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Abstract: The present research focuses on investigation of the catalytic behaviors of 

MgCl2-SiO2/TiCl4/THF Ziegler-Natta (ZN) catalysts with fumed SiO2 variously treated 

with silane compounds. The non-treated silica (NTS) and other silicas treated with 
dimethylsilicone fluid (TSDMSF), dimethyldichlorosilane (TSDMDCS), and hexamethyl-

disilazane (TSHMDS) were employed. It was found that the Cat-TSDMDCS and Cat-

TSHMDS exhibited remarkably high activity, even with a similar bulk Ti content as the 
others. Thus, the more powerful technique of XPS analysis was used to determine the Ti 

content at the catalyst surface. It was evident that the surface concentrations of Ti could 

play important role on the catalyst activity. As the result, the increased activity is 
proportional to the surface concentration of Ti. It was mentioned that the change in surface 

concentration of Ti with different treated silica can be attributed to the effect of silane 

spacer group and steric hindrance. The distribution of Ti on the external surface can be also 
proven by means of EDX mapping, which matched the results obtained by XPS analysis. 

The treated silica also resulted in narrower molecular weight distribution (MWD) due to 

the more uniform active sites produced. There was no significant change in polymer 
morphology upon treatment of the silica. 
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1. Introduction 

In the polyolefin industry, the significant role of the Ziegler-Natta (ZN) catalysts is remarkable as 
are both industrial and academic interest in their reaction engineering [1-4]. In the production of 

polyolefins, the polymer particle morphology strongly affects the plant operation. The loss of polymer 

morphological control leads to many industrial operating problems, such as fouling and broadening 
reactor residence-time distribution. It is widely accepted that the polymer particle morphology is 

mainly determined by the morphology of a parent catalyst through the replication phenomenon [5,6]. 

The modification of supported-ZN catalyst is a preferred way to increase the morphology control of 
the polymers, increase the catalytic activity as well as increase catalytic stability. 

Anhydrous magnesium dichloride (MgCl2) has been known as a preferred support for highly 

efficient ZN catalysts for the polymerization of olefins. MgCl2 is often convenient to use in producing 
ZN catalysts with good morphology and the high rates of polymerization activity [7-8]. However, the 

frailty of MgCl2 during preparation is still a problem for controlling the morphology of ZN when used 

in olefin polymerization. To overcome these problems, MgCl2-SiO2-bisupported titanium catalyst is 
preferred, especially when it is used in a gas-phase polymerization system [9-11]. For example, UCC 

has developed a series of MgCl2-SiO2/THF/TiCl4 four-component catalyst systems for gas-phase 

ethylene polymerization and ethylene/1-hexene copolymerization [12-13]. This catalyst exhibits good 
comonomer incorporation properties, and the polyethylene products show good morphology control. 

Somehow, the catalytic activity of MgCl2-SiO2/THF/TiCl4 system is lower than that without SiO2 

added. To increase the catalytic activity, the properties of SiO2 such as type, shape, surface area [14] 
and OH content on the surface, should be considered in order to prepare a catalyst that is completely 

satisfactory for all purposes [15]. 

As is well known SiO2 has OH groups on the surface, which are a very important poison for ZN 
catalysts. Preheated SiO2 with different calcination temperatures (110–820 °C) is necessary to control 

the OH content on the surface of SiO2. The relationship between calcination temperature and TiCl4 

reaction temperature was observed by Hornytzkyj et al. [16]. It was found that the lower reaction 
temperature of 175 and 125 °C led to amorphous titanium species, whereas the temperature of 350 °C 

or higher resulted in amorphous and agglomerated titanium species. The amount of amorphous 

titanium species present in the high temperature samples is a function of the reaction temperature of 
TiCl4 and of the preheat temperature of the SiO2 determined by etching with sulfuric acid. 

Consequently, suitable calcination methods can also decrease the OH groups on the surface, but it 

consumes much energy and increases the production cost, so chemical treatment is one of the 
promising ways to decrease the OH groups on the surface of SiO2 and it is practical. 

Hexamethyldisilazane (HMDS) and other organosilicon compounds (OSC), such as butyl dimethylsilyl 

(BDMS), dimethylsilicone fluid (DMSF), dimethyldichlorosilane (DMDCS), octadecyl dimethylsilyl 
(ODDMS) and trimethylsilyl (TMS) are commonly employed for the treatment of SiO2. This treated 

SiO2 has a wide variety of applications, including as a support for ZN catalysts. Although the 

properties of surface-modified solids can be predicted, observed changes often differ from expectations. 
Predictions of structural changes, for instance, are almost always related to primary particles [17-19], 

but structural changes of highly dispersed or porous solids are often hierarchal. In the case of fumed 

oxides, structures are dictated by aggregates of primary particles and agglomeration of aggregates. 
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This hierarchal structure is difficult to predict, as it is dependent upon a balance of forces, which are 

altered as a result of surface modification [20,21]. This often results in unexpected changes to the 
modified surface of SiO2. Hertl and Hair [22] studied the treatment of silica with HMDS and used it as 

a support in ZN catalyst. They proposed that the reaction of HMDS occurs almost exclusively with 

isolated OH groups, leaving the H-bonded OH groups unoccupied. This property of HMDS has been 
applied successfully to study the bi-functional reactivity of TiCl4 toward H-bonded OH groups on 

silica in both vapor phase [22] and organic solution [23]. There were no changes of HMDS coverages 

on the HMDS-modified silica after the reaction with TiCl4 at 175 °C [24]. Instead, the number of 
titanium atoms were half of that reacted without silylation, and the reaction led exclusively to doubly 

bonded titanium species. Consequently, the attainable trimethylsilyl surface coverage was not only 

determined by the steric hindrance, but also by the lower reactivity of HMDS toward H-bonded in OH 
groups. However, from the previous research, there is still little information about the effects of SiO2 

treated with different functional ethyl groups, such as dimethylsilicone fluid (DMSF), 

dimethyldichlorosilane (DMDCS) and hexamethyldisilazane (HMDS) on ZN catalyst properties and 
polymer properties although this information is of interest in both academia and industryl, especially in 

the surface study area. The XPS, SEM and EDX techniques were used in this investigation. Four types 

of CAB-O-SIL fumed silica were chosen for study based on the fact that they have well defined 
surface structures. They can be prepared by reproducible procedures and they are commonly used as 

catalyst supports. In this study, the influence of different silane compounds employed for the treatment 

of fumed silica in MgCl2-SiO2/TiCl4/THF catalysts on ethylene polymerization was examined The 
properties obtained were also determined and are discussed in detail. 

2. Results and Discussion 

The structures of various treated fumed silicas used as supports in ZN catalysts are shown in Figure 1. 
There were four modified surface fumed silicas: (i) untreated SiO2 (NTS); (ii) SiO2 treated with 

dimethylsilicone fluid (TSDMSF); (iii) SiO2 treated with dimethyldichlorosilane (TSDMDCS); and (iv) 

SiO2 treated with hexamethyldisilazane (TSHMDS). 

Figure 1. Different organo-silicon groups on the surface of variously treated fumed silicas. 
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The SEM images of all the samples are shown in Figure 2. It can be seen that the primary particles 

of fumed SiO2 [Figures 2(b), (d), (f), and (h)] display no change in shape and size after treatment. A 
little agglomeration of particles occurred in TSDMSF and TSHMDS. The agglomeration of TSDMSF 

and TSHMDS particles results from the balance of force and type of chemical treatment. This result is 

supported by other research [20,21]. 

Figure 2. SEM images of different treated silicas; (a) NTS; (c) TSDMSF; (e) TSDMDCS; 

(g) TSHMDS; and (b), (d), (f), and (h) represent the primary particles of corresponding 

treated silicas, respectively. 

 

After making the ZN catalysts with different treated SiO2 supports, the bulk Ti content for all 
catalysts (Cat-NTS, Cat- TSDMSF, Cat-TSDMDCS, and Cat-TSHMDS) was analyzed by ICP. The 

results are shown in Table 1. 
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Table 1. Ti content in bulk and activity of different catalysts. 

Sample  Treatment  
Ti in bulk of 

catalysts (wt %) 
a
 

Activity 
b
 

(kg PE/ mol-Ti/ h) 

Cat-NTS  Untreated silica  2.27 1,570 

Cat-TSDMSF Dimethylsilicone Fluid 2.32 1,370 

Cat-TSDMDCS  Dimethyldichlorosilane  2.34 6,370 

Cat-TSHMDS Hexamethyldisilazane  2.11 5,620 
a Obtained by ICP analysis; b Ethylene polymerization at 50 psi, 80 °C, Al/Ti = 100. 

It was found that the Ti contents in all catalyst samples were similar and within the 2.11–2.34 wt % 

range. Then, all catalyst samples were tested for ethylene polymerization under the specified conditions. 

The activity results are also shown in Table 1. It can be observed that the silica treated with silane 
compounds tends to show increased catalytic activity due to the effect of the spacer groups introduced by 

silane treatment [25]. It was also surprising that although all catalysts had similar amount of Ti contents 

in bulk, they exhibited different catalytic activity. As seen, Cat-TSDMDCS, and Cat-TSHMDS 
exhibited the remarkably high activity (about four times higher than Cat-NTS). For elucidation, 

another parameter such as the Ti content at surface needed to be verified. One of the most powerful 

techniques used to determine the surface properties is X-ray photoelectron spectroscopy (XPS). The 
oxidation state related to the binding energy of Ti and other elements was evaluated. Ti exhibited its 

binding energy at ca. 459 eV, indicating the Ti 2p state in all catalyst samples. 

The surface concentrations obtained from the XPS measurements for Ti and other elements are also 
shown in Table 2. It was found that the surface concentrations for Ti 2p in the Cat-TSDMDCS and 

Cat-TSHMDS samples were remarkably high. On the other hand, for both samples Ti was located on 

the outer surface of the catalysts. This is probably due to less steric hindrance of the Cat-TSDMDCS 
and Cat-TSHMDS samples compared to the Cat-TSDMSF sample, as seen in Figure 1. The large 

amounts of Ti located on the surface are the main reason for the very high activities obtained from the 

Cat-TSDMDCS and Cat-TSHMDS samples as seen in Table 1. Therefore, the high activity of the ZN 
catalysts can be attributed to the large amounts of Ti content on surface, not in the bulk of catalysts. 

Table 2. Surface concentrations of Ti, Si and Mg in all catalysts obtained by XPS analysis. 

Peak Cat-NTS Cat-TSDMSF Cat-TSDMDCS Cat-TSHMDS 

Ti2p 3.10 3.22 17.90 12.40 
Si2p 64.05 88.55 37.81 56.13 
Mg2s 32.85 8.23 44.30 31.47 

In order to illustrate the relationship between the surface concentrations of Ti and the activities of 

catalysts, Figure 3 is constructed. It can be seen that the activities of catalysts are proportional to the 

surface concentrations of Ti present on the catalyst, as mentioned before. 
Besides XPS measurements, the other powerful techniques used to determine the morphology and 

elemental distribution are SEM and EDX, respectively. 
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Figure 3. Relationship between the surface concentrations of Ti and the activities of catalysts. 

 

The SEM and EDX mapping for all catalyst samples are shown in Figures 4 to 7 displaying the 

external surface of the catalysts and distribution of Mg, Si, and Ti on them. It should be mentioned that 

EDX only measures the concentrations in a layer less than 1 micrometer from the surface [26,27]. As a 
matter of fact, for whole catalyst particles, EDX measures the concentration on external surface of the 

particles. Figures 4–7 were all obtained with identical magnification. Considering the Ti distribution on 

the external surface of each catalyst represented by yellow patches (e), it can be clearly seen that the 
intensities of yellow patches (Ti at surface) in Figures 4 (Cat-NTS) and 5 (Cat-TSMDSF) are very low 

compared with those in Figures 6 (Cat-TSDMDCS) and 7 (Cat-TSDMDCS) corresponding to the XPS 

measurements as mentioned before. Therefore, both XPS and EDX mapping results can be used to 
confirm the rich Ti surface contents on the Cat-TSDMDCS and Cat-TSDMDCS samples leading to 

high catalytic activity. It is known that generally, TiCl4 can bind to OH groups in the untreated silica. 

However, after treatment, it is mostly located on the MgCl2 support as seen in the EDX mapping.  

Figure 4. SEM micrograph and elemental distribution on Cat-NTS; (a) SEM image; 

(b) external surface; (c) Mg distribution; (d) Si distribution and (e) Ti distribution. 
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Figure 4. Cont. 

 

Figure 5. SEM micrograph and elemental distribution on Cat-TSDMSF; (a) SEM image; 

(b) external surface; (c) Mg distribution; (d) Si distribution and (e) Ti distribution. 

 

Figure 6. SEM micrograph and elemental distribution on Cat-TSDMDCS; (a) SEM image; 

(b) external surface; (c) Mg distribution; (d) Si distribution and (e) Ti distribution  
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Figure 6. Cont. 

 

Figure 7. SEM micrograph and elemental distribution on Cat-TSHMDS; (a) SEM image; 

(b) external surface; (c) Mg distribution; (d) Si distribution and (e) Ti distribution. 

 

The molecular weight (Mw) and molecular weight distribution (MWD) of polymers obtained from 

different catalysts as analyzed by GPC are listed in Table 3. It can be seen that Cat-NTS produced 

polymer having the highest Mw, Mz, and MWD compared to polymers obtained from other catalysts. 
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The broad MWD for Cat-NTS can be also attributed to the high molecular weight tail (Mz). It can be 

observed that all treated silica for ZN catalysts apparently resulted in narrower MWD, as also reported 
in our previous work [25]. It was suggested that the treatment of silica with silane can result in more 

uniform active centers leading to narrower MWD. 

Table 3. Molecular weights and their distribution of polymers obtained from different catalysts. 

Sample 
Mn 

(kg/mol) 

Mw 

(kg/mol) 

Mz 

(kg/mol) 

Mv 

(kg/mol) 

MWD 

(Mw/Mn) 

Cat-NTS 40 1,028 4,574 739 25.7 
Cat-TSDMSF 23 359 4,073 339 15.6 
Cat-TSDMDCS 55 787 3,086 595 14.3 
Cat-TSHMDS 24 437 4,064 405 18.2 

A typical SEM micrograph of polymer obtained from all catalysts, which was similar, is shown in 
Figure 8. Hence, it indicates that the treated silica has no effect on the polymer morphologies.  

Figure 7. A typical SEM micrograph of polyethylene samples of the treated silica ZN 

catalyst; (a) polyethylene at × 50 magnification; (b) polyethylene at × 500 magnification; 
and (b) surface of polyethylene at × 10k magnification. 

 



Molecules 2011, 16              
 

 

1332

3. Experimental 

3.1. Chemicals 

Polymerization grade ethylene and triethylaluminum (TEA) donated by PTT Chemical Plc., were 

used without further purification. TiCl4 (Aldrich) and MgCl2 (anhydrous) were donated by Toho 

Catalyst Co., Ltd. Fumed silica [non-treated (NTS), surface area 149.35 m2/g] and silica treated with 
different organic compounds [dimethylsilicone fluid (TSDMSF, surface area 121.60 m2/g), with 

dimethyldichlorosilane (TSDMDCS, surface area 112.00 m2/g), and with hexamethyldisilazane 

(TSHMDS, surface area 130.95 m2/g)] were supplied by Cabot Corporation and average particle size 
of all silicas were 0.2–0.3 µm as reported by the supplier. All types of silica were heated under vacuum 

at 120 °C for 2 h. Hexane and tetrahydrofuran were dried over dehydrated CaCl2 and distilled over 

sodium benzophenone under an argon atmosphere prior to use. Ultra high purify (UHP) argon 
(99.999%) was purchased from Thai Industrial Gas Co., Ltd. and was further purified by passing 

through 3 Å molecular sieves., BASF catalyst R3-11G, NaOH and phosphorus pentaoxide (P2O5) to 

remove traces of oxygen and moisture. All chemicals were manipulated under an inert atmosphere 
using a vacuum glove box and Schlenk techniques. 

3.2. Catalyst Preparation 

The catalyst was prepared in a 500 mL vessel equipped with temperature control, and a turbine 
agitator. First, anhydrous tetrahydrofuran (150 mL) was added into the vessel and heated up to a 50 °C. 

Then, magnesium metal (0.12 g) was added, followed by titanium tetrachloride (2 mL). The mixture 

was continuously agitated and the temperature was held at about 70 °C. After that, magnesium 
dichloride (4.5 g) was added, and the heating process was continued at 70 °C for another 3 h. Then 

different treated silicas (NTS, TSDMSF, TSDMDCS and TSHMDS, 4.5 g) were slowly added to the 

mixture, which was stirred for 1 h to thoroughly disperse the silica in the solution. The temperature of 
mixture was held at 70 °C throughout this period and an argon atmosphere was maintained for all time. 

This mixture was washed, and then dried under vacuum. 

3.3. Polymerization Reaction 

Ethylene polymerization was carried out in a 100 mL stainless steel autoclave reactor equipped with 

magnetic stirrer. The prescribed amount of hexane (30 mL), TEA and the SiO2-MgCl2-supported ZN 

catalysts, such as Cat-NTS, Cat-TSDMSF, Cat-TSDMDCS and Cat-HMDS (Al/Ti molar ratio = 100) 
were added into the reactor. The ethylene pressure and reactor temperature were kept constant during 

polymerization [pressure in reactor = 50 psi and polymerization temperature was held at 80 °C]. Due to 

the fixed ethylene consumption (at 0.018 moles), the polymerization time was defined as the time that 
all ethylene gas was totally consumed [the equivalent pressure drop of 42 kPa (6 psi) was observed]. 

The polymerization time was recorded to calculate the activity. The reaction was terminated by adding 

acidic methanol and polymer was stirred for 30 min. After filtration, the polymer obtained was washed 
with methanol and dried at room temperature. 
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3.4. Polymer and Catalyst Characterization 

3.4.1. Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDX) 

The morphological observations of polymers were carried out with a JEOL JSM-6400 scanning 

electron microscope. Micrographs were taken at 5-kV and 20-kV acceleration voltage. Before 

scanning electron microscopy (SEM) observations, the fracture surfaces of blends were coated with a 
thin layer of gold to avoid electrical charging and increase contrast during observation. The EDX was 

performed using Link Isis series 300 program, to determine the elemental distribution in catalysts. 

3.4.2. Inductively coupled plasma (ICP) 

Titanium content was measured using inductively coupled plasma atomic emission spectroscopy 

equipment (ICP-OES optima 2100 DV from PerkinElmer). In order to digest the sample, the catalyst 

was dissolved in hydrofluoric acid. The mixtures were stirred over a night. After the catalyst was 
completely dissolved, the solution was diluted with ID water to a volume of 100 mL. 

3.4.3. X-ray photoelectron spectroscopy (XPS) 

The chemical states and surface concentration of the elements were measured by the XPS technique 
using an Amicus photoelectron spectrometer with Mg Kα X-ray source at current of 20 mA and 10 keV, 

resolution of 0.1 ev/step, and pass energy of 75 eV. The binding energy was calibrated by the C 1s 

peak at 285.0 eV. In this study, the sample was always treated under argon to prevent the sample from 
damage by moisture and oxygen in the atmosphere. 

3.4.4. Gel permeation chromatography (GPC) 

A high temperature GPC (Waters 150-C) equipped with a viscometric detector, differential optical 
refractometer and four Styragel HT type columns (HT3, HT4, HT5, and HT6) with 1 × 107 exclusion 

limit for polystyrene was used to determine the molecular weight (MW) and molecular weight 

distributions (MWD) of the polymers produced. The analyses were performed at 140 °C using 1, 2, 4-
trichlorobenzene as the solvent. The columns were calibrated with standard narrow MWD polystyrene. 

4. Conclusions  

In summary, the catalytic behaviors of MgCl2-SiO2/TiCl4/THF catalysts with different treated 
silicas, such as Cat-NTS, Cat-TSDMSF, Cat-TSDMDCS, and Cat-TSHMDS were investigated. 

Although all catalysts exhibited the similar bulk Ti content, their activities were different. Therefore, 

the measurement of surface concentrations of Ti by means of XPS techniques was crucial. It was found 
that Cat-TSDMDCS and Cat-TSHMDS rendered high activities due to the large amounts of Ti at the 

surface of the catalyst. This could be also confirmed by the EDX mapping of Ti on the external surface. 

It can be concluded that for each catalyst the increased activity is proportional to the surface 
concentration of Ti. It is worth noting that the increased activity for the treated silica for Cat-

TSDMDCS and Cat-TSHMDS catalysts can be attributed to both the effects of the silane spacer group 

and less steric hindrance. The treated silica in MgCl2-SiO2/TiCl4/THF catalysts apparently resulted in 
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narrower MWD due to the increased uniformity of the active sites. However, there was no significant 

change in polymer morphology with the treated silicas as seen by SEM. 
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