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Abstract: Propylene carbonate is shown to be an environmentally friendly and sustainable 
replacement for dichloromethane and acetonitrile in proline-catalysed α-hydrazinations of 
aldehydes and ketones. Enantioselectivities comparable to those obtained in conventional 
solvents or ionic liquids can be obtained, even when using a lower catalyst loading. 
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1. Introduction  

Proline (1) is unique amongst the proteinogenic amino acids in that it is a secondary amine. This 
leads to it having a special role in peptides and proteins as it cannot act as a hydrogen-bond donor, but 
is often found in β-turns [1-3]. Proline and its derivatives have also found many applications in 
synthetic chemistry as chiral-auxiliaries [4], chiral reagents [5,6] and most recently as chiral catalysts 
[7-12] where it was developments in proline-catalysed enamine chemistry that sparked the recent 
resurgence of interest in asymmetric organocatalysis [13-17]. Proline is undoubtedly the most 
sustainable of the organocatalysts as it is directly available from biological sources without any need 
for chemical transformations. Proline-catalysed reactions are however, commonly carried out in 
traditional solvents such as DMSO, DMF and chlorinated solvents [7-12] which severely undermine 
the green credentials of proline-catalysed reactions due to their toxicity. Although both water [18,19] 
and ionic liquids [20] have also been used as solvents for proline-catalysed reactions, the green 
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credentials of both of these solvents have been questioned [21,22] and water has been shown to inhibit 
proline-catalysed aldol reactions [23]. In some cases, proline-catalysed reactions can also be carried 
out without a solvent [24,25]. This limited solvent compatibility of proline-catalysed reactions is one 
of the reasons that so much effort has been put into developing other asymmetric organocatalysts 
which are soluble in a broader range of solvents. However, we have adopted a different approach, 
namely the use of alternative, sustainable and non-toxic polar-aprotic solvents in proline-catalysed 
reactions. 

Figure 1. (a) (S)-Proline 1. (b) Ethylene carbonate 2. (c) Propylene carbonate 3. 

 

Cyclic carbonates (Figure 1), especially ethylene carbonate (2) and propylene carbonate (3), are 
attracting increasing interest as green solvents for metal-catalysed reactions [26-28]. Ethylene 
carbonate (2) is a solid at room temperature (m.p. 36 °C, b.p. 248 °C), though its melting point is 
depressed on addition of reactants. Propylene carbonate (3) has a very wide liquid range (m.p. −49 °C, 
b.p. 242 °C), making it a suitable solvent for reactions carried out below, at, or above room 
temperature. As a result of their high boiling points, cyclic carbonates 2 and 3 have very low vapour 
pressures. Compounds 2 and 3 are biodegradable, have high flash points and low odour levels [29]. 
They are used commercially as degreasers, paint strippers and in cleaning applications, their toxicities 
have been assessed and compound 3 is licensed for use in cosmetics [26]. Ethylene and propylene 
carbonate have high dielectric constants, so they can be considered as sustainable replacements for 
traditional polar aprotic solvents such as DMF, DMSO, HMPA and NMP. There is however, a 
significant difference in polarity between the two cyclic carbonates: ethylene carbonate 2 has a 
dielectric constant of 90, whilst propylene carbonate 3 has a dielectric constant of 65 [30]. Thus, the 
solvent polarity can be tuned by choice of the appropriate cyclic carbonate or by use of a mixture of 
the two solvents. 

Cyclic carbonates are prepared by the 100% atom economical reaction between carbon dioxide and 
ethylene or propylene oxide (Scheme 1) [31-35] We have shown that, in the presence of an appropriate 
catalyst, the synthesis of cyclic carbonates 2 and 3 can be achieved at atmospheric pressure and room 
temperature for batch processes [36-39] and at temperatures of 100 °C or below in a gas phase flow 
reactor [40,41].  

This opens the possibility of utilizing waste carbon dioxide from major fixed site producers such as 
power stations [42], oil refineries and chemical plants in the production of cyclic carbonates, especially 
as the catalysts have been shown to tolerate the impurities present in power station flue gas [41]. 

In recent papers we have shown that cyclic carbonates 2 and 3 make excellent solvents for proline-
catalysed aldol reactions [43-45]. In this manuscript, we extend that study to the proline-catalysed α-
hydrazination of aldehydes and ketones by diazodicarboxylates (Scheme 2). Previous work on this 
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extensively utilized, proline-catalysed reaction has employed dichloromethane [46-53], acetonitrile 
[54-62] or an ionic liquid [63] as the solvent. 

Scheme 1. Synthesis of cyclic carbonates from epoxides and carbon dioxide. 

 

Scheme 2. Proline-catalysed α-hydrazination of carbonyl compounds. 

 

2. Results and Discussion 

For initial studies, the reaction between propanal (4a) and dibenzyl azodicarboxylate (5a) catalysed 
by (S)-proline (1, 5 mol%) was selected since there is literature precedent for this reaction [54] and the 
benzyl groups provided a convenient chromophore for our chiral HPLC system. The initially produced 
aldehyde 6a was immediately reduced to the more stable alcohol 7a by treatment with sodium 
borohydride (Scheme 3) and all yields and enantioselectivities refer to the formation of compound 7a. 
The results are presented in Table 1. Entry 1 of Table 1 shows the result of a control experiment 
carried out in dichloromethane which confirmed that alcohol 7a was obtained in excellent yield and 
enantioselectivity under these conditions. The absolute configuration of alcohol 7a was determined to 
be R- on the basis of the chiral HPLC retention times [64].  

Entries 2 and 3 of Table 1 show the results of experiments carried out in cyclic carbonates 2 and 3 
under conditions which are otherwise identical to entry 1. In both cases, alcohol 7a was obtained in 
good yield, but with lower enantiomeric excess than that obtained in dichloromethane. To improve the 
enantioselectivity of the reaction, the effect of lowering the reaction temperature was investigated. This 
was only possible with propylene carbonate (3) as solvent, and at 0 °C the reaction in propylene 
carbonate gave alcohol 7a with excellent enantioselectivity, but in low yield after a standard reaction 
time of two hours (Table 1, entry 4). To increase the chemical yield, the reaction time was extended to 
24 hours (Table 1, entry 5) and under these conditions alcohol 7a was obtained in good yield and with 
excellent enantioselectivity. An attempt to use diethyl azodicarboxylate (5b) in place of the dibenzyl 
derivative was not particularly successful as alcohol 7b could not be detected on our HPLC system, so 
the alcohol was allowed to cyclise to oxazolidinone 8 [46,63] which was obtained in overall 39% yield 
from propanal. The absolute configuration and enantiomeric excess of compound 8 could be 
determined by chiral GC analysis, but the latter was significantly lower than that of alcohol 7a  
(Table 1, entry 6). 
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Taking the conditions of Table 1, entry 5 as optimal, the applicability of the chemistry to four other 
aldehydes was investigated (Table 1, entries 7-10). Nonanal (4b) gave alcohol 7c with good 
enantioselectivity but only moderate yield (Table 1, entry 7). In contrast, phenylacetaldehyde (4c) gave 
alcohol 7d in good yield, but with a low enantiomeric excess, almost certainly due to the extremely 
facile racemization of the initially formed aldehyde 6d (Table 1, entry 8). Aldehydes 4d and 4e gave 
the corresponding alcohols 7e and 7f in both good yield and with excellent enantiomeric excesses. The 
enantiomeric excesses of alcohols 7a,d,e,f compare favourably with those reported in the literature for 
the corresponding product prepared using 10 mol% of (S)-proline in dichloromethane [46] or 
acetonitrile [54] and in each case the (R)-enantiomer of the alcohol was formed predominantly [64]. 

Scheme 3. Proline-catalysed α-hydrazination of aldehydes in cyclic carbonate solvents. 

 

Table 1. Effect of solvent and temperature on proline-catalysed α-hydrazinations of aldehydes. 

Entry Solvent Aldehyde Product Time (h) T (°C) Yield (%)  ee (%) 
1 CH2Cl2 4a 7a 2 RT 86 98 (R)a

2 2 4a 7a 2 RT 74 69 (R)a

3 3 4a 7a 2 RT 81 80 (R)a

4 3 4a 7a 2 0 18 99 (R)a

5 3 4a 7a 24 0 69 97 (R)a

6 3 4a 7b 24 0 39c 66 (R)b

7 3 4b 7c 24 0 41 90 (R)d

8 3 4c 7d 24 0 70 36 (R)d

9 3 4d 7e 24 0 76 99 (R)a

10 3 4e 7f 24 0 87 92 (R)a

a) ee and absolute configuration obtained by chiral HPLC of alcohol 7 [64]. b) ee and absolute 
configuration obtained by chiral GC of oxazolidinone 8 [65]. c) yield of carbamate 8. d) ee 
obtained by chiral HPLC of alcohol 7, absolute configuration assigned by analogy with other 
products. 
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Having demonstrated that propylene carbonate was a suitable solvent for the asymmetric α-
hydrazination of aldehydes, the use of ketones as substrates was investigated. There are only two 
previous reports of proline-catalysed ketone hydrazination [55,63], indicating that this is a more 
difficult undertaking than the use of aldehydes as substrates. Cyclohexanone (9a) was chosen as the 
first test substrate and initial experiments showed that whilst reaction with dibenzyl azodicarboxylate 
(5a) did indeed occur under the standard conditions developed for aldehyde substrates, the reaction 
was much slower and required a reaction time of 72 hours to produce a reasonable yield of α-
hydrazinoketone 10a (Scheme 4). Compound 10a was found to be more stable than the corresponding 
aldehyde adducts 6a-f and could be isolated and characterized without the need to reduce the ketone to 
the corresponding alcohol. Two other ketones 9b,c were converted into α-hydrazinoketones 10b,c 
under the same conditions and the results are shown in Table 2. 

Scheme 4. Proline-catalysed α-hydrazination of ketones in propylene carbonate. 

 

Table 2. Proline-catalysed reaction of ketones with dibenzyl azodicarboxylate. 

Entry Solvent Ketone Product Yield (%) ee (%) 
1 Racemic-3 9a 10a 71 77 (R)a 
2 Racemic-3 9b 10b 51 72 (R)b 

3 Racemic-3 9c 10c 31 52 (R)a 
4 (R)-3 9a 10a 81 74 (R)a 
5c (R)-3 9a 10a 78 75 (S)a 

a) ee and absolute configuration obtained by chiral HPLC [66,67]. b) ee obtained by chiral HPLC, 
absolute configuration assigned by analogy with product 10a. c) using (R)-proline as catalyst. 

 
Cyclohexanones 9a,b were found to be reasonable substrates for proline catalysed α-hydrazination 

in propylene carbonate, giving products 10a,b in good yield and with respectable enantiomeric 
excesses (Table 2, entries 1 and 2). Butanone (9c) was not as good a substrate, giving only a moderate 
yield of product 10c and with lower enantioselectivity than that observed for the cyclohexanone 
derivatives (Table 2, entry 3). Notably however, this substrate did react regioselectively, as no 
evidence for formation of the product derived from reaction at the methyl group of ketone 9c  
was observed. 

In all the results discussed so far, racemic propylene carbonate has been used as solvent. We have 
previously shown that for proline-catalysed aldol reactions, use of enantiomerically pure propylene 
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carbonate as solvent can affect both the yield and stereoselectivity of the transformation with matched 
and mismatched pair effects being seen for the stereochemistry of the catalyst and solvent [45]. 
Therefore, reactions involving cyclohexanone (9a) as substrate were carried out in enantiomerically 
pure (R)-propylene carbonate in the presence of both (S)- and (R)-proline as catalyst (Table 2, entries 4 
and 5). However, in this case, no significant difference between the reactions carried out in racemic 
and enantiomerically pure solvent was observed, nor was there a difference between reactions carried 
out using the two enantiomers of proline in (R)-propylene carbonate. 

3. Experimental  

3.1. Chemicals and instrumentation 

Propylene carbonate (3) was distilled from CaH2 under reduced pressure and stored over molecular 
sieves. Other commercially available products (Aldrich, Acros) were used as received. 
Chromatographic separations were performed using silica gel 60 (230–400 mesh, Davisil). Infrared 
spectra were recorded at room temperature on a Varian 800 FT-IR Scimitar series spectrometer. 
Optical rotation measurements were conducted on a Polaar 2001 Optical Activity automatic 
polarimeter at the sodium D-line using a 0.25 dm thermostated cell and a suitable solvent that is 
reported along with the concentration (g/100 mL). High- and low-resolution electrospray ionization 
(ES) mass spectra were recorded on a Waters LCT Premier LCMS spectrometer using direct injection 
of the sample in MeOH. 1H- and 13C-NMR were recorded in CDCl3 on a Bruker Avance 300 
spectrometer at 300 and 75 MHz respectively. 13C-NMR spectra were also recorded at 125 MHz on a 
JEOL Lambda 500 spectrometer. Chiral gas chromatrogaphy was performed on a Varian450-GC 
instrument with a TCD detector using a Supelco Gamma DEX 120 fused silica capillary column  
(30 m × 0.25 mm × 0.25 µm film thickness) with hydrogen as the carrier gas (flow rate 3.5 mL/min). 
Analyses were performed with an initial column temperature of 165 °C, followed by a ramp rate  
0.8 °C/min to 210 °C, then hold at 210 °C for 80 minutes. Chiral HPLC was performed using a Varian 
ProStar system comprising binary pumping modules, a diode array detector and an autosampler and 
equipped with a Daicel Chiralcel OD-H, AD-H or AS-H column (25 cm by 4.6 mm), using a mixture 
of isopropanol and hexane as eluent. The HPLC retention times of the enantiomeric products were 
determined using racemic samples of compounds 7a-f and 10a-c which were prepared from reactions 
catalysed by (R,S)-proline in dichloromethane or propylene carbonate at room temperature.  

3.2. Synthesis of compound 8 [46,63] 

To a stirred solution of diethyl azodicarboxylate (5b, 0.18 mL, 1.00 mmol) and propanal (4a,  
0.11 mL, 1.50 mmol) in propylene carbonate (3, 3 mL) was added (S)-proline (1, 5.9 mg, 0.05 mmol). 
The reaction was stirred at 0 °C for 24 hours, then quenched by the addition of H2O (5 mL), extracted 
with Et2O (20 mL), washed with H2O (4 × 10 mL) and dried (Na2SO4). The solvent and excess 
propanal were evaporated in vacuo and the residue was dissolved in ethanol (10 mL) and NaBH4  
(40.0 mg, 1.05 mmol) was added. The reaction was stirred for 10 minutes at 0 °C, then aqueous 
ammonium chloride solution (10 mL) and EtOAc (20 mL) were added. The organic layer was 
separated, dried (Na2SO4) and the solvent evaporated in vacuo. The residue was purified by silica gel 
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chromatography eluting with hexane:EtOAc (85:15) to give alcohol 7b. Compound 7b was dissolved 
in MeOH (2 mL) and 0.5 M aqueous NaOH (2.5 mL) and the reaction stirred for 2 hours. MeOH was 
then evaporated in vacuo and the aqueous phase extracted with EtOAc (3 × 15 mL). The combined 
organic layers were dried (MgSO4) and the solvent evaporated in vacuo to give compound 8 (0.91 g, 
39%) as a yellow oil. νmax(neat) 3362 w, 3167 w, 2968 m, 2927 m, 2879 m, 1721 s and 1538 cm−1 m; 
[α]D

20
 -11.0 (c=0.4, CHCl3) (lit [65]. [α]D

28
 -19.9 (c=1.4, CHCl3)); δH 1.3–1.4 (6H, m, 2xCH3), 3.87 

(1H, t J 8.4 Hz, CH2CH), 4.1–4.2 (1H, m, CHN), 4.25 (2H, q J 6.9 Hz, CH2CH3), 4.51 (1H, t J 8.4 Hz, 
CH2CH), 6.5–6.6 (1H, m, NH); δC(75 MHz) 14.6 (CH3), 16.8 (CH3), 53.2 (CHN), 63.2 (CH2O), 69.1 
(CH2O), 155.6 (C=O), 157.9 (C=O); Chiral GC retention times 11.1 (minor) and 12.7 (major) minutes. 

3.3. General procedure for the synthesis of alcohols 7 

To a stirred solution of dibenzyl azodicarboxylate (5a, 0.3 g, 1.0 mmol) and an aldehyde 4a–e  
(1.5 mmol) in propylene carbonate (3, 1 mL) was added (S)-proline (1, 5.9 mg, 0.05 mmol). The 
reaction was stirred at 0 °C for 24 hours, then quenched by the addition of H2O (5 mL), extracted with 
Et2O (20 mL), washed with H2O (4 × 10 mL) and dried (Na2SO4). Volatiles were removed by 
evaporation in vacuo and the residue was dissolved in ethanol (10 mL) and NaBH4 (40.0 mg,  
1.05 mmol) was added. The reaction was stirred for 10 minutes at 0 °C, then aqueous ammonium 
chloride solution (10 mL) and EtOAc (20 mL) were added. The organic layer was separated, dried 
(Na2SO4) and the solvent evaporated in vacuo. The residue was purified by silica gel chromatography 
eluting with hexane:EtOAc (85:15) to give alcohols 7a,c–f. 
 
Dibenzyl (R)-1-(1-methyl-2-hydroxyethyl)hydrazine-1,2-dicarboxylate (7a) [54]. Obtained as a yellow 
oil (0.27 g, 76%). νmax(neat) 3271 br, 2955 s and 1715 cm-1 s; [α]D

20
 -32.0 (c = 0.4, CHCl3); δH 0.85 

(3H, d J = 6.9 Hz, CH3), 3.4–3.5 (2H, m, CH2OH), 4.0–4.5 (2H, m, CH and OH), 4.9–5.2 (4H, m,  
2 × CH2Ph), 7.0–7.4 (10H, m, ArH); δC(75 MHz) 15.5 (CH3), 56.4 (CH) 63.6 (CH2OH), 
66.1(OCH2Ph) 68.6 (OCH2Ph), 128.5 (ArCH), 128.6 (ArCH), 128.9 (ArCH), 129.0 (ArCH), 135.8 
(ArC), 136.3 (ArC), 157.0 (NCO2), 159.0 (NCO2); HPLC (Chiralpak AS-H using hexane: iPrOH (95:5) 
as solvent at a flow rate of 0.5 mL/min) retention times 22.2 (major) and 24.7 (minor) minutes. 
 
Dibenzyl (R)-1-(1-heptyl-2-hydroxyethyl)hydrazine-1,2-dicarboxylate (7c). Obtained as a colourless oil 
(0.18 g, 41%). νmax(neat) 3267 br, 2963 s and 1716 cm-1 s; [α]D

20
 -26.0 (c = 0.4, CHCl3); δH 0.7–0.9 (3H, 

m, CH3), 1.0–1.4 (12H, m, Me(CH2)6), 3.2–3.5 (2H, m, CH2OH), 4.0–4.4 (2H, m, CH and OH),  
5.0–5.2 (4H, m, 2×CH2Ph), 6.90 (1H, s, NH), 7.0–7.4 (10H, m, ArH); δC(75 MHz) 13.9 (CH3), 22.5 
(CH2), 26.0 (CH2), 27.9 (CH2), 29.0 (CH2), 29.3 (CH2), 31.6 (CH2), 60.8 (NCH), 62.1 (CH2OH), 68.2 
(2 × OCH2Ph), 127.7 (ArCH), 128.0 (ArCH), 128.1 (ArCH), 128.2 (ArCH), 128.4 (ArCH), 128.5 
(ArCH), 135.3 (ArC), 135.9 (ArC), 157.4 (NCO2), 159.1 (NCO2); m/z(ES+) 465 (M+Na+, 10); Found 
(ES+) 465.2348, C25H34N2O5Na, (M+Na+) requires 465.2365; HPLC (Chiralpak AS-H using hexane: 

iPrOH (90:10) as solvent at a flow rate of 0.5 mL/min) retention times 20.4 (minor) and  
43.0 (major) minutes. 
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Dibenzyl (R)-1-(1-phenyl-2-hydroxyethyl)hydrazine-1,2-dicarboxylate (7d). Obtained as a white solid 
(0.29 g, 70%). m.p. 140–141 °C; νmax(neat) 3273 br, 2946 s and 1711 cm-1 s; [α]D

20
 -38.0 (c = 0.4, 

CHCl3); δH 3.2–3.5 (2H, m, CH2OH), 4.0–4.5 (2H, m, CH and OH), 4.8–5.1 (4H, m, 2 × CH2Ph)  
7.0–7.4 (15H, m, ArH); δC(75 MHz) 56.7 (CH), 63.5 (CH2OH), 65.5 (CH2Ph), 70.2 (CH2Ph), 127.8 
(ArCH), 127.9 (ArCH), 128.2 (ArCH), 128.6 (ArCH), 129.0 (ArCH), 135.7 (ArC), 136.2 (ArC), 156.3 
(NCO2), 159.3 (NCO2); HPLC (Chiralpak AD-H using hexane: iPrOH (90:10) as solvent at a flow rate 
of 0.5 mL/min) retention times 46.2 (minor) and 48.7 (major) minutes.  
 
Dibenzyl (R)-1-(1-benzyl-2-hydroxyethyl)hydrazine-1,2-dicarboxylate (7e) [54]. Obtained as a white 
solid (0.33 g, 76%). m.p. 105–106 °C (lit [68]. 110–116 °C); νmax(neat) 3272 br, 2963 s and 1716 cm−1 
s; [α]D

20
 +11.1 (c = 0.9, CHCl3) (lit [68] [α]D

25
 +11.4 (c = 1.8, CHCl3)); δH 2.4–2.7 (2H, m, CH2Ph),  

3.3–3.6 (2H, m, CH2OH) 4.4–4.6 (2H, m, CH and OH), 4.9–5.2 (4H, m, 2 × OCH2Ph), 6.8–7.4 (15H, 
m, ArH); δC(75 MHz) 34.5 (CH2), 60.2 (CH), 61.8 (CH2OH), 68.0 (OCH2Ph), 68.3 (OCH2Ph), 128.2 
(ArCH), 128.5 (ArCH), 128.7 (ArCH), 128.8 (ArCH), 128.9 (ArCH), 129.0 (ArCH), 129.1 (ArCH), 
129.2 (ArCH), 129.4 (ArCH), 135.1 (ArC), 135.7 (ArC), 137.3 (ArC), 156.7 (NCO2), 158.8 (NCO2); 
m/z(ES+) 443 (M+Na+, 50), 863 (2M+Na+), 1283 (3M+Na+); Found (ES+) 443.1550, C24H24N2O5Na, 
(M+Na+) requires 443.1583; HPLC (Chiralpak AS-H using hexane: iPrOH (85:15) as solvent at a flow 
rate of 1.0 mL/min) retention times 13.4 (major) and 31.5 (minor) minutes. 
 
Dibenzyl (R)-1-(1-(1-methyl)ethyl-2-hydroxyethyl)hydrazine-1,2-dicarboxylate (7f) [54] Obtained as a 
yellow oil (0.34 g, 87%). νmax(neat) 3272 br, 2963 s and 1716 cm−1 s; [α]D

20
 -21.0 (c = 0.4, CHCl3); δH 

0.6–1.0 (6H, m, 2 × CH3), 1.4–1.7 (1H, m, CHMe2) 3.3–4.4 (4H, m, NCHCH2OH) 4.9–5.2 (4H, m, 2 × 
CH2Ph) 6.7–6.9 (1H, br s, NH) 7.1–7.4 (10H, m, ArH); δC (75 MHz) 19.3 (CH3), 20.0 (CH3), 27.5 
(CH), 60.4 (CH), 67.2 (CH2OH), 68.4 (2 × OCH2Ph), 127.7 (ArCH), 128.0 (ArCH), 128.1 (ArCH), 
128.2 (ArCH), 128.4 (ArCH), 128.6 (ArCH), 135.2 (ArC), 135.9 (ArC), 156.4 (NCO2), 157.4 (NCO2); 
HPLC (Chiralpak OD-H using hexane: iPrOH (90:10) as solvent at a flow rate of 1.0 mL/min) 
retention times 14.4 (major) and 17.7 (minor) minutes. 

3.4. General procedure for the synthesis of ketones 10a-d 

To a stirred solution of dibenzyl azodicarboxylate (5a, 0.3 g, 1.0 mmol) and a ketone (1.5 mmol) in 
propylene carbonate (3, 1 mL), was added (S)-proline (1, 5.9 mg, 0.05 mmol). The reaction was stirred 
at 0 °C for 24 hours, then quenched by the addition of H2O (5 mL), extracted with Et2O (10 mL), 
washed with H2O (4 × 10 mL) and dried (Na2SO4). Volatiles were removed by evaporation in vacuo 
and the residue was purified by silica gel chromatography eluting with hexane:EtOAc (70:30) and 
recrystallized with cold isopropanol to give ketones 10-d. 
 
Dibenzyl (R)-1-(2-oxocyclohexyl)hydrazine-1,2-dicarboxylate (10a) [66]. Obtained as a colourless oil 
(0.28 g, 71%). νmax(neat) 3271 br, 2965 s, 1797 s, 1743 s and 1679 cm−1 m; [α]D

20
 -21.0 (c = 0.1, 

CH2Cl2) (lit [66]. [α]D
20

 -24.1 (c=0.1, CH2Cl2)); δH 1.6–2.5 (8H, m, (CH2)4), 5.1-5.2 (5H, m,  
2 × CH2Ph and NCH), 6.88 (1H, br, NH), 7.3–7.5 (10H, m, ArH); δC (75 MHz) 24.4 (CH2), 26.7 
(CH2), 30.8 (CH2), 41.2 (CH2), 66.5 (2 × OCH2Ph), 67.9 (NCH), 127.7 (ArCH), 128.0 (ArCH), 128.1 
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(ArCH), 128.2 (ArCH), 128.5 (2 × ArCH), 135.9 (2 × ArC), 156.3 (2 × NCO2), 206.9 (CO); HPLC 
(Chiralpak OD-H using hexane: iPrOH (90:10) as solvent at a flow rate of 0.9 mL/min) retention times 
16.9 (minor) and 22.6 (major) minutes. 
 
Dibenzyl (R)-1-(2-oxo-4-oxacyclohexyl)hydrazine-1,2-dicarboxylate (10b). Obtained as a colourless 
oil (0.20 g, 51%). νmax(neat) 3272 br, 2965 s, 1798 s and 1716 cm−1 s; [α]D

20
 -25.0 (c = 0.4, CHCl3); δH 

2.4–2.6 (2H, m, CH2CO), 3.4–3.6 (2H, m, CH2O), 4.1–4.5 (2H, m, CH2O), 4.6–5.3 (5H, m, 2 × CH2Ph 
and NCH), 6.5–6.7 (1H, br, NH), 7.2–7.4 (10H, m, ArH); δC (125 MHz) 25.3 (CH2), 42.3 (CH2), 64.2 
(CH2), 67.4 (CH), 67.8 (CH2), 67.9 (CH2), 128.0 (ArCH), 128.1 (ArCH), 128.2 (ArCH), 128.3 
(ArCH), 128.4 (ArCH), 128.5 (ArCH), 135.4 (ArC), 135.6 (ArC), 155.4 (NCO2), 155.7 (NCO2), 203.4 
(CO); m/z(ES+) 421 (M+Na+, 100), 819 (2M+Na+, 85), 1117 (3M+Na+, 32); Found (ES+) 819.2853, 
C42H44N4O12Na, (2M+Na+) requires 819.2812; HPLC (Chiralpak OD-H using hexane: iPrOH (90:10) 
as solvent at a flow rate of 0.9 mL/min) retention times 37.1 (minor) and 57.3 (major) minutes. 
 
Dibenzyl (R)-1-(1-methyl-2-oxopropyl)hydrazine-1,2-dicarboxylate (10c) [67,69]. Obtained as 
colourless needles (0.09 g, 31%). m.p. 59–60 °C; νmax(neat) 3255 m, 2958 w, 2884 w, 1749 s, 1703 s 
and 1512 cm−1 m; [α]D

20
 -16.0 (c = 0.4, CHCl3); δH 1.36 (3H, d J = 16.6 Hz, CH3CH), 2.01 (3H, s, 

CH3CO), 4.9–5.1 (5H, m, 2xCH2 and NCH), 6.6–6.8 (1H, br, NH), 7.1–7.4 (10H, m, ArH); δC 

(75MHz): 13.1 (CH3), 26.3 (CH3), 67.7 (OCH2Ph), 67.9 (OCH2Ph), 68.5 (NCH), 127.8 (ArCH), 128.0 
(ArCH), 128.1 (ArCH), 128.2 (ArCH), 135.7 (ArC), 135.8 (ArC), 156.1 (NCO2), 156.4 (NCO2), 206.4 
(CO); HPLC (Chiralpak OD-H using hexane: iPrOH (93:7) as solvent at a flow rate of 0.9 mL/min) 
retention times 12.5 (minor) and 15.0 (major) minutes. 

4. Conclusions 

Propylene carbonate is a sustainable and environmentally friendly replacement for dichloromethane 
and acetonitrile in proline catalysed α-hydrazinations of aldehydes and ketones. Comparable 
enantioselectivities to those seen with conventional solvents can be obtained, even with a lower 
catalyst loading. Use of enantiomerically pure propylene carbonate is not advantageous for this 
reaction. 
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