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Abstract: Polyphenols constitute one of the most common groups of substances in plants. 

Polyphenolic compounds have been reported to have a wide range of biological activities, 

many of which are related to their conventional antioxidant action; however, increasing 

scientific knowledge has highlighted their potential activity in preventing oral disease, 

including the prevention of tooth decay. The aim of this review is to show the emerging 

findings on the anti-cariogenic properties of polyphenols, which have been obtained from 

several in vitro studies investigating the effects of these bioactive molecules against 

Streptococcus mutans, as well as in vivo studies. The analysis of the literature supports the 

anti-bacterial role of polyphenols on cariogenic streptococci, suggesting (1) a direct effect 

against S. mutans; (2) an interaction with microbial membrane proteins inhibiting the 

adherence of bacterial cells to the tooth surface; and (3) the inhibition of glucosyl 

transferase and amylase. However, more studies, particularly in vivo and in situ, are 

necessary to establish conclusive evidence for the effectiveness and the clinical 

applications of these compounds in the prevention of dental caries. It is essential to better 

determine the nature and distribution of these compounds in our diet and to identify which 

of the hundreds of existing polyphenols are likely to provide the greatest effects. 
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1. Introduction 

Today, polyphenols occupy a unique place in science as the only class of bioactive natural products 

that the general public is aware of and has certainly heard about as a consequence of their presence in 

plant-derived foods and beverages and their inclusion in the formulations of well-marketed cosmetic [1-3] 

and parapharmaceutical products [4-5]. 

Polyphenols constitute one of the most common and widespread groups of substances in flowering 

plants, occurring in all vegetative organs, as well as in flowers and fruits. They are considered 

secondary metabolites involved in the chemical defence of plants against predators and in plant-plant 

interferences. Several thousand plant polyphenols are known, encompassing a wide variety of 

molecules that contain at least one aromatic ring with one or more hydroxyl groups in addition to other 

substituents. The biological properties of polyphenols include antioxidant [6], anticancer [7], and 

anti-inflammatory [8] effects. 

Emerging findings suggest a variety of potential mechanisms of action by which polyphenols may 

prevent disease, such as the inhibition of bacterial replication enzymes, the induction of apoptosis in 

tumour cells, the stimulation of monocytes/macrophages to produce cytokines, and the stimulation of 

myeloperoxidase-dependent iodination of neutrophils [9]. The antimicrobial effects of polyphenols 

have also been widely reported as has their ability to inactivate bacterial toxins, and there is an 

increasing interest in this topic because plant polyphenols could represent a source of new anti-

infective agents against antibiotic-resistant human pathogens. Today, dental caries are still one of the 

most common diseases in the world. The results of multi-variable modelling support the hypothesis 

that bacterial infection is important in the aetiology of dental caries [10]. The central role of the mutans 

streptococci in the initiation of caries on smooth surfaces and fissures of crowns of teeth suggests their 

role in the induction of root-surface caries [11]. This review presents the most important results on the 

anti-cariogenic properties of plant polyphenols in the light of the increasing scientific knowledge about 

the antimicrobial properties of these compounds. 

1.1. Classification of Polyphenols 

The empirical classification of plant polyphenols as molecules having a “tanning” action led to their 

being referred to in the early literature as “vegetable tannins”. Haslam [12] proposed the first 

comprehensive definition of the term “polyphenol”, attributing it exclusively to water-soluble phenolic 

compounds having molecular masses of 500 to 3,000–4,000 Da and possessing 12 to 16 phenolic 

hydroxyl groups and 5 to 7 aromatic rings per 1,000 Da. The original definition of “polyphenols” has 

broadened considerably over the years to include many much simpler phenolic structures (Figure 1). 

They encompass several classes of structurally-diverse entities that are essentially all biogenerated 

through either the shikimate/phenylpropanoid or the “polyketide” acetate/malonate secondary 

metabolic pathways [13], or both. 
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Figure 1. Polyphenol classification. 

 

1.2. C6-C3 Phenylpropanoid Compounds 

Some members of this huge class of natural products (>8,000 structures), usually bearing two 

mono- trihydroxyphenyl units, can serve as precursors to oligo- and polymeric phenolic systems. The 

general phenylpropanoid metabolism furnishes a series of hydroxycinnamic acids (C6-C3) differing 

from one another by the number of hydroxy and methoxy groups on their phenyl units (i.e., ferulic 

acid, caffeic acid). These monophenolic carboxylic acids are often found esterified to polyols. Through 

hydration, esterification, and phenolic oxidative coupling reactions, caffeic acid also gives rise to 

oligomeric structures. 

1.3. C6-C2-C6 Polyhydroxystilbenes 

The phenylpropanoid/acetate hybrid metabolic pathway leads to another important class of phenolic 

substances, the polyhydroxystilbenes (C6-C2-C6). The most famous example of this class is the 

phytoalexin trans-resveratrol (i.e., 3,5,4’-trihydroxy-trans-stilbene), which has been the centre of 

much scientific attention and media exposure following its biological evaluation as a cancer 

chemopreventative and its detection in red wine [14-16]. Such phenolic systems featuring a conjugated 

carbon-carbon bond in their side-chains are particularly prone to undergo oligomerisation events via 

coupling of delocalised phenoxy radicals generated by one-electron oxidation reactions. 
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1.4. Lignin Derivatives 

Much like the hydroxycinnamic acids, esters and alcohols that are converted into lignan/neolignan 

dimers (C6-C3)2 and plant cell wall lignin polymers [(C6-C3)n] by such oxidative coupling processes, 

resveratrol and its hydroxystilbenoid analogues can react in the same manner to furnish polyphenolic 

oligomers. The presence of more than one hydroxyl group on a benzene ring or other arene systems 

does not make them “polyphenols”. Catechol, resorcinol, and pyrogallol are all di- and trihydroxylated 

benzene (C6) derivatives, but they are still defined as “polyphenols” according to the IUPAC official 

nomenclature rules of chemical compounds. Many monophenolics are often called “polyphenols” by 

the cosmetic and parapharmaceutical industries, but they cannot be classified as such by any 

scientifically accepted definition. The meaning of the chemical term “phenol” includes both the arene 

ring and its hydroxyl substituent(s), and the term “polyphenol” should be confined, in a strict chemical 

sense, to structures bearing at least two phenolic moieties, independently of the number of hydroxyl 

groups that they each bear. Moreover, many natural products of various biosynthetic origins do not 

contain more than one phenolic unit. It is, for example, the case for many alkaloids derived from the 

amino acids phenylalanine and tyrosine. The term “polyphenol” should be used to define compounds 

exclusively derived from the shikimate/phenylpropanoid and/or the polyketide pathways, featuring 

more than one phenolic unit and deprived of nitrogen-based functions. 

1.5. Categories of Polyphenols 

Polyphenols can be classified into several categories: The flavonoids are obtained by the 

lengthening of the side chain of cinnamic acids by the addition of one or more C2 units, typically 

resulting in mixed biosynthesis metabolites with important biological properties. In particular, these 

polyphenolic compounds have 15-carbon skeletons, represented as the C6-C3-C6 system. The 

flavonoids are 1,3-diarylpropanes, isoflavonoids are 1,2-diarylpropanes, and neoflavonoids are 

1,1-diarylpropanes. The term “flavonoid” was first used by Geismann and Hinreiner [17] in 1952 for 

the classification of those compounds whose structure is correlated to the 2-phenylchroman 

heterocyclic system (flavan). Their skeleton is made up of two benzene rings with a chain of three 

carbon atoms of a -pyrone system. Thus, the several flavonoidic compound classes differ in the 

oxidation states of their heterocyclic systems. Single constituent flavonoids of every class are mainly 

distinguished by the number and the stereochemistry of the hydroxyl groups and/or methoxyls on the 

two benzene rings and/or the heterocyclic system. These replacements are found in defined positions 

of flavonoids, such that they indicate a different biogenetic origin for two aromatic rings, A and B. In 

many cases, then, the flavonoidic compounds have been isolated, such as glycosides, one or more 

hydroxyl groups are joined with a hemiacetalic bound, generally through the C-1 carbon and with a 

bond of type , to one or more sugars. Flavonoids are fundamentally important for ecological role as 

pigment in flowers and fruits. Flavonoids are important for plants' ecological roles in that they are the 

pigments that give colour to fruits and flowers, thereby attracting pollinators. The coumarins are 

typical metabolites of higher plants. The benzo-2-pyrone nucleus of the simple coumarins derives from 

the phenylacrylic skeleton of cinnamic acids via orto-hydroxylation, trans-cis isomerisation of the side 

chain double bond, and lactonisation. The sequences and the mechanisms of such processes are still 

uncertain in most cases, in particular trans-cis isomerisation of the double bond could occur under 
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enzymatic catalysis, through a photochemical process, or through other mechanisms, such as a 

reduction-dehydrogenation sequence. The lignans comprise a group of natural compounds with carbon 

skeletons derived from two phenylpropane units joined together by at least one carbon-carbon bond 

between the two central -carbons of the C3 chains (lignans) or by bonds other than the ’-carbon-

carbon bond (neolignans). The aromatic rings are usually oxysubstituted, particularly at the para 

position with respect to side-chain substitution. No lignan has been isolated with an unsubstituted 

phenyl ring and monosubstituted examples are also rare. Generally at least one of the aromatic rings is 

oxygenated at the 3- and 4-positions. In some cases one of the aromatic rings is modified partially or 

completely to an alicyclic system which may also undergo cyclization process with the side chain of 

other C6-C3 units [18,19]. 

Compounds formed by shortening of the side chain of the phenylpropane skeleton can be divided 

into three groups: the C6-C2 compounds, with loss of the carboxylic carbon, to form alcohols or 

catabolites of cinnamic acids [18,20,21] used by plants for example in the biosynthesis of alkaloids, 

the C6-C1 compounds, such as benzoic acids and their variously oxygenated derivatives are very 

common in Nature [18,20,21] and they are usually found as glycosides that is conjugated with an 

aldose (usually D-glucose) through phenolic hydroxyls, or as esters, that is with their carboxylic group 

esterified with either alcohols or polyphenols. Finally, the C6 compounds, derive from the non-

oxidative decarboxylation of the corresponding benzoic acids to form hydroquinones which are rarely 

found in higher plants [22]. 

2. Antibacterial Activity of Plant Polyphenols 

Phenolic compounds have diverse defensive functions in plants, such as cell wall strengthening and 

repair (lignin and suberin) [23] and antimicrobial and antifungal activities. Some polyphenols are 

phytoanticipins, compounds with a defensive role that are not synthesised in response to a pathogen 

attack but rather are constitutively present in plant cells [24]. Phenolic constituents occur on the 

surface of plants or in the cytoplasmic fraction of the epidermal cells, where they act as a deterrent to 

pathogens. In contrast, phenolic phytoalexins are secreted by wounded plants or in response to 

incompatible pathogens [25]. The induced defence response includes cell death and the formation of a 

lesion that limits the growth of the pathogen. Cells around the lesion accumulate polyphenols and other 

antibiotic compounds [26]. Pholyphenols as catechin act on different bacterial strains belonging to 

different species (Escherichia coli, Bordetella bronchiseptica, Serratia marcescens, Klebsiella 

pneumonie, Salmonella choleraesis, Pseudomonas aeruginosa, Staphilococcus aureus, and Bacillus 

subtilis) by generating hydrogen peroxide [27] and by altering the permeability of the microbial 

membrane [28]. Microbes stressed by exposure to polyphenols upregulate proteins related to defensive 

mechanisms, which protect cells while simultaneously downregulating various metabolic and 

biosynthetic proteins involved, for example, in amino acid and protein synthesis as well as 

phospholipid, carbon, and energy metabolism [29]. Moreover, polyphenols have been reported to 

interfere with bacterial quorum sensing, i.e., the production of small signal molecules by bacterial cells 

of Escherichia coli, Pseudomonas putida and Burkholderia cepacia that trigger the exponential growth 

of a bacterial population [30]. 

A large body of evidence indicates that many plants used as folk remedies contain high 

concentrations of polyphenolic compounds [31]. Plants from a wide range of angiosperm families 
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show antibacterial activity. In one study, 35 of 146 seed extracts inhibited microbial growth, and the 

biocidal activity of the seed extracts correlated with their polyphenol content. Plants from more than 

20different families, including Asteraceae, Fabaceae, Poaceae, Lythraceae, Onagraceae, Polygonaceae, 

Primulaceae, and Verbenaceae showed bactericidal action [32]. Members of the Geraniaceae and 

Rosaceae families are also rich in polyphenolic compounds with antimicrobial activity [33], and 

Cydonia oblonga Miller, a member of the latter family, was found to be an important source of 

polyphenols that are active against bacteria growth [34]. Polyphenols with relevant biocidal activity 

have been isolated from members of other plant families: Taguri et al. [35] isolated castalagin and 

protodelphinidin flavenoids that are fundamentally important for ecological role as pigments in flowers 

and fruits, from Castanea crenata Siebold & Zucc (Fagaceae) and Elaeocarpus sylvestris (Lour.) Poir. 

var. ellipticus (Elaeocarpaceae), respectively, and found them to be effective against different bacterial 

strains [35]. 

3. Pathogenesis of Dental Caries 

Dental caries is a multi-factorial infectious disease, arising from the interplay between oral flora, the 

teeth and dietary factors. Dietary carbohydrates, mainly mono- and disaccharides, are absorbed into 

dental plaque and broken down into organic acids by the micro-organisms present in dense 

concentrations. The mineral content of teeth is sensitive to increases in acidity from the production of 

lactic acid. Specifically, a tooth (which is primarily mineral in content) is in a constant state of back-and-

forth demineralization and remineralization between the tooth and surrounding saliva. When the pH at 

the surface of the tooth drops below 5.5, demineralization proceeds faster than remineralization (meaning 

that there is a net loss of mineral structure on the tooth's surface). This results in the ensuing decay. 

Several strains of oral streptococci are capable of initiating the formation of dental plaque, which 

plays an important role in the development of caries and also of periodontal disease in humans [36]. 

Dental plaque has been implicated as an important etiologic factor in dental caries [37]. It is a complex 

bacterial biofilm community for which the composition is governed by factors such as cell adherence, 

coaggregation, and growth and survival in the environment [38]. Plaque bacteria utilize the readily 

fermentable carbohydrates on tooth surfaces to produce acids that promote and prolong the cariogenic 

challenge to teeth, leading to enamel demineralization and tooth decay. The development and 

progression of dental caries depends on the amount of food particles that become trapped on the 

surfaces of teeth that may serve as ready sources of fermentable carbohydrates, thereby promoting acid 

production by plaque bacteria. This prolongs the cariogenic challenge to the teeth, leading to enamel 

demineralization and tooth decay. 

The major aetiological players are thought to be the two α-haemolytic streptococci, Streptococcus 

mutans and Streptococcus sobrinus, which are potent cariogenics, although several other types of 

bacteria (notably lactobacilli and actinomyces) may also be involved. 

S. mutans produces three types of glucosyltransferase (GTFB, GTFC, and GTFD) which 

polymerize the glucosyl moiety from sucrose and starch carbohydrates into α1,3- and α1,6-linked 

glucans [39,40]. Binding to glucans by glucan binding proteins (GbpA, -B, -C and -D) and by the Gtfs 

facilitates bacterial adherence to tooth surfaces, inter-bacterial adhesion and accumulation of 

biofilms [40,41]. GtfBC&D and GbpABC&D, together with the adhesive extracellular glucans, 
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constitute the sucrose-dependent pathway for S. mutans to establish on tooth surface and are of central 

importance in plaque formation and development of caries [39,40]. 

The adherent glucan also contributes to the formation of dental plaque, in which the accumulation 

of acids leads to localised decalcification of the enamel surface. The carbohydrate substrates can 

become available either directly (as sugar ingested in food or drink) or be derived from dietary starch 

by the action of bacterial or salivary amylases, or both. Polyphenols have been shown in many studies, 

both in animals and in humans, to interfere specifically with each of the processes described [42]. 

4. Anti-Cariogenic Action of Polyphenols 

A variety of compounds capable of controlling dental caries have been extensively surveyed; 

however, only limited numbers of compounds from natural products are available because of 

effectiveness, stability, odour, taste, and economic feasibility [43,44]. The effects of polyphenols have 

been surveyed through both in vitro studies investigating the effect of polyphenols against mutans 

streptococci and in vivo studies in animals and humans [45-48]. 

4.1. In Vitro Studies 

Studies on the activities of phenolic compounds toward cariogenic bacteria can be divided based on 

the chemical structure of the compound under study (Figures 2–4 and Table 1). Few studies deal with 

the anti-streptococcal action of simple polyphenols. Xanthorrhizol (XTZ), isolated from Curcuma 

xanthorrhiza Roxb., has been reported to possess antibacterial activity against several oral pathogens, 

and it has shown to have rapid bactericidal activity against S. mutans [49]. The activity of XTZ in 

removing S. mutans biofilm was dependent on its concentration and exposure time as well as the 

growth phase of the biofilm. A concentration of 5 µmol L−1 of XTZ completely inhibited biofilm 

formation by S. mutans at the adherent phase of growth, whereas 50 µmol L−1 of XTZ removed 76% of 

the biofilm at the plateau accumulated phase after a 60-min exposure. Another simple phenol, 

bakuchiol, isolated from Psoralea corylifolia L, showed inhibitory activity against S. mutans [50]. 

Yanti et al. [51] reported anti-biofilm activity of macelignan, isolated by nutmeg (Myrisica fragrans 

Houtt.) against oral bacteria including S. mutans, S. sanguinis and Actinomyces viscosus. This study 

demonstrated that macelignan activity at 10 µg/mL for a 30 min exposure time could remove more 

than half of each single oral biofilm formed by S. mutans, S. sanguinis and A. viscosus at the plateau 

accumulated phase (24 h). 

From an ethanol extract of Alcea longipedicellata (Malvaceae) malvidin-3,5-diglucoside (malvin) 

was identified as the principal constituent which was responsible for antibacterial activity. 0.1% 

malvin could inhibit strongly acid producing ability of S. mutans and was about 60% effective in 

inhibiting bacterial adherence [52]. Kuwanon G, isolated from a methanol extract of root bark of 

Morus alba L. showed bactericidial action in 1 min. at a concentration of 20 μg/mL against S. mutans 

and other cariogenic bacteria as S. sobrinus, S. sanguinis and Porpyromonas gengivalis [53]. 

The activity of crude ethanol extract from Piper cubeba seeds, the purified compounds (−)-cubebin 

and its semi-synthetic derivatives were evaluated against oral pathogens. The crude ethanol extract was 

more active against S. salivarium (MIC value of 80 μg/mL) and purified compounds and semisynthetic 

derivaties displayed MIC values ranging from 0.20 mM for S. mitis to 0.32 mM for S. mutans [54]. 
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The active flavonoid compound, quercetin-3-O-α-L-arabino-pyranoside (guaijaverin) isolated from 

Psidium guajava L. demonstrated high potential antiplaque agent by inhibiting the growth of the S. 

mutans [55]. Magnolol and honokiol isolated from extracts of Magnolia sp. bark have a phenyl-propanoid 

dimer structure and are active against the cariogenic bacterium S. mutans (M.I.C. 6.3 mg/mL) [56]. 

Figure 2. Chemical structures of active polyphenols. 1 Xanthorrhizol; 2 Bakuchiol; 

3 Macelignan; 4 Malvin; 5 Kuwanon G; 6 (−)-Cubebin; 8 Magnolol; 9 Honokiol; 

10 Dihydrobiochanin A; 11 Ferreirin; 12 Dihydrocajanin; 13 Dalbergioidin. 

  



Molecules 2011, 16              

 

1494

Figure 3. Chemical structures of active polyphenols: 7 Guaijaverin; 14 Lavandulylflavanone; 

15 Artocarpin; 16 Artocarpesin; 17 Erycristagallin; 18 Luteolin; 19 Quercetin; 

22 Quercetin-3-arabinofuranoside; 23 Myricetin. 

 

Figure 4. Chemical structures of active polyphenols: 25 Theaflavin; 26 Theaphlavin 

monogallate A; 27 Theaphlavin monogallate B; 28 Theaphlavin digallate; 

29 Epigallocathechin gallate. 
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Figure 4. Cont. 

 

Table 1. Activity of plant phenolics against Streptococcus mutans. 

N. Name 
Mol. 
weight 

Plant name 
Part of 
the plant 

Activity against 
S. mutans 

References

1 Xanthorrhizol 218.3 
Curcuma 
xanthorrihiza Roxb 

rhizome 
5 mmol L−1 inhibit 
biofilm formation 

[49] 

2 Bakuchiol 256.4 
Psoralea 
corylifolia L. 

seeds 
20 µg/mL 
prevented growth 

[50] 

3 Macelignan 328.4 
Myristica fragrans 
Houtt. 

seeds 

10 μ/mL for 30’ 
exposure removed 
>50% of primary 
biofilm formed by 
S. mutans, S. 
sanguinis and A. 
viscosus 

[51] 

4 Malvin 655.2 
Alcea 
longipedicellata I. 
Riedl 

flowers 
M.I.C. 0.16 
mg/mL for S. 
mutans 

[52] 

5 Kuwanon G 692.7 Morus alba L. Root bark M.I.C. 8 μg/mL [53] 
6 (−)-Cubebin 356.4 Piper cubeba L. seeds M.I.C. 0.32 mM [54] 
7 Guaijaverin  Psidium guaiava L. leaves M.I.C. 4 mg/mL [55] 

8 Magnolol 266.3 
Magnolia 
officinalis 

bark 
0.32 mg/mL 
reduced by 87.3% 
GTF activity 

[56] 

9 Honokiol 266.3 
Magnolia 
officinalis 

bark 
0.32 mg/mL 
reduced by 58.1% 
GTF activity 

[56] 

10 Dihydrobiochanin A 286.3 
Swartzia polyphylla 
DC 

heartwood M.I.C. 50 µg/mL [65] 

11 Ferreirin 302.3 
Swartzia polyphylla 
DC 

heartwood M.I.C. 50 µg/mL [65] 

12 Dihydrocajanin 302.3 
Swartzia polyphylla 
DC 

heartwood M.I.C. 100 µg/mL [65] 

13 Dalbergioidin 288.3 
Swartzia polyphylla 
DC 

heartwood M.I.C. 100 µg/mL [65] 

14 Lavandulylflavanone 438.5 
Sophora exigua 
Craigg 

heartwood 
Growth inhibition 
in the range 1.56–
6.25 µg/mL 

[66] 
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Table 1. Cont. 

15 Artocarpin 436.5 
Artocarpus 
heterophyllus Lam. 

heartwood M.I.C. 6.25 µg/mL [67] 

16 Artocarpesin 354.4 
Artocarpus 
heterophyllus Lam. 

heartwood M.I.C. 6.25 µg/mL [67] 

17 Erycristagallin 392.5 
Erythrina 
variegata L. 

root M.I.C. 6.25 µg/mL [68] 

18 Luteolin 286.2 
Perilla frutescens 
Britton var. 
japonica Hara. 

seeds 
M.I.C. 50–100 µg/mL 
(on different S. mutans 
strains) 

[69] 

19 Quercetin 302.2 Commercial source - 
Inhibition of adhesive 
glucan formation in the 
range 1.5–50 µg/mL 

[73] 

20 Proanthocyanidins  / 
Humulus lupulus 
L. 

bracts 

0.01%, Hop Bracts 
Polyphenols (HBP) 
containing 35% 
proanthocyanidins 
caused 80% inhibition 
of GTF  

[79] 

21 Tannins / Areca catechu L. nut 
50% of growth 
inhibition at a 15% 
concentration 

[82] 

22 
Quercetin-3-
arabinofuranoside 

434.3 
Vaccinium 
macrocarpon Ait. 

fruit 
21–41% Inhibition of 
GTF activity at 
500 mmol L−1 

[82] 

23 Myricetin 318.0 
Vaccinium 
macrocarpon Ait. 

fruit 
15-28% Inhibition of 
GTF activity at 
500 mmol L−1 

[82] 

24 Procyanidin A2 576.1 
Vaccinium 
macrocarpon Ait. 

fruit 
21–41% Inhibition of 
GTF activity at 
500 mmol L−1 

[82] 

25 Theaflavin  564.1 
Camellia sinensis 
L. 

leaves 
Inhibition of GTF 
activity in the range  
1–10 mM 

[85] 

26 
Theaphlavin 
monogallate A 

716.3 
Camellia sinensis 
L. 

leaves 
Inhibition of GTF 
activity in the range  
1–10 mM 

[85] 

27 
Theaphlavin 
monogallate B 

716.3 
Camellia sinensis 
L. 

leaves 
Inhibition of GTF 
activity in the range  
1–10 mM 

[85] 

28 Theaphlavin digallate  868.1 
Camellia sinensis 
L. 

leaves 
Inhibition of GTF 
activity in the range  
1–10 mM 

[85] 

29 
Epigallocathechin 
gallate 

458.4 
Camellia sinensis 
L. 

leaves 
167 mg/L caused 91% 
growth inhibition* 

[85] 

M.I.C. = Minimum Inhibition Concentration. GTF = Glucosyltransferases. 
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There is a large body of evidence supporting the inhibition of cariogenic bacteria by larger phenolic 

compounds, which are considered the “true” polyphenols. Research on this subject can be divided into 

two groups: (a) studies on fractions of plant extracts containing high concentrations of polyphenols, 

without the identification of individual compounds occurring in the extracts and (b) reports of the 

antibacterial activity of specific polyphenols. 

The first group includes some early studies, such as that performed by Ooshima who examined the 

inhibitory effects of the cacao bean husk extract (CBH) on the caries-inducing properties of mutans 

streptococci in vitro and on caries development in specific pathogen-free Sprague-Dawley rats infected 

with mutans streptococci. He demonstrated that the CBH reduced the growth rate of almost all oral 

streptococci examined, which resulted in the reduction of acid production [57]. 

Subsequently, phenolic substances were suggested to be responsible for the observed anti-caries 

effect of cocoa powder [58], probably due to their inhibition of the synthesis of water-insoluble 

glucans [59]. 

Onion extracts have been reported to act on Streptococcus mutans and Streptococcus sobrinus as 

well as Porphyromonas gingivalis and Prevotella intermedia, which are considered to be the main 

causal bacteria of adult periodontitis [60]. Although no active components of the onion extracts were 

identified, onion is among the richest sources of flavonoids and contributes significantly to the overall 

dietary intake of flavonoids [61]. 

An in vitro study demonstrated that the tea polyphenol (TP) has no effect on de/remineralisation of 

enamel blocks, but it exerts an anti-caries effect via an anti-microbial mode-of-action [62]. 

Smullen et al. [63] have shown that extracts from unfermented cocoa, green tea, and red grape seeds, 

all with a high polyphenol content, are effective against S. mutans and reduce its adherence to glass. 

Moreover, grape seed extracts inhibit the growth of anaerobic bacteria, such as Porphyromonas 

gingivalis and Fusobacterium nucleatum, associated with periodontal diseases [64]. 

There are numerous reports of the anti-streptococcal action of flavonoids. Three known 

isoflavanones, dihydrobiochanin A, ferreirin and darlbergioidin, and one new isoflavanone, 

5,2',4'-trihydroxy-7-methoxyisoflavanone (dihydrocajanin), which was isolated from Swartzia 

polyphylla DC heartwood, had potent activity against cariogenic bacteria [65]. A lavandulylflavone 

isolated from Sophora exigua Craig completely inhibited the growth of oral bacteria, including 

primary cariogenic mutans streptococci, other oral streptococci, actinomycetes, and lactobacilli, at 

concentrations of 1.56 to 6.25 mg/mL [66]. Isoprenylflavones from Artocarpus heterophyllus showed 

antibacterial activity against cariogenic bacteria [67]. Sato et al. [68] reported that erycristagallin from 

Erythrina variegata showed a high antibacterial activity against mutans streptococci, other oral 

streptococci, actinomycetes, and lactobacilli. 

In recent years, polyphenols from some edible plants have attracted attention as potential sources of 

agents capable of controlling the growth of oral bacteria. Extracts from Perilla frutescens var. japonica 

seeds have shown inhibitory activity against oral cariogenic Streptococci and periodontopathic 

Porphyromonas gingivalis. Perilla seed polyphenols were isolated and their activity was tested. The 

flavonoid luteolin was the phenol that was most active against bacterial growth [69]. 

Sunphenon is a mixture of flavonols isolated from leaves of Camellia sinensis. The major 

components of this mixture are (+)-catechin, (+)-gallocathechin, (−)-epicathechin, (−)-epicathechin 

gallate, (−)-epigallocathechin, and (−)-epigallocathechin gallate [70]. The addition of Sunphenon to 
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S. mutans JC-2 (c) decreased cell viability; multiple applications of Sunphenon caused the death of 

cells, and the maximum effect was seen with treatment of 60 and 90 minutes. [71]. 

4.2. Inhibition of Adherence 

The adherence of bacterial cells to the tooth surface is of great importance to the development of 

carious lesions, and interference with some of the mechanisms of adherence can prevent the formation of 

carious lesions [72]. Polyphenols are able to interact with microbial membrane proteins, enzymes, and 

lipids, thereby altering cell permeability and permitting the loss of protons, ions, and macromolecules [28]. 

One of the first studies on this topic reported that quercetin, in the range 12.5–50 mg/mL, was effective 

in preventing adhesive glucan formation by S. mutans strains [73] 

A chromatographically isolated oolong tea polyphenol (OTF6) may inhibit bacterial adherence to 

the tooth surface by reducing the hydrophobicity of mutans streptococci [61]. An in vitro study 

demonstrated that when S. mutans JC-2 (c) was pretreated with Sunphenon, its cellular attachment to a 

saliva-treated hydroxyapatite surface was significantly reduced [71]. 

Barley coffee (BC) interferes with Streptococcus mutans adsorption to hydroxyapatite. A low-

molecular-mass (<1,000 Da) fraction containing polyphenols, zinc, and fluoride ions and a high-

molecular-mass (>1,000 kDa) melanoidin fraction displayed strong anti-adhesive properties towards S. 

mutans [74]. A cocoa polyphenol pentamer (the most active component from M.I.C. studies) 

significantly reduced biofilm formation and acid production by S. mutans and S. sanguinis. [75]. 

4.3. Inhibition of Glucosyltransferase and Amylase 

The enzymatic activity of glucosyl transferase from Streptococcus mutans is inhibited by plant 

polyphenols. Apple polyphenols extracted from immature fruits markedly reduced the synthesis of 

water-soluble glucans by glycosyl transferases (GTF) of S. mutans and S. sobrinus but did not inhibit 

salivary α-amylase activity. GTF inhibitors from apples are high-molecular-weight polyphenols with a 

chemical structure similar to catechin-based oligomeric forms and/or gallate-ester compounds [76]. 

Procyanidins from betel nuts (the seed of Areca catechu L.) were the major inhibitors of 

glucosyltransferase from S. mutans [77]. A high-molecular-weight polyphenol of Humulus lupulus L. 

(HBP) inhibited the cellular adherence of S. mutans MT8148 (serotype C) and S. sobrinus ATCC 

33478 (serotype g) at much lower concentrations than those needed for the polyphenols extracted from 

oolong tea or green tea leaves. Furthermore, HBP also inhibited the action of glucosyltransferase, 

which was involved in the synthesis of water-insoluble glucan, but did not suppress the growth or acid 

production of the bacteria [78]. H. lupulus polyphenols significantly reduced the growth of S. mutans 

compared to the control. After an 18-hour incubation, HBP at 0.1% and 0.5% significantly reduced 

lactic acid production, and HBP at 0.01%, 0.1%, and 0.5% also suppressed water-insoluble glucan 

production [79]. The polyphenols from bracts of H. lupulus were purified by countercurrent 

chromatography (CCC). The most potent cavity-prevention activity was found in a very hydrophilic 

fraction, whose major components were high-molecular-weight substances, probably proantho-

cyanidins, consisting of approximately 22 catechin units in their structures [80]. 

Grape and pomace phenolic extracts inhibited GTF of S. mutans at concentrations of 62.5 µL/mL. 

These extracts had qualitative and quantitative differences in their phenolic content but similar activity 
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toward S. mutans GTF [81]. Extracts of flavonols (FLAV) and proanthocyanidins (PAC) from 

American cranberry (Vaccinium macrocarpon Ait.), alone or in combination, inhibited the surface-

adsorbed glucosyltransferase and F-ATPase activities as well as acid production by S. mutans cells [82]. 

Flavonols and proanthocyanidins moderately inhibited the activity of surface-adsorbed GTF and 

disrupted acid production by S. mutans cells without killing them. The combination of three 

flavonoids, quercetin-3-arabinofuranoside, myricetin, and procyanidin, displayed pronounced 

biological effects on S. mutans, suggesting that the bactericidal activity could be the result of 

synergistic effects of flavonoids occurring in cranberry extracts [83]. A subsequent study by 

Yarnanaka-Omada et al. has confirmed that cranberry polyphenols are effective against hydrophobicity, 

biofilm formation, and bacterial growth of S. mutans [84]. 

Extracts of oolong tea and its chromatographically isolated polyphenolic compound inhibited 

insoluble glucan synthesis from sucrose by the GTases of Streptococcus mutans MT8148R and S. 

sobrinus 6715 [85]. Moreover, both extracts caused a decrease in the cell-surface hydrophobicity and 

aggregation of S. mutans, S. oralis, S. sanguinis, and S. gordonii [86]. Among the flavonoids isolated 

from tea infusions, theaflavin and its mono- and digallates were strong inhibitors of the synthesis of 

adherent water-insoluble glucans from sucrose catalysed by a glucosyltrasferase (GTF); (+)-catechin, 

(−)-epicatechin, and their enantiomers were moderately active, and galloyl esters of (−)-epicatechin, 

(−)-epigallocatechin, and (−)-gallocatechin showed increased inhibitory activities [87]. 

4.4. In Vivo Studies 

Research in the field of dental caries using human subjects has been restricted for a number of 

reasons. First, dental decay is a disease of slow progression. Indeed, it has been estimated that a new 

lesion in a permanent tooth takes between 18 and 60 months to become clinically detectable [88]. 

Second, once established, a lesion is irreversible, thus experimental induction of caries is wholly 

unethical. Third, because of the length of the study period, it is quite impossible to obtain dietary 

histories and even less possible to control dietary intake. Fourth, perhaps most importantly, diet is but 

one of a large group of secondary factors, many of which may still be unknown, that contribute to an 

individual’s experience of this multifactorial disease. 

For these reasons, most of the research on dental caries and diet has been carried out in animals, the 

rat model being by far the most common. Because of the dental and other obvious differences between 

humans and rats, the application of these animal findings to humans must be carried out with great 

caution. Clearly, this problem has greatly restricted the rate of progress in our knowledge and 

understanding of the precise role of dietary factors in relation to dental decay. 

The majority of current commercial antiplaque products are antimicrobial compounds, but many 

antibiotic and chemical bactericides currently used to prevent bacterial infection disturb the bacterial 

flora of the oral cavity and digestive tract [89]. According to Eley [90], commercial mouthwashes can 

be grouped in three categories: 

(1) Mouthwashes with good substantivity and antibacterial spectrum with a good anti-plaque effects. 

To this group belong biguanides as chlorhexidine; the effect of concentrated 1% chlorhexidine 

gel, on oral bacteria salivary levels can be observed after a couple of applications but this use 

requires professional supervision [91]; 
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(2)  Mouthwashes agents with little or no substantivity but with a good antibacterial spectrum. They 

have plaque inhibitory effects but lack true anti-plaque effects. In this category are included: 

cetyl pyridinium chloride, a quaternary ammonium compound, Listerine, which contains 

essential oil and phenolics (menthol, thymol, and eucalyptol), and triclosan, a trichlora-2'-

hydroxydiphenyl ether; 

(3)  Antiseptic mouthwashes that have be shown to have antibacterial effects in vitro but in clinical 

studies have been shown to have low/negligible plaque inhibitory effects. Hexetidine (Oraldene), 

povidone iodine, oxygenating agents and the natural product sanguinarine, a 

benzophenanthridine alkaloid, are members of this third group. 

Presently, no polyphenol has been included in the formulation of mothwashes or toothpaste. An 

eligible polyphenol should combine oral retentiveness with antibacterial activity, thus maintaining a 

prolonged activity in the mouth. However, over the last decade the protective effects of polyphenols 

was instigated also in some human studies. 

The administration of oolong tea extract and the isolated polyphenol compound in the diet and 

drinking water resulted in significant reductions in caries development and plaque accumulation in the 

rats infected with mutans streptococci [85]. A study on black tea has determined the effects of a 

standardised black tea extract (BTE) on caries formation in inbred hamsters that were fed regular and 

cariogenic diets. The frequent intake of black tea significantly decreased caries formation by 56,6% in 

hamster on a regular diet and by 63,7% in hamsters on a cariogenic diet [92]. 

A clinical test to evaluate the effect of a mouthwash containing 0.1% H. lupulus bract polyphenols 

(HBP) on dental plaque regrowth over three days has shown that the HBP mouthwash was effective in 

reducing dental plaque regrowth (total plaque reduction of 25.4% compared with the placebo), and it 

lowered the number of mutans streptococci [93]. 

Furthermore, on human, significantly lower mean Plaque Index was observed among 35 volunteers 

who rinse their mouth with oolong tea extract OTE solution containing polymerized polyphenols for 

one week [94]. A significantly lower DMFT score was also observed in 14 year old children who drank 

tea (whether with added sugar or not) in comparison to coffee drinkers [95]. 

Zhang and Kashket [96] reported, moreover, that green tea extracts inhibit human salivary amylase 

and may reduce the cariogenic potential of starch-containing food such as crackers and cakes because 

they may reduce the tendency of this kind of food to serve as slow-release sources of fermentable 

carbohydrate. 

The possible protective effect of cocoa on dental caries is also receiving increasing attention, but 

previously published data concerning the anticariogenic effects of constituents of chocolate are 

conflicting. An early study indicated that a high-sucrose diet was equally cariogenic in the presence or 

absence of cocoa bean ash [97], while the incorporation of cocoa powder or chocolate into hamster 

diets was reported to reduce caries [98]. Another in vivo study showed that the cariogenic potential 

indices (CPI) of chocolate with high cocoa levels was less than 40% that of sucrose (10% w/v) and 

also lower than that of chocolate containing low cocoa levels [99]. The anticariogenic effects of 

polyphenols isolated from cocoa have not yet been studied. Recently, the ground husks of cocoa beans, 

which are a product of cocoa manufacturing that have a high polyphenol content, were used to prepare 

a mouthwash for children. The regular use of this mouthwash gave a 20.9% reduction in mutans 

streptococci counts and was even more effective in decreasing plaque scores [100]. 
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5. Conclusions 

The studies carried out in recent decades have confirmed the antibacterial role of polyphenols: they 

may reduce bacterial growth rate and adherence to tooth surface, and also can perform inhibitory 

effects on the enzymatic activity of glucosyltransferase and amylase. Moreover, polyphenols largely 

occur in flowering plants and could be used at a reasonable cost in the preparation of specific 

remedies. Flavonoids seem to be particularly promising anticariogenic molecules, but research on the 

relationships between chemical structure and anti-microbial activity of these compounds, as well as 

their synergistic/antagonistic effects, is still required. 

References 

1. Arakawa, H.; Maeda, M.; Okubo, S.; Shimamura, T. Role of hydrogen peroxide in bactericidal 

action of catechin. Biol. Pharm. Bull. 2004, 27, 277-281. 

2. Badria, F.A.; Zidan, O.A. Natural products for dental caries prevention. J. Med. Food 2004, 7, 

381-384. 

3. Banas, J.A.; Vickerman, M.M. Glucan-binding proteins of the oral streptococci. Crit. Rev. Oral 

Biol. Med. 2003, 14, 89-99. 

4. Banas, J.A. Virulence properties of Streptococcus mutans. Front. Biosci. 2004, 9, 1267-1277. 

5. Bernaert, H.; Allegaert, L. Topical Skin Cosmetics Comprising a Cocoa Polyphenol Extract 

Combination with SUS-Rich Fat. U.S. Patent 2009/0233518 A1, October 22, 2009. 

6. Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication 

during Agrobacterium and Rhizobium infection. Mol. Plant Pathol. 2010, 11, 705-719. 

7. Borchardt, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Fulcher, R.G.; Ehlke, N.J.; Biesboer, 

D.D.; Bey, R.F. Antioxidant and antimicrobial activity of seed from plants of the Mississippi 

river basin. J. Med. Plants Res. 2008, 2, 81-93. 

8. Bowden, G.H. Controlled environment model for accumulation of biofilms of oral bacteria. 

Methods Enzymol. 1999, 310, 216-224. 

9.  Bowen, W.H. Nature of plaque. Oral Sci. Rev. 1976, 9, 3-21. 

10. Burne, R.A. Oral streptococci products of their environment. J. Dent. Res. 1998, 77, 445-452. 

11. Cho, Y.S.; Schiller, N.L.; Kahng, H.Y.; Oh, K.H. Cellular responses and proteomic analysis of 

Escherichia coli exposed to green tea polyphenols. Curr. Microbiol. 2007, 55, 501-506. 

12. Cutillo, F.; D'Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol 

derivatives from Malva silvestris. Phytochemistry 2006, 67, 481-485 

13. Cutillo, F.; DellaGreca, M.; Gionti, M.; Previtera, L.; Zarrelli, A. Phenols and lignans from 

Chenopodium album. Phytochem. Analysis 2006, 17, 344-349. 

14. D'Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Monaco, P.; Zarrelli, A. Low molecular weight 

phenols from the bioactive aqueous fraction of Cestrum parqui. J. Agr. Food Chem. 2004, 52, 

4101-4108. 

15. DellaGreca, M.; Previtera, L.; Temussi, F.; Zarrelli, A. Low-molecular-weight components of 

olive oil mill waste-waters. Phytochem. Analysis 2004, 15, 184-188. 



Molecules 2011, 16              

 

1502

16. Duarte, S.; Gregoire, S.; Singh, A.P.; Vorsa, N.; Schaich, K.; Bowen, W.; Koo, H. Inhibitory 

effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans 

biofilms. FEMS Microbiol. Lett. 2006, 257, 50-56. 

17. Esmeelian, B.; Kamrani, Y.Y.; Amoozegar, M.A.; Rahamani, S.; Rahimi, M.; Amanlou, M. Anti-

cariogenic propreties of malvidin-3,5-diglucoside isolated from Alcea longipedicellata against 

oral bacteria. Int. J. Pharmacol. 2007, 3, 468-474. 

18. Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioini, A.; Dessi, S.; Marzouki, N.; 

Cabras, P. Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel 

polyphenolic extracts. J. Agric. Food Chem. 2007, 5, 963-969. 

19. Featherstone, J.D. The science and practice of caries prevention. J. Am. Dent. Assoc. 2000, 131, 

887-899. 

20. Figueira, L. Resveratrol: Role in cardiovascular disease and cancer. Informe Medico (Caracas, 

Venezuela), 2010, 12, 73-83. 

21. Fiorentino, A.; DellaGreca, M.; D'Abrosca, B.O.P.; Golino, A.; Izzo, A.; Zarrelli, A.; Monaco, P. 

Lignans, neolignans and sesquilignans from Cestrum parqui l'Her. Biochem. Syst. Ecol. 2007, 35, 

392-396. 

22. Freedman, M.L.; Tanzer, J.M.; Dissociation of plaque formation from glucan-induced 

agglutination in mutants of Streptococcus mutans. Infect. Immun. 1974, 10, 189-196. 

23. Furiga, A.; Lonvaud-Funel, A.; Badet, C. In vitro study of antioxidant capacity and antibacterial 

acitivity on oral anaerobes of a grape seed extract. Food Chem. 2009, 113, 1037-1040. 

24. Geissman, T.A.; Hinreiner, E. Theories of the biogenesis of flavonoid compounds. Botan. Rev. 

1952, 18, 77-164.  

25. Gregoire, S.; Singh, A.P.; Vorsa, N.; Koo, H. Influence of cranberry phenolics on glucan 

synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J. Appl. Microbiol. 

2007, 103, 1960-1968. 

26. Grollier, J.F.; Garnier, L.; Boussouira, B. Cosmetic treatment process based on fruit or vegetable 

polyphenols. PCT Int. Appl. WO 2009109946, 2009.  

27. Haslam, E.; Lilley, T.H.; Warminski, E.; Liao, H.; Cai, Y.; Martin, R.; Gaffney, S.H.; Goulding, 

P.N.; Luck, G. Polyphenol complexation. A study in molecular recognition. ACS Symp. Ser. 1992, 

506, 8-50. 

28. Hattori, M.; Kusumoto, I.T.; Namba, T.; Ishigami, T.; Hara, Y. Effect of tea polyphenols on 

glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem. Pharm. Bull. 1990, 38, 

717-720. 

29. Hu, L.; Wang, H.; Pei, J.; Liu, Y. Research progress of antitumor effects of resveratrol and its 

mechanism. Shandong Yiyao 2010, 50, 111-112. 

30. Hubert, B.; Eberl, L.; Feucht, W.; Polster, J. Influence of polyphenols on bacterial biofilm 

formation and quorum-sensing. Z. Naturforsch. 2003, 58, 879-884. 

31. Ito, K.; Nakamura, Y.; Tokunaga, T.; Iijima, D.; Fukushima, K. Anti-cariogenic properties of a 

water-soluble extract from cacao. Biosci. Biotechnol. Biochem. 2003, 67, 2567-2573. 

32. Ito, M.; Uyeda, M.; Iwanami, T.; Nagakawa, Y. Flavonoids as a possible preventive of dental 

caries. Agric. Biol. Chem. 1984, 48, 2143-2145. 



Molecules 2011, 16              

 

1503

33. Jiang, N. Medicinal composition of plant active components for antiaging and antianaphylaxis. 

Faming Zhuanli Shenqing Gongkai Shuomingshu CN 101496772 August 5, 2009. 

34. Juneia, R.L.; Okubo, T.; Hung, K. Catechins. In Natural Food Antimicrobial; Naidu, A.S., Ed.; 

2000, pp. 381-398. 

35. Kashket, S.; Paolino, V.J.; Lewis, D.A.; van Houte, J. In-vitro inhibition of glucosyltransferase 

from the dental plaque bacterium Streptococcus mutans by common beverages and food extracts. 

Arch. Oral Biol. 1985, 30, 821-826. 

36. Katsura, H.; Tsukiyama, R.I.; Suzuki A.; Kobayashi, M. In vitro Antimicrobial Activities of 

Bakuchiol against Oral Microorganisms. Antimicrob. Agents Chem. 2001, 45, 3009-3013. 

37. Kim, J.H. Anti-bacterial action of onion (Allium cepa L.) extracts against oral pathogenic 

bacteria. J. Nihon Univ. Sch. Dent. 1997, 9, 136-141. 

38. Korkina, L.G.; Mikhal’chik, E.; Suprun, M.V.; Pastore, S.; Dal Toso, R. Molecular mechanisms 

underlying wound healing and anti-inflammatory properties of naturally occurring 

biotechnologically produced phenylpropanoid glycosides. Cell. Mol. Biol. (Noisy-le-grand) 2007, 

53, 84-91. 

39. Krishnan, R.; Maru, G.B. Inhibitory effect(s) of polymeric black tea polyphenol fractions on the 

formation of [(3)H]-B(a)P-derived DNA adducts. J. Agric. Food Chem. 2004, 52, 4261-4269. 

40. Kurumatani, M.; Fujita, R.; Tagashira, M.; Shoji, T.; Kanda, T.; Ikeda, M.; Shoji, A.; Yanagida, 

A.; Shibusawa, Y.; Shindo, H.; Ito, Y. Analysis of polyphenols from hop bract region using CCC. 

J. Liq. Chromatogr. 2005, 28, 1971-1983. 

41. Lattanzio, V. Some physiological and ecological role of plant phenolics. Polyphénols Actualités 

2006, 24, 5-9. 

42. Lee, M.J.; Lambert, J.D.; Prabhu, S.; Meng, X.; Lu, H.; Maliakal, P.; Ho, C.T.; Yang, C.S. 

Delivery of tea polyphenols to the oral cavity by green tea leaves and black tea extract. Cancer 

Epidemiol. Biomarkers Prev. 2004, 13, 132-137. 

43. Li, J.Y.; Zhan, L.; Barlow, J.; Lynch, R.J.; Zhou, X.D.; Liu, T.J. Effect of tea polyphenol on the 

demineralization and remineralization of enamel in vitro. Sichuan Da Xue Xue Bao Yi Xue Ban 

2004, 35, 364-366. 

44. Llorach, R.; Urpi-Sarda, M.; Rotches-Ribalta, M.; Rabassa, M.; Andres-Lacueva, C. Resveratrol: 

From dietary intake to promising therapeutic molecule. Agro Food Ind. Hi-Tech. 2010, 21, 42-44. 

45. Luczaj, W.; Skrzydlewska, E. Antioxidative properties of black tea. Prev. Med. 2005, 40, 910-918. 

46. Manitto, P. Biosynthesis of Natural Products; Ellis Horwood Ltd.: Chichester and New York, 

UK, 1981. 

47. Matsumoto, M.; Minami, T.; Sasaki, H.; Sobue, S.; Hamada, S.; Ooshima, T. Inhibitory effects of 

oolong tea extract on caries-inducing properties of mutans streptococci. Caries Res. 1999, 33, 

441-445. 

48. Milgrom, P.; Riedy, C.A.; Weinstein, P.; Tanner, A.C.; Manibusan, L.; Bruss, J. Dental caries and 

its relationship to bacterial infection, hypoplasia, diet, and oral hygiene in 6- to 36-month-old 

children. Community Dent. Oral Epidemiol. 2000, 28, 295-306. 

49. Murphy, C.M. Plant products as antimicrobial agents. Clin. Microbiol.1999, 12, 564-582. 



Molecules 2011, 16              

 

1504

50. Namba, T.; Tsumezuka, M.; Hattori, M. Dental caries by traditional Chinese medicines (part II), 

potent antibacterial action of Magnoliae Cortex extracts against Streptococcus mutans. Planta 

Med. 1982, 44, 100-106. 

51. Nikitina, V.S.; Kuz’mina, Y.L.; Melent’ev, A.I.; Shendel, G.V. Antibacterial activity of 

polyphenolic compounds isolated from plants of Geraniaceae and Rosaceae families. Appl. 

Biochem. Microbiol. 2007, 43, 629-634. 

52. Ooshima, T.; Minami, T.; Aono, W.; Izumitani, A.; Sobue, S.; Fujiwara, T.; Kawabata, S.; 

Hamada, S. Oolong tea polyphenols inhibit experimental dental caries in SPF rats infected with 

mutans streptococci. Caries Res. 1993, 27, 124-129. 

53. Ooshima, T.; Minami, T.; Matsumoto, M; Fujiwara, T.; Sobue, S.; Hamada, S. Comparison of the 

cariostatic effects between regimens to administer oolong tea polyphenols in SPF rats. Caries 

Res. 1998, 32, 75-80. 

54. Ooshima, T.; Osaka, Y.; Sasaki, H.; Osawa, K.; Yasuda, H.; Matsumura, M.; Sobue, S.; 

Matsumoto, M. Caries inhibitory activity of cacao bean husk extract in in-vitro and animal 

experiments. Arch. Oral Biol. 2000, 45, 639-645. 

55. Osawa, K.; Yasuda, H.; Maruyama, T.; Morita, H.; Takeya, K.; Itokawa, H. Isoflavanones from 

the heartwood of Swartzia polyphylla and their antibacterial activity against cariogenic bacteria. 

Chem. Pharm. Bull. 1992, 40, 2970-2974. 

56. Osbourn, A.E. Preformed antimicrobial compounds and plant defense against fungal attack. Plant 

Cell 1996, 10, 1821-1831. 

57. Parfitt, G.J. The speed of development of the carious cavity. Br. Dent. J. 1956, 100, 204-207. 

58. Park, K.M.; You, J.S.; Lee, H.Y.; Baek, N.I., Hwang, J.K. Kuwanon G: an antibacterial agent 

from the root bark of Morus alba against oral pathogens. J. Ethnopharmacol. 2003, 84, 181-185. 

59. Percival, R.S.; Devine, D.A.; Duggal M.S.; Chartron, S.; Marsh, P.D. The effect of cocoa 

polyphenols on the growth, metabolism, and biofilm formation by Streptococcus mutans and 

Streptococcus sanguinis. Eur. J. Oral. Sci. 2006, 114, 343-348. 

60. Prabu, G.R.; Gnanamani, A.; Sadulla, S. Guaijaverin—a plant flavonoid as potential antiplaque 

agent against Streptococcus mutans. J. Appl. Microbiol. 2006, 101, 487-495. 

61. Rao, S.; Gruber, J.V.; Brooks, G.J. Personal care composition containing yeast/ polyphenol 

ferment extract. US Pat. Appl. Pub. US 20100021532 A1, January 28, 2010. 

62. Reynolds, E.C.; Black, C.L. Cariogenicity of a confection supplemented with sodium caseinate at 

a palatable level. Caries Res. 1989, 23, 368-370. 

63. Rukayadi, Y.; Hwang, J.K. In vitro activity of xanthorrhizol against Streptococcus mutans 

biofilms. Lett. Appl. Microbiol. 2006, 42, 400-404. 

64. Saito, N. Anti-caries effects of polyphenol compound from Camellia sinensis. Nichidai Koko 

Kagaku 1990, 16, 154-163. 

65. Sakagami, H.; Oi, T.; Satoh, K. Prevention of oral diseases by polyphenols. In vivo 1999, 13, 

155-171. 

66.  Sampaio, F.C.; Pereira, M.S.; Dias, C.S.; Costa, V.C.; Conde, N.C.; Buzalaf, M.A. In vitro 

antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. 

J. Ethnopharmacol. 2009, 15, 289-294. 



Molecules 2011, 16              

 

1505

67. Sang, S.; Lambert, J.D.; Tian, S.; Hong, J.; Hou, Z.; Ryu, J.H.; Stark, R.E.; Rosen, R.T.; Huang, 

M.T.; Yang, C.S.; Ho, C.T. Enzymatic synthesis of tea theaflavin derivatives and their anti-

inflammatory and cytotoxic activities. Bioorg. Med. Chem. 2004, 12, 459-467. 

68. Sato, M.; Fujiwara, S.; Tsuchiya, H.; Fujii, T.; Tinuma, M.; Tosa, H.; Ohkawa, Y. Flavones with 

antibacterial activity against cariogenic bacteria. J. Ethnopharmacol. 1996, 54, 171-176. 

69. Sato, M.; Tanaka, H.; Fujiwara, S.; Hirata, M.; Yamaguchi, R.; Etoh, H.; Tokuda, C. Antibacterial 

property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. 

Phytomedicine 2003, 10, 427-433. 

70. Signoretto, C.; Burlacchini, G.; Bianchi, F.; Cavalleri, G.; Canepari, P. Differences in 

microbiological composition of saliva and dental plaque in subjects with different drinking 

habits. New Microbiol. 2006, 29, 293-302. 

71.  Silva, M.L.A.; Coimbra, H.S.; Pereira, A.C., Almeida, V.A.; Lima, T.C.; Costa, E.S.; Vinholis, 

A.H.C.; Royo, V.A.; Silva, R.; Filho, A.A.S.; Cunha, W.R.; Furtado, N.A.J.C.; Martins, C.H.G.; 

Carvalho, T.C.; Bastos, J.K. Evaluation of Piper cubeba extract, (−)-cubebin and its semi-

synthetic derivatives against oral pathogens. Phytother. Res. 2007, 21, 420-422. 

72. Slimestad, R.; Fossen, T.; Vagen, I.M. Onions: a source of unique dietary flavonoids. J. Agric. 

Food Chem. 2007, 5, 10067-10080. 

73. Smullen, J.; Koutsou, G.A.; Foster, H.A.; Zumbé, A.; Storey, D.M. The antibacterial activity of plant 

extracts containing polyphenols against Streptococcus mutans. Caries Res. 2007, 41, 342-349. 

74. Stauder, M.; Papetti, A.; Daglia, M.; Vezzulli, L.; Gazzani, G.; Varaldo, P.E.; Pruzzo, C. 

Inhibitory activity by barley coffee components towards Streptococcus mutans biofilm. Curr. 

Microbiol. 2010, 55, 1-5. 

75. Surarit, R., Koontongkaew, S. Inhibitory effect of betel-nut constituents on acid production of 

oral Streptococcus mutans. In Conference on Science and Technology of Thailand, 

Chulalongkorn University, Bangkok, Thailand, 1988; pp. 378-379. 

76. Tagashira, M.; Uchiyama, K.; Yoshimura, T.; Shirota, M.; Uemitsu, N. Inhibition by hop bract 

polyphenols of cellular adherence and waterinsoluble glucan synthesis of mutans streptococci. 

Biosci. Biotech. Biochem. 1997, 61, 332-335. 

77. Taguri, T.; Tanaka. T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against 

bacteria causing food-borne disease. Biol. Pharm. Bull. 2004, 27, 1965-1969. 

78. Tamba, Y.; Ohba, S.; Kubota, M.; Yoshioka, H.; Yoshioka, H.; Yamazaki, M. Single GUV 

method reveals interaction of tea catechin (−)-epigallocatechin gallate with lipid membranes. 

Biophys. J. 2007, 92, 3178-3194. 

79. Tanzer, J.M.; Livingston, J.; Thompson, A.M. The microbiology of primary dental caries in 

humans. J. Dent. Educ. 2001, 65, 1028-1037. 

80. Thimothe, J.; Bonsi, I.A.; Padilla-Zakour, O.I.; Koo, H. Chemical characterization of red wine 

grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their 

biological activity against Streptococcus mutans. J. Agric. Food. Chem. 2007, 55, 10200-10207. 

81. Tsuchiya, H.; Sato, M.; Tinuma, M.; Yokoyama, J.; Ohyama, M.; Tanaka, T.; Takase, I.; 

Namikawa, I. Inhibition of the growth of cariogenic bacteria in vitro by plant flavanones. 

Experientia 1994, 50, 846-849. 



Molecules 2011, 16              

 

1506

82. Vercauteren, J. Compositions of stilbenic polyphenolic derivatives, their preparation, and their 

use in the treatment of disease and aging. Fr. Demande 2923717 A1, 2009. 

83. Xie, Q.; Li, J.Y.; Zuo, Y.L.; Zhou, X.D. The effect of galla chinensis on the growth of cariogenic 

bacteria in vitro. Hua Xi Kou Qiang Yi Xue Za Zhi 2005, 23, 82-84. 

84. Yaegaki, K.; Tanaka, T.; Sato, T.; Murata, T.; Imai, T.; Tagashira, M.; Akazome, Y.; Hirai, N.; 

Ohtake, Y. Hop polyphenols suppress production of water-insoluble glucan by Streptococcus 

mutans and dental plaque growth in vivo. J. Clin. Dent. 2008, 19, 74-78. 

85. Yamammoto, H.; Ogawa, T. Antimicrobial activity of Perilla seed polyphenols against oral 

pathogenic bacteria. Biosci. Biotechnol. Biochem. 2002, 66, 921-924. 

86. Yamanaka-Okada, A.; Sato, E.; Kouchi, T.; Kimizuka, R.; Kato, T. Inhibitory effect of cranberry 

polyphenol on cariogenic bacteria. Bull. Tokyo Dental Coll. 2008, 49, 107-112. 

87. Yanagida, A.; Kanda, T.; Oliveira Cordeiro, J.G. Inhibitory effects of apple polyphenols and 

related compounds on cariogenic factors of mutans streptococci. J. Agric. Food. Chem. 2000, 48, 

5666-5671. 

88. Yanti; Rukayadi, Y.; Kim, K.H.; Hwang, J.K. In vitro anti-biofilm activity of macelignan isolated 

from Myristica fragrans Houtt. against oral primary colonizer bacteria. Phytother. Res. 2008, 22, 

308-312. 

89. Gunsolley, J.C. A meta-analysis of six-month studies of antiplaque and antigingivitis agents. 

J. Am. Dent. Assoc. 2006, 137, 1649-1657. 

90. Eley, B.M. Antibacterial agents in the control of supragingival plaque—a review. Br. Dental J. 

1999, 186, 286-296. 

91. Decker, E.M.; Maier, G., Axmann, D.; Brecx, M.; von Ohle, C. Effect of xylitol/chlorhexidine 

versus xylitol or chlorhexidine as single rinses on initial biofilm formation of cariogenic 

streptococci. Quintessence Int. 2008, 39, 17-22. 

92. Linke, H.A.; LeGeros, R.Z. Black tea extract and dental caries formation in hamsters. Int. J. 

Food Sci. Nutr. 2003, 54, 89-95. 

93. Shinada, K.; Tagashira, M.; Watanabe, H.; Sopapornamorn, P.; Kanayama, A.; Kanda, T.; Ikeda, 

M.; Kawaguchi, Y. Hop bract polyphenols reduced three-day dental plaque regrowth. J. Dent. 

Res. 2007, 86, 848-851. 

94. Ooshima, T.; Minami, T.; Aono, W.; Tamura, Y.; Hamada, S. Reduction of dental plaque 

deposition in humans by oolong tea extract. Caries Res. 1994, 28, 146-149. 

95. Jones, C.; Woods, K.; Whittle, G.; Worthington, H.; Taylor, G. Sugar, drinks, deprivation and 

dental caries in 14-year-old children in the north west of England in 1995. Commu. Dent. Health 

1999, 16, 68-71. 

96. Zhang, J.; Kashket, S. Inhibition of salivary amylase by black and green teas and their effects on 

the intraoral hydrolysis of starch. Caries Res. 1998, 32, 233-238. 

97. Wynn, W.; Haldi, J.; Law, M.L. Influence of the ash of the cacao bean on the cariogenicity of a 

high-sucrose diet. J. Dent. Res. 1960, 39, 153-157. 

98. Strålfors, A. Inhibition of hamster caries by substances in chocolate. Arch. Oral Biol. 1967, 12, 

959-962. 

99. Verakaki, E.; Duggal, M.S. A comparison of different kinds of European chocolates on human 

plaque pH. Eur. J. Paediatr. Dent. 2003, 4, 203-210. 



Molecules 2011, 16              

 

1507

100. Srikanth, R.K.; Shashikiran, N.D.; Subba Reddy, V.V. Chocolate mouth rinse: Effect on plaque 

accumulation and mutans streptococci counts when used by children. J. Indian Soc. Pedod. Prev. 

Dent. 2008, 26, 67-70. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


