.A.; Ganders, F.R. Methylated chalcones from Bidens torta. Phytochemistry 1984, 23, 2400–2401. [Google Scholar] [CrossRef]
  4. Christensen, L.P.; Lam, J. Acetylenes and related compounds in Heliantheae. Phytochemistry 1991, 30, 11–49. [Google Scholar] [CrossRef]
  5. Jensen, S.L.; Sörensen, N.A. Studies related to naturally occurring acetylene compounds. XXIX. Preliminary investigations in the genus Bidens. I. Bidens radiate and Bidens ferulaefolia. Acta Chem. Scand. 1961, 15, 1885–1891. [Google Scholar] [CrossRef]
  6. Young, P.H.; Hsu, Y.-J.; Yang, W.-C. Bidens pilosa L. and its medicinal use. In Recent Progress in Medicinal Plants; Awaad, A.S., Singh, V.K., Govil, J.N., Eds.; Studium Press LLC: New Delhi, India, 2010; Volume 28, pp. 411–426. [Google Scholar]
  7. Wang, Q.; Zhang, Y.-N.; Chen, F.-H. Research development in chemical constituents and pharmacological action of total flavonoids of Bidens bipinnata L. Anhui Yiyao. 2009, 13, 1011–1013. [Google Scholar]
  8. Aridogan, B.C. Immunomodulatory effects of phytocompounds. In Modern Phytomedicine: Turning Medicinal Plants into Drugs; Ahmad, I., Aqil, F., Owais, M., Eds.; Wiley-VCH: Dublin, Ireland, 2006; pp. 341–356. [Google Scholar]
  9. Guerra, F.; Goyos, C. Pharmacology of Mexican antidiabetic plants. III. Action of aceitilla, Bidens leucantha, on normal and diabetic blood sugar. Prensa Med. Mex. 1951, 16, 7–11. [Google Scholar]
  10. Astudillo, V.A.; Davalos, V.H.; De Jesus, L.; Herrera, G.; Navarrete, A. Investigation of Alternanthera repens and Bidens odorata on gastrointestinal disease. Fitoterapia 2008, 79, 577–580. [Google Scholar] [CrossRef]
  11. Abraham, Z.; Bhakuni, S.D.; Garg, H.S.; Goel, A.K.; Mehrotra, B.N.; Patnaik, G.K. Screening of Indian plants for biological activity. Part XII. Indian J. Exp. Biol. 1986, 24, 48–68. [Google Scholar]
  12. Leonard, D.B. Medicine at your Feet: Healing Plants of the Hawaiian Kingdom Bidens spp. (Kïnehi); Roast Duck Producktion: Kapaa-Princeville, HI, USA, 2006; pp. 1–15. [Google Scholar]
  13. Moura, M.D.; Torres, A.R.; Oliveira, R.A.G.; Diniz, M.F.F.M.; Barbosa-Filho, J.M. Natural products as inhibitors of models of mammary neoplasia. Brit. J. Phytother. 2001, 5, 124–145. [Google Scholar]
  14. Moura, M.D.; Silva, J.S.; Oliveira, R.A.G.; Diniz, M.F.F.M.; Barbosa-Filho, J.M. Natural products reported as potential inhibitors of uterine cervical neoplasia. Acta Farm. Bonaerense 2002, 21, 67–74. [Google Scholar]
  15. Silva, J.S.; Moura, M.D.; Oliveira, R.A.G.; Diniz, M.F.F.M.; Barbosa-Filho, J.M. Natural product inhibitors of ovarian neoplasia. Phytomedicine 2003, 10, 221–232. [Google Scholar] [CrossRef]
  16. Gonçalves, M.C.R.; Moura, L.S.A.; Rabelo, L.A.; Barbosa-Filho, J.M.; Cruz, H.M.M.; Cruz, J. atural products inhibitors of HMG CoA reductase. Rev. Bras. Farm. 2000, 81, 63–71. [Google Scholar]
  17. Barbosa-Filho, J.M.; Medeiros, K.C.P.; Diniz, M.F.F.M.; Batista, L.M.; Athayde-Filho, P.F.; Silva, M.S.; Cunha, E.V.L.; Almeida, J.R.G.S.; Quintans-Júnior, L.J. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn. 2006, 16, 258–285. [Google Scholar] [CrossRef]
  18. Barbosa-Filho, J.M.; Martins, V.K.M.; Rabelo, L.A.; Moura, M.D.; Silva, M.S.; Cunha, E.V.L.; Souza, M.F.V.; Almeida, R.N.; Medeiros, I.A. Natural products inhibitors of the angiotensin converting enzyme (ACE). A review between 1980-2000. Rev. Bras. Farmacogn. 2006, 16, 421–446. [Google Scholar] [CrossRef]
  19. Almeida, R.N.; Navarro, D.S.; Barbosa-Filho, J.M. Plants with central analgesic activity. Phytomedicine 2001, 8, 310–322. [Google Scholar] [CrossRef]
  20. Pereira, J.V.; Modesto-Filho, J.; Agra, M.F.; Barbosa-Filho, J.M. Plant and plant-derived compounds employed in prevention of the osteoporosis. Acta Farm. Bonaerense 2002, 21, 223–234. [Google Scholar]
  21. Morais, L.C.S.L.; Barbosa-Filho, J.M.; Almeida, R.N. Plants and bioactive compounds for the treatment of Parkinson’s disease. Arq. Bras. Fitomed. Cientif. 2003, 1, 127–132. [Google Scholar]
  22. Quintans-Júnior, L.J.; Almeida, J.R.G.S.; Lima, J.T.; Nunes, X.P.; Siqueira, J.S.; Oliveira, L.E.G.; Almeida, R.N.; Athayde-Filho, P.F.; Barbosa-Filho, J.M. Plants with anticonvulsant properties - a review. Rev. Bras. Farmacogn. 2008, 18, 798–819. [Google Scholar] [CrossRef]
  23. Sousa, F.C.F.; Melo, C.T.V.; Citó, M.C.O.; Félix, F.H.C.; Vasconcelos, S.M.M.; Fonteles, M.M.F.; Barbosa-Filho, J.M.; Viana, G.S.B. Plantas medicinais e seus constituintes bioativos: Uma revisão da bioatividade e potenciais benefícios nos distúrbios da ansiedade em modelos animais. Rev. Bras. Farmacogn. 2008, 18, 642–654. [Google Scholar] [CrossRef]
  24. Rocha, L.G.; Almeida, J.R.G.S.; Macedo, R.O.; Barbosa-Filho, J.M. A review of natural products with antileishmanial activity. Phytomedicine 2005, 12, 514–535. [Google Scholar] [CrossRef]
  25. Amaral, F.M.M.; Ribeiro, M.N.S.; Barbosa-Filho, J.M.; Reis, A.S.; Nascimento, F.R.F.; Macedo, R.O. Plants and chemical constituents with giardicidal activity. Rev. Bras. Farmacogn. 2006, 16, 696–720. [Google Scholar] [CrossRef]
  26. Barbosa-Filho, J.M.; Nascimento-Júnior, F.A.; Tomaz, A.C.A.; Athayde-Filho, P.F.; Silva, M.S.; Cunha, E.V.L. Natural products with antileprotic activity. Rev. Bras. Farmacogn. 2007, 17, 141–148. [Google Scholar] [CrossRef]
  27. Barbosa-Filho, J.M.; Vasconcelos, T.H.C.; Alencar, A.A.; Batista, L.M.; Oliveira, R.A.G.; Guedes, D.N.; Falcão, H.S.; Moura, M.D.; Diniz, M.F.F.M.; Modesto-Filho, J. Plants and their active constituents from South, Central, and North America with hypoglycemic activity. Rev. Bras. Farmacogn. 2005, 15, 392–413. [Google Scholar] [CrossRef]
  28. Falcão, H.S.; Lima, I.O.; Santos, V.L.; Dantas, H.F.; Diniz, M.F.F.M.; Barbosa-Filho, J.M.; Batista, L.M. Review of the plants with anti-inflammatory activity studied in Brazil. Rev. Bras. Farmacogn. 2005, 15, 381–391. [Google Scholar] [CrossRef]
  29. Barbosa-Filho, J.M.; Piuvezam, M.R.; Moura, M.D.; Silva, M.S.; Lima, K.V.B.; Cunha, E.V.L.; Fechine, I.M.; Takemura, O.S. Anti-inflammatory activity of alkaloids: a twenty century review. Rev. Bras. Farmacogn. 2006, 16, 109–139. [Google Scholar] [CrossRef]
  30. Mariath, I.R.; Falcão, H.S.; Barbosa-Filho, J.M.; Sousa, L.C.F.; Tomaz, A.C.A.; Batista, M.F.F.M.; Athayde-Filho, P.F.; Tavares, J.F.; Silva, M.S.; Cunha, E.V.L. Plants of the American continent with antimalarial activity. Rev. Bras. Farmacogn. 2009, 19, 158–192. [Google Scholar] [CrossRef]
  31. Falcão, H.S.; Mariath, I.R.; Diniz, M.F.F.M.; Batista, L.M.; Barbosa- Filho, J.M. Plants of the American continent with antiulcer activity. Phytomedicine 2008, 15, 132–146. [Google Scholar] [CrossRef]
  32. Falcão, H.S.; Leite, J.A.; Barbosa-Filho, J.M.; Athayde-Filho, P.F.; Chaves, M.C.O.; Moura, M.D.; Ferreira, A.L.; Almeida, A.B.A.; Souza-Brito, A.R.M.; Diniz, M.F.F.M.; Batista, L.M. Gastric and duodenal antiulcer activity of alkaloids: a review. Molecules 2008, 13, 3198–3223. [Google Scholar] [CrossRef]
  33. Mota, K.S.L.; Dias, G.E.N.; Pinto, M.E.F.; Luiz-Ferreira, A.; Souza-Brito, A.R.M.; Hiruma-Lima, C.A.; Barbosa-Filho, J.M.; Batista, L.M. Flavonoids with gastroprotective activity. Molecules 2009, 14, 979–1012. [Google Scholar] [CrossRef]
  34. Ribeiro-Filho, J.; Falcão, H.S.; Batista, L.M.; Barbosa-Filho, J.M.; Piuvezam, M.R. Effects of plant extracts on HIV-1 protease. Curr. HIV Res. 2010, 8. in press. [Google Scholar]
  35. Agra, M.F.; França, P.F.; Barbosa-Filho, J.M. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev Bras Farmacogn. 2007, 17, 114–140. [Google Scholar] [CrossRef]
  36. Agra, M.F.; Silva, K.N.; Basílio, I.J.L.D.; França, P.F.; Barbosa-Filho, J.M. Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras Farmacogn. 2008, 18, 472–508. [Google Scholar] [CrossRef]
  37. Alves, J.S.; Castro, J.C.; Freire, M.O.; Cunha, E.V.L.; Barbosa-Filho, J.M.; Silva, M.S. Complete assignment of the 1H and 13C spectra of four triterpenes of the ursane, artane, lupane and friedelane groups. Magn. Reson. Chem. 2000, 38, 201–206. [Google Scholar] [CrossRef]
  38. Andrade, N.C.; Cunha, E.V.L.; Silva, M.S.; Agra, M.F.; Barbosa-Filho, J.M. Terpenoids of the Annonaceae: Distribution and compilation of 13C NMR data. In Recent Research Developments in Phytochemistry; Gayathri, A., Ed.; Research Signpost: Kerala, India, 2003; Volume 7, pp. 1–85. [Google Scholar]
  39. Barbosa-Filho, J.M.; Sette, I.M.F.; Cunha, E.V.L.; Guedes, D.N.; Silva, M.S. Protoberberine alkaloids. In The Alkaloids; Cordell, G.A., Ed.; Elsevier Ltd.: London, UK, 2005; Volume 62, pp. 1–75. [Google Scholar]
  40. Barbosa-Filho, J.M.; Alencar, A.A.; Nunes, X.P.; Tomaz, A.C.A.; Sena-Filho, J.G.; Athayde-Filho, P.F.; Silva, M.S.; Souza, M.F.V.; Cunha, E.V.L. Sources of alpha-, beta-, gamma-, delta- and epsilon-carotenes: A twentieth century review. Rev. Bras. Farmacogn. 2008, 18, 135–154. [Google Scholar] [CrossRef]
  41. Sena-Filho, J.G.; Duringer, J.M.; Maia, G.L.A.; Tavares, J.F.; Xavier, H.S.; Silva, M.S.; Cunha, E.V.L.; Barbosa-Filho, J.M. Ecdysteroids from Vitex species: Distribution and compilation of their 13C-NMR spectral data. Chem. Biodivers. 2008, 5, 707–713. [Google Scholar] [CrossRef]
  42. Vasconcelos, S.M.M.; Honório-Júnior, J.E.R.; Abreu, R.N.D.C.; Silva, M.C.C.; Barbosa-Filho, J.M.; Lobato, R.F.G. Pharmacologic study of some plant species from the Brazilian Northeast: Calotropis procera, Agava sisalana, Solanum paludosum, Dioscorea cayenensis and Crotalaria retusa. In Medicinal Plants: Classification, Biosynthesis and Pharmacology, 4rd; Varela, A., Ibañez, J., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; pp. 189–202. [Google Scholar]
  43. Oliveira, S.L.; Silva, M.S.; Tavares, J.F.; Sena-Filho, J.G.; Lucena, H.F.S.; Romero, M.A.V.; Barbosa-Filho, J.M. Tropane alkaloids from genus Erythrorylum: Distribution and compilation of C-NMR spectral data. Chem. Biodivers. 2010, 7, 302–326. [Google Scholar] [CrossRef]
  44. Geissberger, P.; Séquin, U. Constituents of Bidens pilosa L.: Do the components found so far explain the use of this plant in traditional medicine? Acta Tropica 1991, 48, 251–261. [Google Scholar] [CrossRef]
  45. Alvarez, A.; Pomar, F.; Sevilla, M.A.; Montero, M.J. Gastric antisecretory and antiulcer activities of an ethanolic extract of Bidens pilosa L. var. radiata Schult. Bip. J. Ethnopharmacol. 1999, 67, 333–340. [Google Scholar] [CrossRef]
  46. Grombone-Guaratini, M.T.; Silva-Brandão, K.L.; Solferini, V.N.; Semir, J.; Trigo, J.R. Sesquiterpene and polyacetylene profile of Bidens pilosa complex (Asteraceae: Heliantheae) from southeast of Brazil. Biochem. Syst. Ecol. 2005, 33, 479–486. [Google Scholar] [CrossRef]
  47. Longuefosse, J.-L.; Nossin, E. Medical ethnobotany survey in Martinique I. J. Ethnopharmacol. 1996, 53, 117–142. [Google Scholar] [CrossRef]
  48. Rabe, T.; van Staden, J. Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol. 1997, 56, 81–87. [Google Scholar] [CrossRef]
  49. Chiang, Y.-M.; Chang, C.L.-T.; Chang, S.-L.; Yang, W.-C.; Shyur, L.-F. Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator. J. Ethnopharmacol. 2007, 110, 532–538. [Google Scholar] [CrossRef]
  50. Brandão, M.G. L.; Krettli, A.U.; Soares, L.S.R.; Nery, C.G.C.; Marinuzzi, H.C. Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds. J. Ethnopharmacol. 1997, 57, 131–138. [Google Scholar] [CrossRef]
  51. Valdés, H.A.L.; Rego, H.P.L. Bidens pilosa Linné. Rev. Cubana Plant. Med. 2001, 1, 28–33. [Google Scholar]
  52. Krettli, A.U.; Andrade-Neto, V.F.; Brandão, M.G.L.; Ferrari, W.M.S. The seach for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: A review. Mem. I. Oswaldo Cruz. 2001, 96, 1033–1042. [Google Scholar] [CrossRef]
  53. Alvarez, L.; Marquina, S.; Villarreal, M.L.; Alonso, D.; Aranda, E.; Delgado, G. Bioactive polyacetylenes from Bidens pilosa. Planta Med. 1996, 62, 355–357. [Google Scholar] [CrossRef]
  54. Ubillas, R.P.; Mendez, C.D.; Jolad, S.D.; Luo, J.; King, S.R.; Carlson, T.J.; Fort, D.N. Antihyperglycemic acetylenic glucosides from Bidens pilosa. Planta Med. 2000, 66, 82–83. [Google Scholar]
  55. Alarcon-Aguilar, F.J.; Roman-Ramos, R.; Flores-Saenz, J.L.; Aguirre-Garcia, F. Extracts of four mexican medicinal plants in normal and alloxan-diabetic mice. Phytother. Res. 2002, 16, 383–386. [Google Scholar] [CrossRef]
  56. Dimo, T.; Azay, J.; Tan, P.V.; Pellecuer, J.; Cros, G.; Bopelet, M.; Serrano, J.J. Effects of the aqueous and methylene chloride extracts of Bidens pilosa leaf on fructose-hypertensive rats. J. Ethnopharmacol. 2001, 76, 215–221. [Google Scholar] [CrossRef]
  57. Dimo, T.; Rakotonirina, S.V.; Tan, P.V.; Azay, J.; Dongo, E.; Cros, G. Leaf methanol extract of Bidens pilosa prevents and attenuates the hypertension induced by high-fructose diet in Wistar rats. J. Ethnopharmacol. 2002, 83, 183–191. [Google Scholar] [CrossRef]
  58. Leandre, K.K.; Claude, A.K.J.; Jacques, D.Y.; Flavien, T.; Etienne, E.E. β-Adrenomimetic actions in the hypotension and vasodilatation induced by a chromatographic active fraction from Bidens pilosa L. (Asteraceae) in mammals. Curr. Bioact. Compd. 2008, 4, 1–5. [Google Scholar] [CrossRef]
  59. Yuan, L.-P.; Chen, F.-H.; Ling, L.; Dou, P.-F.; Bo, H.; Zhong, M. M.; Xia, L.-J. Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis. J. Ethnopharmacol. 2008, 116, 539–546. [Google Scholar] [CrossRef]
  60. Parimalakrishnan, S.; Akalanka, D.; Anton, S.; Gana, D.A.; Manavalan, R.; Sridhar, N. Studies of anticancer and antipyretic activity of Bidens pilosa whole plant. Afr. Health Sci. 2006, 6, 27–30. [Google Scholar]
  61. Pereira, R.L.C.; Ibrahim, T.; Lucchetti, L.; Silva, A.J.R.; Moraes, V.L.G. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacology 1999, 43, 31–37. [Google Scholar] [CrossRef]
  62. Horiuchi, M; Seyama, Y. Improvement of the antiinflamatory and antiallergic activity of Bidens pilosa L. var. radiata Scherff treated with enzyme (cellulosine). J. Health Sci. 2008, 54, 294–301. [Google Scholar] [CrossRef]
  63. Chang, J.-S.; Chiang, L.-C.; Chen, C.-C.; Liu, L.-T.; Wang, K.-C.; Lin, C.-C. Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff and Houttuynia cordata Thunb. Am. J. Chin. Med. 2001, 29, 303–312. [Google Scholar] [CrossRef]
  64. Rojas, J.J.; Ochoa, V.J.; Ocampo, S.A.; Munoz, J.F. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections. BMC Compl. Alternative Med. 2006, 6, 2. [Google Scholar] [CrossRef]
  65. Yang, H.-L.; Chen, S.-C.; Chang, N.-W.; Chang, J.-M.; Lee, M.-L.; Tsai, P.-C.; Fu, H.-H.; Kao, W.-W.; Chiang, H.-C.; Wang, H.H.; Hseu, Y.-C. Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem. Toxicol. 2006, 44, 1513–1521. [Google Scholar] [CrossRef]
  66. Deba, F.; Xuan, T.D.; Yasuda, M.; Tawata, S. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. radiata. Food Control 2008, 19, 346–352. [Google Scholar] [CrossRef]
  67. Kviecinski, M.R.; Felipe, K.B.; Schoenfelder, T.; Wiese, L.P.L.; Rossi, M.H.; Gonçalez, E.; Felicio, J.D.; Filho, D.W.; Pedrosa, R.C. Study of the antitumor potential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. J. Ethnopharmacol. 2008, 117, 69–75. [Google Scholar] [CrossRef]
  68. Ministério da Saúde. RENISUS - Relação nacional de plantas medicinais de interesse ao SUS. Available online: http://portal.saude.gov.br/portal/arquivos/pdf/RENISUS.pdf (Accessed on 30 October 2010).
  69. Pereira, R.L.C.; Ibrahim, T.; Lucchetti, L.; Silva, A.J.R.; Moraes, V.L.G. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacology 1999, 43, 31–37. [Google Scholar] [CrossRef]
  70. Bairwa, K.; Kumar, R.; Sharma, R.J.; Roy, R.K. An updated review on Bidens Pilosa L. Pharma Chem. 2010, 2, 325–337. [Google Scholar]
  71. Tobinaga, S.; Sharma, M.K.; Aalbersberg, W.G.L.; Watanabe, K.; Iguchi, K.; Narui, K.; Sasatsu, M.; Waki, S. Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta Med. 2009, 75, 624–628. [Google Scholar] [CrossRef]
  72. Kumari, P.; Misra, K.; Sisodia, B.S.; Faridi, U.; Srivastava, S.; Luqman, S.; Darokar, M.P.; Negi, A.S.; Gupta, M.M.; Singh, S.C.; Kumar, J.K. A promising anticancer and antimalarial component from the leaves of Bidens pilosa. Planta Med. 2009, 75, 59–61. [Google Scholar] [CrossRef]
  73. N’Dounga, M.; Balansard, G.; Babadjamian, A.; David, P.T.; Gasquet, M.; Boudon, G. Contribution a l’etude de Bidens pilosa L. identification et activite antiparasitaire de la phenyl-1 heptatriyne-1,3,5. Plant. Med. Phytother. 1983, 17, 65–75. [Google Scholar]
  74. Chang, S.-L.; Chiang, Y.-M.; Chang, C. L.-T.; Yeh, H.-H.; Shyur, L.-F.; Kuo, Y.-H.; Wu, T.-K.; Yang, W.-C. Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-expression. J. Ethnopharmacol. 2007, 112, 232–236. [Google Scholar] [CrossRef]
  75. Chang, S.-L.; Chang, C.L.-T.; Chiang, Y.-M.; Hsieh, R.-H.; Tzeng, C.-R.; Wu, T.-K.; Sytwu, H.-K.; Shyur, L.-F.; Yang, W.-C. Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmune diabetes in non-obese diabetic mice. Planta Med. 2004, 70, 1045–1051. [Google Scholar] [CrossRef]
  76. Yang, W.L.; Chang, L.; Yang, W. Treating type II diabetes involves administering to subject polyacetylenic compound or a Bidens pilosa preparation obtained by stirring pulverized Bidens pilosa in water at specific temperature to form suspension; and collecting supernatant. EP Patent 1955701 A.
  77. Wu, L.; Chiang, Y.; Chuang, H.; Wang, S.; Yang, G.; Chen, Y.; Lai, L.; Shyur, L.-F. Polyacetylenes function as anti-angiogenic agents. Pharm. Res. 2004, 21, 2112–2119. [Google Scholar] [CrossRef]
  78. Wu, L.-W.; Chiang, Y.-M.; Chuang, H.-C.; Lo, C.-P.; Yang, K.-Y.; Wang, S.-Y.; Shyur, L.-F. A novel polyacetylene significantly inhibits angiogenesis and promotes apoptosis in human endothelial cells through activation of the CDK inhibitors and caspase-7. Planta Med. 2007, 73, 655–661. [Google Scholar] [CrossRef]
  79. Chiang, Y.; Chuang, D.; Wang, S.; Kuo, Y.; Tsai, P.; Shyur, L. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J. Ethnopharmacol. 2004, 95, 409–419. [Google Scholar] [CrossRef]
  80. Graham, K.; Graham, E.A.; Towers, G.H.N. Cercaricidal activity of phenylheptatriyne and α-terthienyl, naturally occurring compounds in species of Asteraceae (Compositae). Can. J. Zool. 1980, 58, 1955–1958. [Google Scholar] [CrossRef]
  81. Christensen, L.P.; Lam, J.; Thomasen, T.A. A chalcone and other constituents of Bidens tripartitus. Phytochemistry 1990, 29, 3155–3156. [Google Scholar]
  82. Chang, C.L.-T.; Chang, S.-L.; Lee, Y.-M.; Chiang, Y.-M.; Chuang, D.-Y.; Kuo, H.-K.; Yang, W.-C. Cytopiloyne, a poliacetylenic glucoside, prevents type 1 diabetes in non-obese diabetic mice. J. Immunol. 2007, 178, 6984–6993. [Google Scholar]
  83. Kusano, A.; Seyama, Y.; Usami, E.; Katayose, T.; Shibano, M.; Tsukamoto, D.; Kusano, G. Studies on the antioxidant active constituents of the dried powder from Bidens pilosa L. var. radiata Sch. Nat. Med. 2003, 57, 100–104. [Google Scholar]
  84. Zulueta, M.C.A.; Tada, M.; Ragasa, C.Y. A diterpene from Bidens pilosa. Phytochemistry 1995, 38, 1449–1450. [Google Scholar] [CrossRef]
  85. Chang, M.-H.; Wang, G.-J.; Kuo, Y.-H.; Lee, C.-K. The low polar constituents from Bidens pilosa L. var. minor (Blume) Sherff. J. Chin. Chem. Soc. 2000, 47, 1131–1136. [Google Scholar]
  86. Sarg, T.M.; Ateya, A.M.; Farrag, N.M.; Abbas, F.A. Constituents and biological activity of Bidens pilosa L. grown in Egypt. Acta Pharm. Hung. 1991, 61, 317–323. [Google Scholar]
  87. Deba, F.; Xuan, T.D.; Yasuda, M.; Tawata, S. Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff. Weed Biol. Manag. 2007, 7, 77–83. [Google Scholar] [CrossRef]
  88. Ogawa, K.; Sashida, Y. Caffeoyl derivatives of a sugar lactone and its hydroxy acid from the leaves of Bidens pilosa. Phytochemistry 1992, 31, 3657–3658. [Google Scholar] [CrossRef]
  89. Sashida, Y.; Ogawa, K.; Kitada, M.; Karikome, H.; Mimaki, Y.; Shimomura, H. New aurone glucosides and new phenylpropanoid glucosides form Bidens pilosa. Chem. Pharm. Bull. 1991, 39, 709–711. [Google Scholar] [CrossRef]
  90. Kumar, J.K.; Sinha, A.K. A new disubstituted acetylacetone from the leaves of Bidens pilosa Linn. Nat. Prod. Res. 2003, 17, 71–74. [Google Scholar] [CrossRef]
  91. Chen, A.H.; Lin, S.R.; Hong, C.H. Phytochemical study on Bidens pilosa L. var. Minor. Huaxue. 1975, 38–42. [Google Scholar]
  92. Potawale, S.E.; Shinde, V.M.; Harle, U.N.; Borade, S.B.; Libi, A.; Dhalawat, H.J.; Deshmukh, R.S. Bidens pilosa L.: a comprehensive review. Pharmacol. Online 2008, 2, 185–196. [Google Scholar]
  93. Bairwa, K.; Kumar, R.; Sharma, R.J.; Roy, R.K. An updated review on Bidens pilosa L. Der Pharma Chemica. 2010, 2, 325–337. [Google Scholar]
  94. Buckingham, J. Introduction to the Type of Compound Index. In Dictionary of Natural Products; Chapman and Hall: London, UK, 1994; Volumes 6 and 7. [Google Scholar]
  95. Harborne, J.B.; Baxter, H.; Moss, G.P. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants; Taylor & Francis: Philadelphia, PA, USA, 1999; p. 57, Chapter 8. [Google Scholar]
  96. Towers, G.H.N.; Wat, C.-K. Biological activity of polyacetylenes. Rev. Latinoamer. Quim. 1978, 9, 162–170. [Google Scholar]
  97. Wat, C.-K.; Biswas, R.K.; Graham, E.A.; Bohm, L.; Towers, G.H.N. Ultraviolet-mediated cytotoxic activity of phenylheptatriyne from Bidens pilosa L. J. Nat. Prod. 1979, 42, 103–111. [Google Scholar] [CrossRef]
  98. Wat, C.-K.; Johns, T.; Towers, G.H.N. Phototoxic and antibiotic activities of plants of the Asteraceae used in folk medicine. J. Ethnopharmacol. 1980, 2, 279–290. [Google Scholar] [CrossRef]
  99. Wang, S.; Yang, B.; Li, L.; Zhu, D.; He, D.; Wang, L. Active components of Bidens pilosa L. Zhongcaoyao 2005, 36, 20–21. [Google Scholar]
  100. Wang, R.; Wu, Q.-X.; Shi, Y.-P. Polyacetylenes and flavonoids from the aerial parts of Bidens pilosa. Planta Med. 2010, 76, 893–896. [Google Scholar] [CrossRef]
  101. Ganjewalaa, D.; Kumara, S.; Ambikaa, K.; Luthrab, R. Plant polyacetylenic glycosides occurrence, biosynthesis and biological activities. Pharmacol. Online 2008, 2, 113–131. [Google Scholar]
  102. Zhao, A.; Zhao, Q.; Peng, L.; Zhang, J.; Lin, Z.; Sun, H. A new chalcone glycoside from Bidens pilosa. Yunnan Zhiwu Yanjiu 2004, 26, 121–126. [Google Scholar]
  103. Marchant, Y.Y.; Ganders, F.R.; Wat, C.K.; Towers, G.H.N. Polyacetylenes in Hawaiian Bidens. Biochem. Syst. Ecol. 1984, 12, 67–78. [Google Scholar]
  104. Emerenciano, V.P.; Militão, J.S.L.T.; Campos, C.C.; Romoff, P.; Kaplan, M.A.C.; Zambon, M.; Brant, A.J.C. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem. Syst. Ecol. 2001, 29, 947–957. [Google Scholar] [CrossRef]
  105. Bohman, B.A.; Stuessy, T.F. Flavonoids of the Sunflower Family (Asteraceae); Springer-Verlag: Wien, Austria, 2001; pp. 260–263, Chapter 11. [Google Scholar]
  106. Crawford, D.J.; Stuessy, T.F. The taxonomic significance of anthochlors in the subtribe Coreopsidinae (Compositae, Heliantheae). Am. J. Bot. 1981, 68, 107–117. [Google Scholar] [CrossRef]
  107. Isakova, T.I.; Serbin, A.G.; Belikov, V.V.; Chushenko, V.N. Flavonoids and polysaccharides of Bidens L. species. Rast. Resur. 1986, 22, 517–523. [Google Scholar]
  108. Redl, K.; Davis, B.; Bauer, R. Chalcone glycosides from Bidens campylotheca. Phytochemistry 1993, 32, 218–220. [Google Scholar]
  109. Hoffmann, B.; Hölzl, J. Chalcone glucosides from Bidens pilosa. Phytochemistry 1989, 28, 247–249. [Google Scholar]
  110. Sarker, S.D.; Bartholomew, B.; Nash, R.J.; Robinson, N. 5-O-methylhoslundin: an unusual flavonoid from Bidens pilosa (Asteraceae). Biochem. Syst. Ecol. 2000, 28, 591–593. [Google Scholar] [CrossRef]
  111. Brown, G.D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 2010, 15, 7603–7698. [Google Scholar] [CrossRef]
  112. Lin, L.-L.; Wu, C.-Y.; Hsiu, H.-C.; Wang, M.-T.; Chuang, H. Diabetes mellitus, I. Hypoglycemic activity of phytosterin on alloxan-diabetic rats. Taiwan Yixuehui Zazhi 1967, 66, 58–66. [Google Scholar]
  113. Benhura, M.A.N.; Chitsiku, I.C. The extractable β-carotene content of Guku (Bidens pilosa) leaves after cooking, drying and storage. Int. J. Food Sci. Technol. 1997, 32, 495–500. [Google Scholar] [CrossRef]
  114. Lee, T.-H.; Lu, C.-K.; Kuo, Y.-H.; Jir-Mehng Lo, J.-M.; Lee, C.-K. Unexpected novel pheophytin peroxides from the leaves of Bidens pilosa. Helv. Chim. Acta 2008, 91, 79–84. [Google Scholar] [CrossRef]
  115. Sakuda, Y. Constituents of essential oils from Bidens pilosa L. and Ambrosia trifida L. Kochi Joshi Daigaku Kiyo, Shizen Kagakuhen 1988, 36, 1–5. [Google Scholar]
  116. Zollo, P.H.A.; Kuiate, J.R.; Menut, C.; Lamaty, G.; Bessiere, J.M.; Chalchat, J.C.; Garry, R. Aromatic plants of tropical central Africa. Part XX. The occurence of 1-phenylhepta-1,3,5-triyne in the essential oil of Bidens pilosa L. from Cameroon. Flavour Frag. J. 1995, 10, 97–100. [Google Scholar] [CrossRef]
  117. Qin, J.; Chen, T.; Chen, S.; Lu, Q. Analysis of essential oil of Bidens pilosa L. by GC-MS. Fenxi Ceshi Xuebao 2003, 22, 85–87. [Google Scholar]
  118. Dong, L.; Yang, J.; Wang, X. Analysis of components of volatile oil from Bidens pilosa. Xinxiang Yixueyuan Xuebao 2004, 21, 179–180. [Google Scholar]
  119. Priestap, H.A.; Bennett, B.C.; Quirke, J.M.E. Investigation of the essential oils of Bidens pilosa var. minor, Bidens alba and Flaveria linearis. J. Essent. Oil Res. 2008, 20, 396–402. [Google Scholar]
  120. Riahi, S.; Ganjali, M.R.; Pourbasheer, E.; Norouzi, P. QSRR study of GC retention indices of essential - oil compounds by multiple linear regression with a genetic algorithm. Chromatographia. 2008, 67, 917–922. [Google Scholar] [CrossRef]
  121. Wang, J.; Yang, H.; Lin, Z.W.; Sun, H.D. Flavonoids from Bidens pilosa var. radiata. Phytochemistry 1997, 46, 1275–1278. [Google Scholar]
  122. Bohlmann, F.; Bornowski, H.; Kleine, K.M. New polyynes from the tribe Heliantheae. Chem. Ber. 1964, 97, 2135–2138. [Google Scholar] [CrossRef]
  123. Chang, C.L.-T.; Kuo, H.-K.; Chang, S.-L.; Chiang, Y.-M.; Lee, T.-H.; Wu, W.-M.; Shyur, L.F.; Yang, W.-C. The distinct effects of a butanol fraction of Bidens pilosa plant extract on the development of Th1-mediated diabetes and Th2-mediated airway inflammation in mice. J. Biomed. Sci. 2005, 12, 79–89. [Google Scholar] [CrossRef]
  124. Chien, S.-C.; Young, P.H.; Hsu, Y.-J.; Chen, C.-H.; Tien, Y.-J.; Shiu, S.-Y.; Li, T.-H.; Yang, C.-W.; Marimuthu, P.; Tsai, L.F.-L.; Yang, W.-C. Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry 2009, 70, 1246–1254. [Google Scholar] [CrossRef]
  125. Kusano, G.; Kusano, A.; Seyama, Y. Novel hypoglycemic and antiinflammatory polyacetylenic compounds, their compositions, Bidens plant extract fractions, and compositions containing the plant or the fraction. 2004083463 A.
  126. Xia, Q.; Liu, Yuan; L., Y. Determination of gallic acid from different species and different medical parts of herba Bidens by RP-HPLC. Huaxi Yaoxue Zazhi 2009, 24, 308–310. [Google Scholar]
  127. Chiang, Y.-M.; Lo, C.-P.; Chen, Y.-P.; Wang, S.-Y.; Yang, N.-S.; Kuo, Y.-H.; Shyur, L.-F. Ethyl caffeate suppresses NF-α B activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br. J. Pharmacol. 2005, 146, 352–363. [Google Scholar] [CrossRef]
  128. Hoffmann, B.; Hölzl, J. Acylated compounds from Bidens pilosa. Planta Med. 1989, 55, 108–109. [Google Scholar] [CrossRef]
  129. Hoffmann, B.; Hölzl, J. New chalcones from Bidens pilosa. Planta Med. 1988, 52–54. [Google Scholar] [CrossRef]
  130. Hoffmann, B.; Hölzl, J. A methylated chalcone glucoside from Bidens pilosa. Phytochemistry 1988, 27, 3700–3701. [Google Scholar] [CrossRef]
  131. Hoffmann, B.; Hölzl, J. Weitere acylierte chalkone aus Bidens pilosa. Planta Med. 1988, 450–451. [Google Scholar] [CrossRef]
  132. Pham, V.V.; Pham, T.K.; Hoang, V.L.; Phan, V.K. Flavonoid compounds from the plant Bidens pilosa L. (Asteraceae). Tap Chi Duoc Hoc. 2010, 50, 48–53. [Google Scholar]
  133. Xia, Q.; Liu, Y.; Li, Y. Determination of hyperoside in different parts and different species of herba Bidens by RP-HPLC. Huaxi Yaoxue Zazhi 2009, 24, 82–83. [Google Scholar]
  134. Brandão, M.G.L.; Nery, C.G.C.; Mamão, M.A.S.; Krettli, A.U. Two methoxylated flavone glycosides from Bidens pilosa. Phytochemistry 1998, 48, 397–399. [Google Scholar]
  135. Oliveira, F.Q.; Andrade-Neto, V.; Krettli, A.U.; Brandão, M.G.L. New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J. Ethnopharmacol. 2004, 93, 39–42. [Google Scholar]
  136. Ogunbinu, A.O.; Flamini, G.; Cioni, P.L.; Adebayo, M.A.; Ogunwande, I.A. Constituents of Cajanus cajan (L.) Millsp., Moringa oleifera Lam., Heliotropium indicum L. and Bidens pilosa L. from Nigeria. Nat. Prod. Commun. 2009, 4, 573–578. [Google Scholar]
  • Sample Availability: Not available.

Share and Cite

MDPI and ACS Style

Lima Silva, F.; Fischer, D.C.H.; Fechine Tavares, J.; Sobral Silva, M.; Filgueiras de Athayde-Filho, P.; Barbosa-Filho, J.M. Compilation of Secondary Metabolites from Bidens pilosa L. Molecules 2011, 16, 1070-1102. https://doi.org/10.3390/molecules16021070

AMA Style

Lima Silva F, Fischer DCH, Fechine Tavares J, Sobral Silva M, Filgueiras de Athayde-Filho P, Barbosa-Filho JM. Compilation of Secondary Metabolites from Bidens pilosa L. Molecules. 2011; 16(2):1070-1102. https://doi.org/10.3390/molecules16021070

Chicago/Turabian Style

Lima Silva, Fabiana, Dominique Corinne Hermine Fischer, Josean Fechine Tavares, Marcelo Sobral Silva, Petronio Filgueiras de Athayde-Filho, and Jose Maria Barbosa-Filho. 2011. "Compilation of Secondary Metabolites from Bidens pilosa L." Molecules 16, no. 2: 1070-1102. https://doi.org/10.3390/molecules16021070

Article Metrics

Back to TopTop