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Abstract: Studies utilizing selective pharmacological antagonists or targeted gene deletion 
have demonstrated that type 5 metabotropic glutamate receptors (mGluR5) are critical 
mediators and potential therapeutic targets for the treatment of numerous disorders of the 
central nervous system (CNS), including depression, anxiety, drug addiction, chronic pain, 
Fragile X syndrome, Parkinson’s disease, and gastroesophageal reflux disease. However, 
in recent years, the development of positive allosteric modulators (PAMs) of the mGluR5 
receptor have revealed that allosteric activation of this receptor may also be of potential 
therapeutic benefit for the treatment of other CNS disorders, including schizophrenia, 
cognitive deficits associated with chronic drug use, and deficits in extinction learning. Here 
we summarize the discovery and characterization of various mGluR5 PAMs, with an 
emphasis on those that are systemically active. We will also review animal studies showing 
that these molecules have potential efficacy as novel antipsychotic agents. Finally, we will 
summarize findings that suggest that mGluR5 PAMs have pro-cognitive effects such as the 
ability to enhance synaptic plasticity, improve performance in various learning and 
memory tasks, including extinction of drug-seeking behavior, and reverse cognitive 
deficits produced by chronic drug use. 
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1. Glutamateric Neurotransmission 

Glutamate is the most prevalent excitatory neurotransmitter within the central nervous system 
(CNS) and, upon its release into the synaptic cleft, can bind to one of three different ligand-gated 
ionotropic glutamate receptors (iGluRs): the N-methyl-D-aspartate (NMDA) receptor, the α-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor, and the kainic acid (KA) receptor. In 
addition to activation of iGluRs which mediate fast excitatory neurotransmission, glutamate can also 
bind to G-protein coupled metabotropic glutamate receptors (mGluRs) which mediate slower 
modulatory neurotransmission. 

There are currently eight characterized mGluR subtypes that are subdivided into three distinct 
groups based upon their neuroanatomical distribution, pharmacological profile, sequence homology, 
and coupling to intracellular signal transduction cascades [1-5]. Group I mGluRs (mGluR1 and 
mGluR5) are coupled to Gq/11 G-proteins and are primarily localized to post synaptic elements in the 
brain, such as the perisynaptic annulus of dendritic spines. mGluR5 receptors have a broad distribution 
within the CNS, with moderate to high expression levels in the cerebral cortex, dorsal and ventral 
striatum, olfactory bulb and tubercle, septal area, hippocampus, inferior colliculus, and spinal nucleus 
of the trigeminal nerve [6-8]. Activation of Group I mGluRs results in increased calcium release from 
intracellular stores resulting in cell depolarization, enhanced cell excitability, and activation of 
numerous intracellular signaling molecules such as protein kinase A (PKA), protein kinase C (PKC), 
mitogen-activated protein kinase (MAPK), extracellular signal-related kinase (ERK), and cAMP 
response element binding protein (CREB) [3-5]. Group II (mGluR2 and mGluR3) and Group III 
(mGluR4, mGluR6, mGluR7, and mGluR8) mGluRs are Gi/o-coupled receptors that are often localized 
on presynaptic terminals. Upon activation, these receptors inhibit the activity of adenylyl cyclase, 
resulting in a decreased formation of intracellular cyclic adenosine monophosphate (cAMP). These 
presynaptic mGluRs can act as releasing-regulating autoreceptors that provide negative feedback to 
inhibit glutamate release. It should be noted that several mGluR subtypes, particularly mGluR3 and 
mGluR5, have also been identified on glial cells such as astrocytes [9-11].  

2. mGluR5-NMDA Receptor Interactions 

mGluR5 receptors are physically coupled to NMDA receptors by various scaffolding proteins 
including PSD-95, Shank, and Homer, as well as via a direct interaction [12]. In addition, mGluR5 
receptors are biochemically coupled to NMDA receptor function via PKC [5]. As a result of these 
molecular and biochemical interactions, activation of mGluR5 receptors results in enhanced 
functionality of the NMDA receptor [13-18]. This mGluR5-NMDA interaction has been observed in 
numerous brain preparations, whereby activation of mGluR5 receptors with an orthosteric agonist 
[such as chlorohydroxyphenylglycine (CHPG) or dihydroxyphenylglycine (DHPG)] or a positive 
allosteric modulator (PAM, see below) potentiates NMDA receptor-mediated responses to 
exogenously applied glutamate or NMDA. As will be discussed below, this indirect enhancement of 
NMDA activity by mGluR5 receptor activation has become a recent focus for the development of non-
monoaminergic treatments for schizophrenia [5,19-24]. In addition, it appears that indirect 
enhancement of NMDA receptor function by allosteric potentiation of mGluR5 receptors also 
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enhances synaptic plasticity [18,25], performance on certain learning and memory tasks [25-28], and 
reverses cognitive and motivational deficits produced by drugs of abuse or NMDA antagonists [29-31]. 

3. Discovery and Chemical Properties of mGluR5 Receptor Positive Allosteric Modulators 
(PAMs) 

Positive allosteric modulators (PAMs) of mGluR5 receptor function were originally developed with 
the intent of indirectly increasing NMDA receptor function toalleviate some of the cognitive deficits 
associated with schizophrenia, as there is a wealth of evidence suggesting that NMDA hypofunction 
contributes to cognitive deficits observed in this disorder [19-21,32-34]. mGluR5 PAMs were 
hypothesized to be advantageous over orthosteric mGluR5 agonists such as CHPG because the latter 
compounds: (1) offer poor discrimination between mGluR receptor subtypes due to the high degree of 
sequence homology of the glutamate binding site; (2) exhibit poor brain penetrance following systemic 
administration, and (3) cause rapid mGluR5 receptor desensitization. In an effort to circumvent these 
issues, mGluR5 PAMs were developed to bind to the receptor at a site that is distinct from the 
orthosteric glutamate binding site, and increase the functioning of the receptor in the presence of 
binding of its endogenous ligand glutamate. The first mGluR5 PAM to be characterized was 3,3'-
difluorobenzaldazine (DFB) in 2003 [35], which exhibited poor potency and solubility in aqueous 
solutions, and was brain impenetrant making it unsuitable for characterization in behavioral assays. A 
year later, the initial characterization of N-[5-chloro-2-[(-1,3-dioxoisoindolin-2-yl)methyl]phenyl]-2-
hydroxybenzamide (CPPHA) was described [36], and while this compound exhibited greater potency 
than DFB, it was also brain impenetrant and thus also not amenable to behavioral studies. 

A breakthrough in systemically active mGluR5 PAMs that allowed for behavioral assessment of 
potential antipsychotic efficacy came with the development of 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-
yl)benzamide (CDPPB) [37,38]. A few years later, the synthesis of (S)-(4-fluorophenyl)[3-[3-(4-
fluorophenyl)-1,2,4-oxadiazol-5-yl]piperidin-1-yl]methanone (ADX47273) was reported [39] (Figure 
1). Both CDPPB and ADX47273 display intrinsic agonist activity at moderate to high concentrations 
[40,41]. More recently, several other systemically active mGluR5 PAMs have been described, 
including N-methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA) [42], and(4-hydroxy-piperidin-1-
yl)(4-phenylethynyl)phenyl)methanone (VU0092273) [43], the latter of which has been optimized to 
give the orally active analog N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride 
(VU0360172) [43] that has increased selectivity for mGluR5 receptors (Figure 1). 

As mentioned earlier, mGluR5 PAMs act on a site of the receptor that is distinct from the 
orthosteric glutamate binding site. The precise binding site(s) of mGluR5 ligands are frequently 
assayed by displacement of radiolabeled ligands such as [3H]-quisqualate, which binds to the 
orthosteric glutamate binding site, and [3H]3-methoxy-5-(2-pyridinylethynyl)pyridine ([3H]-methoxy-
PEPy), which binds to an allosteric binding site that is the same as that for the prototypical mGluR5 
receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) as well as the neutral mGluR5 
allosteric modulator 5-methyl-6-(phenylethynyl)-pyridine (5-MPEP) [35,40,44]. With the exception of 
CPPHA [45], all the aforementioned mGluR5 PAMs appear to bind to the MPEP binding site on the 
receptor. Unlike CDPPB and ADX47273, the mGluR5 PAMs DFB, CPPHA and MPPA are devoid of 
any intrinsic agonist activity, and DFB and CPPHA have differential modulatory effects on the 
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activation and phosphorylation of ERK1/2 [46]. As a result of this seemingly different molecular site 
of action, differing patterns of activation of intracellular signaling cascades, and a relatively shallow 
structure-activity relationship of CPPHA, recent attempts have been made to utilize the CPPHA 
chemical scaffold to develop mGluR5 PAMs that do not bind to the MPEP site on the receptor. Such 
ligands include N-(5-chloropyridin-2-yl)-4-propoxybenzamide (VU0001850), 4-butoxy-N-(2-
fluorophenyl)-benzamide (VU0040237) and 4-butoxy-N-(2,4-difluorophenyl)benzamide 
(VU0357121). These compounds all exhibit high potencies for activating mGluR5 receptors, with 
EC50 concentrations ranging from 33 nM to 1.3 μM [47]. To date, the systemic bioavailability of these 
compounds as well as their behavioral profiles has not yet been evaluated. 

Figure 1. Structure of systemically active mGluR5 PAMs. 
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4. Antipsychotic and Pro-Cognitive Effects of Systemically Active mGluR5 PAMs 

Behavioral studies have shown that CDPPB, ADX47273, MPPA, and VU0360172 have putative 
antipsychotic-like properties as measured by attenuation of: (1) hyperlocomotion induced by the 
psychotomimetic compounds ketamine, phencyclidine, and amphetamine [18,37-39,43,48], (2) deficits 
in prepulse inhibition produced by amphetamine [38], and (3) conditioned avoidance responding [39]. 
In addition, CDPPB has been shown to reverse deficits in cognitive and behavioral flexibility [29,31], 
negative learning [49], sucrose preference [30], and alterations cortical neuronal activity [50-52] 
produced by the non-competitive NMDA receptor antagonistMK-801. These findings provide 
evidence for potential antipsychotic efficacy of mGluR5 PAMs, while simultaneously providing 
additional evidence for glutamatergic mechanisms (i.e., NMDA receptor hypofunction) that underlie 
some of the symptoms of schizophrenia. 

With regards to drug addiction, another neuropsychiatric disorder characterized by deficits in 
cognition, many studies have shown that pharmacological antagonism of mGluR5 receptors reduces 
drug reward, reinforcement, and reinstatement of drug-seeking behavior [53,54]. However, recent 
studies have shown that mGluR5 PAMs may be beneficial in other aspects of drug addiction such as 
facilitation of the extinction of drug-seeking behavior and reversing drug-induced cognitive deficits. 
For example, it has been demonstrated that CDPPB facilitates the extinction of a cocaine-associated 
contextual memory [55] and reduces extinction responding following cocaine self-administration 
[28,54]. It has also recently been demonstrated that CDPPB reverses deficits in novel object 
recognition produced by extended access to methamphetamine [56]. Thus, mGluR5 PAMs may be of 
potential utility as pharmacological adjuncts to cue exposure therapy in the treatment of drug 
addiction, and may potentially reverse certain cognitive deficits associated with heavy drug use. 
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Since mGluR5 PAMs indirectly potentiate the function of NMDA receptors, which are critically 
involved in cellular processes that are believed to underlie learning and memory such as long-term 
potentiation (LTP) and long-term depression (LTD) of synaptic transmission, one could predict that 
mGluR5 PAMs might enhance certain forms of synaptic plasticity and learning and memory. Indeed, it 
has been shown that VU-29 [25] and ADX47273 [18] potentiate LTP and/or LTD in hippocampal 
slices in vitro. Along these lines, behavioral studies have shown that CDPPB and ADX47273 improve 
the performance of unimpaired mice in the Morris water maze [25], a hippocampus-dependent learning 
task. Other evidence of potential pro-cognitive effects of mGluR5 PAMs include findings that 
intracerebroventricular infusion of DFB in rats improved performance in a spatial alternation task [26], 
while both CDPPB and ADX47273 improved performance in a novel object recognition task [27,39] 
and the five-choice serial reaction time test [39]. 

5. Summary and Conclusions 

While the development of potent, brain penetrant mGluR5 PAMs with favorable selectivity, side 
effect profiles, and physiochemical properties is still in its relative infancy, preclinical studies thus far 
suggest that these compounds may represent a novel class of non-monoaminergic antipsychotic 
medications. In addition, other preclinical studies suggest that mGluR5 PAMs may improve cognitive 
deficits caused by heavy drug use as well as facilitate the extinction of drug cue reactivity and drug-
seeking behavior. Additional studies are needed to determine if mGluR5 PAMs reverse cognitive 
deficits associated with other neuropsychiatric disorders such as Alzheimer’s disease and other 
dementias. 

Finally, while there is evidence for pro-cognitive effects of mGluR5 PAMs, all such studies to date 
have been performed in animals in which learning and memory are demonstrated through behavioral 
changes. Assuming that mGluR5 PAMs will eventually enter clinical trials in human subjects, it 
remains to be seen whether these compounds have pro-cognitive effects with regards to cognitive 
functions such as declarative memory, language acquisition, long-term memory recall, etc. It also 
remains to be determined whether the pro-cognitive effects of mGluR5 PAMs are more pronounced in 
the diseased brain versus that of healthy unimpaired subjects. 
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