Enantioselective Addition of Allyltin Reagents to Amino Aldehydes Catalyzed with Bis(oxazolinyl)phenylrhodium(III) Aqua Complexes

Yukihiro Motoyama ${ }^{\text {1, }}$, Takatoshi Sakakura ${ }^{2}$, Toshihide Takemoto ${ }^{2}$, Kayoko Shimozono ${ }^{2}$, Katsuyuki Aoki ${ }^{2}$ and Hisao Nishiyama ${ }^{3}$
1 Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
${ }^{2}$ School of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
${ }^{3}$ Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
* Author to whom correspondence should be addressed; E-Mail: motoyama@cm.kyushu-u.ac.jp; Tel.: +81-92-583-7821; Fax: +81-92-583-7839.

Received: 30 May 2011; in revised form: 20 June 2011 / Accepted: 23 June 2011 /
Published: 27 June 2011

Abstract

Bis(oxazolinyl)phenylrhodium(III) aqua complexes, (Phebox) $\mathrm{RhX}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ $[\mathrm{X}=\mathrm{Cl}, \mathrm{Br}]$, were found to be efficient Lewis acid catalysts for the enantioselective addition of allyl- and methallyltributyltin reagents to amino aldehydes. The reactions proceed smoothly in the presence of $5-10 \mathrm{~mol} \%$ of (Phebox) $\mathrm{RhX}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ complex at ambient temperature to give the corresponding amino alcohols with modest to good enantioselectivity (up to 94% ee).

Keywords: allylation; amino aldehydes; Lewis acids; pincer ligands; rhodium

1. Introduction

The development of enantioselective synthesis of chiral homoallylic alcohols containing aminofunctional groups is of great importance to synthetic organic and medicinal chemistry. Despite much effort directed at enantioselective allylation of aldehydes [1-3], there are only a few systems for enantioselective allylation of amino aldehydes as substrates because the high coordination ability of
amino groups to the metal species often leads to deactivation of chiral allylmetals or catalysts. Therefore, most of these reactions need a stoichiometric amount of chiral sources. For examples, Brown [4] and Chen [5] reported the utility of allylboron reagents (Figure 1, A-C) for the reaction with pyridinecarboxaldehydes and 1-methyl-2-pyrrolecarboxaldehyde [4,5]. Denmark and co-workers developed a new reaction system for the allylation of aldehydes, but the enantioselectivity of the reaction with 4-dimethylaminobenzaldehyde was not so high (Figure 1, D) [6]. The other one is a catalytic reaction using $20 \mathrm{~mol} \%$ of BINOL-derived chiral titanium complex/allyltributyltin via transmetalation mechanism reported by Umani-Ronchi (Figure 1, E) [7].

Figure 1. Chiral allylmetal reagents for the asymmetric allylation of amino aldehydes.

We have previously developed a meridional tridentate ligand, 2,6-bis(oxazolinyl)phenyl derivative (abbreviated to Phebox) as a chiral $\mathrm{N}-\mathrm{C}-\mathrm{N}$ pincer type ligand with one central covalent bond to a metal [8-14], and have demonstrated that rhodium(III) aqua complexes bearing the Phebox ligand, (Phebox) $\mathrm{Rh}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ [1: $\left.\mathrm{X}=\mathrm{Cl}, \mathbf{2}: \mathrm{X}=\mathrm{Br}\right]$, acted as recoverable chiral Lewis acid catalysts for the enantioselective addition of allylic tributyltin reagents to aldehydes [15-17] and the asymmetric hetero Diels-Alder reactions of Danishefsky's dienes and glyoxylates [18]. During the course of our studies on the Phebox-Rh(III) system as a chiral transition metal Lewis acid, we have found that tertiary amines such as N, N-diisopropylethylamine or triethylamine cannot bind to the rhodium atom [19]. This discovery encouraged us to use these air-stable and water-tolerant complexes $\mathbf{1}$ and $\mathbf{2}$ for the allylation of amino aldehydes as substrates. We wish to report herein the Lewis acid-catalyzed enantioselective addition of allyl- and methallyltributyltin reagents to aldehydes containing amino-functional groups (Scheme 1).

Scheme 1. Enantioselective addition of allyltin reagents to amino aldehydes catalyzed with (Phebox) $\mathrm{RhX}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ complexes $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$.

3a

3b: $R^{1}=H$ c: $R^{1}=M e$

3d

$3 e$

2. Results and Discussion

2.1. NMR Studies, Isolation, and X-ray Analysis of Phebox-Rh(III)-Amino Aldehyde Complexes

First, we checked the complexation between Phebox-Rh(III) complex $i-\operatorname{Pr}-\mathbf{1}$ and amino aldehydes 3a-e by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$. Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data in CDCl_{3} are listed in Table 1. Although rigid complexation was not clearly observed between i-Pr-1 and 6-methyl-2-pyridinecarboxaldehyde (3c) (Entry 3), ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of the other cases showed formation of new complexes. From the NMR spectra of a mixture of $i-\mathrm{Pr}-\mathbf{1}$ and $\mathbf{3 a}$, the pyridine's nitrogen atom exclusively forms σ-complexes with the ($i-\mathrm{Pr}$-Phebox) RhCl_{2} fragment; the signals of the protons for 2 - and 6 -positions of the pyridine ring $\left(\mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{6}\right)$ appeared at lower field than those of the uncomplexed (free) $\mathbf{3 a}$ (from δ 9.08 to 10.30 ppm for H_{2}, and from $\delta 8.85$ to 10.08 ppm for H_{6}, respectively) (Entry 1). This amine complex was stable enough to be purified by silica gel chromatography and was eventually characterized by a single-crystal X-ray diffraction (Figure 2, Table 2). In the case of the reaction of i - $\operatorname{Pr}-\mathbf{1}$ and $\mathbf{3 b}, \mathrm{H}_{6}$ and the formyl proton $\left(\mathrm{H}_{\mathrm{f}}\right)$ both appeared as broad signals at lower field ($\delta 9.11$ for H_{6} and 10.34 ppm for H_{f}) than those of free $\mathbf{3 b}$ ($\delta 8.77$ for H_{6} and 10.07 ppm for H_{f}) (Entry 2). These results indicate that the coordination of $\mathbf{3 b}$ to the (i-Pr-Phebox) RhCl_{2} fragment is an equilibrium between the pyridinic nitrogen and carbonyl oxygen. In contrast to the pyridinecarboxaldehydes, solutions of 4-dimethylaminobenzaldehyde (3d) and 4-dimethylaminocinnamaldehyde (3e) in the presence of $i-\operatorname{Pr}-1$ showed rigid formation of $\mathrm{C}=\mathrm{O} / \sigma$ type aldehyde complexes. For example, the signals assignable to the dimethylamino group were not changed, but the signals of the formyl proton $\left(\mathrm{H}_{\mathrm{f}}\right)$ and carbon $\left(\mathrm{C}_{\mathrm{f}}\right)$ of coordinated 3d appeared at lower field than the uncomplexed (free) 3d (from δ 9.74 to 9.92 ppm for H_{f}, and from $\delta 190.4$ to 207.2 ppm for C_{f}, respectively) (Entry 4). Similar lower field shifts of H_{f} and C_{f} along with the olefinic protons H_{α} and $\mathrm{H}_{\beta}\left(\mathrm{H}_{\alpha}=\alpha\right.$-proton, $\mathrm{H}_{\beta}=\beta$-proton) were also observed for the mixture of $i-\operatorname{Pr}-\mathbf{1}$ and $3 \mathbf{e}$ in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR $\left(\Delta \mathrm{H}_{\alpha}=+0.27 \mathrm{ppm}\right.$, $\Delta \mathrm{H}_{\beta}=+0.14 \mathrm{ppm}, \Delta \mathrm{H}_{\mathrm{f}}=+0.77 \mathrm{ppm}, \Delta \mathrm{C}_{\mathrm{f}}=+2.9 \mathrm{ppm}$, respectively) (Entry 5). It is widely known that chemical shifts of vinylic protons $\left(\mathrm{H}_{\alpha}\right.$ and $\left.\mathrm{H}_{\beta}\right)$, formyl proton $\left(\mathrm{H}_{\mathrm{f}}\right)$ and carbon $\left(\mathrm{C}_{\mathrm{f}}\right)$ of enals bound
to Lewis acids by the carbonyl oxygen appear at lower field than those of free enals [20-22]. These lower-field shifts of $H_{\alpha}, H_{\beta}, H_{f}$ and C_{f} are also observed in the reaction of $i-\operatorname{Pr}-\mathbf{1}$ and (E)-cinnamaldehyde [16]. The above NMR and X-ray studies thus indicated that the (Phebox) RhCl_{2} fragment, generated by releasing $\mathrm{H}_{2} \mathrm{O}$ from (Phebox) $\mathrm{RhCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, captures amino aldehydes $\mathbf{3 b}-\mathbf{e}$ at the carbonyl oxygen to form aldehyde complexes (Scheme 2).

Table 1. Selected spectroscopic data for free amino aldehydes $\mathbf{3}$ and mixtures of $i-\operatorname{Pr}-\mathbf{1}$ and 3.

Entry		δ (ppm) ${ }^{\text {a }}$		Δ (ppm) ${ }^{\text {b }}$
		3	$i-\mathrm{Pr}-1$ and 3	
1		H_{2} : 9.08	$\mathrm{H}_{2}: 10.30$	+1.22
		$\mathrm{H}_{6}: 8.85$	H_{6} : 10.08	+1.23
		$\mathrm{H}_{\mathrm{f}}: 10.12$	$\mathrm{H}_{\mathrm{f}}: 10.27$	+0.15
		Cf: 190.8	Cf: 189.8	-1.0
2		$\mathrm{H}_{6}: 8.77$	H_{6} : 9.11 (br)	+0.34
		$\mathrm{H}_{\mathrm{f}}: 10.07$	$\mathrm{H}_{\mathrm{f}}: 10.34$ (br)	$+0.27$
3		$\mathrm{H}_{\text {Me }}$: 2.66	$\mathrm{H}_{\text {Me }}$: 2.66	0.00
		$\mathrm{H}_{\mathrm{f}}: 10.04$	$\mathrm{H}_{\mathrm{f}}: 10.06$	+0.02
		$\mathrm{C}_{\text {ме }}$: 24.5	$\mathrm{C}_{\text {ме }}$: 24.5	0.0
		$\mathrm{C}_{\mathrm{f}}: 193.1$	$\mathrm{C}_{\mathrm{f}}: 194.1$	+1.0
4		$\mathrm{H}_{\text {Me }} 3.09$	$\mathrm{H}_{\text {Me }}: 3.11$	+0.02
		H_{f} : 9.74	$\mathrm{H}_{\mathrm{f}}: 9.92$	+0.18
		$\mathrm{C}_{\mathrm{N}}: 40.2$	$\mathrm{C}_{\mathrm{N}}: 40.2$	0.0
		$\mathrm{C}_{\mathrm{f}}: 190.4$	$\mathrm{C}_{\mathrm{f}}: 207.2$	+16.8
5		$\mathrm{H}_{\alpha}: 6.54$	$\mathrm{H}_{\alpha}: 6.81$	+0.27
		$\mathrm{H}_{\beta}: 7.38$	$\mathrm{H}_{\beta}: 7.52$	+0.14
		$\mathrm{H}_{\text {ме }}$: 3.05	$\mathrm{H}_{\text {Me }}: 3.07$	+0.02
		$\mathrm{Hf}_{\mathrm{f}}: 9.09$	$\mathrm{Hf}_{\mathrm{f}}: 9.86$	+0.77
		$\mathrm{C}_{\mathrm{N}}: 40.2$	$\mathrm{C}_{\mathrm{N}}: 40.2$	0.0
		Cf: 193.8	Cf: 196.7	+2.9

${ }^{\text {a }}$ Observed at 400 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and 100 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3} at ambient temperature;
${ }^{\mathrm{b}}$ Calculated by $\delta(i-\operatorname{Pr}-1$ and $\mathbf{3})-\delta(3)$.
Scheme 2. Complexation between (Phebox) RhCl_{2} fragment ([Rh]) and amino aldehydes.

Figure 2. Molecular structure of (i-Pr-Phebox) $\mathrm{RhCl}_{2}(\kappa-3 a)$: there are two independent molecules and one $\mathrm{H}_{2} \mathrm{O}$ in the unit cell.

Table 2. Selected bond distances (\AA) and angles (deg) for $(i-\operatorname{Pr}-\mathrm{Phebox}) \mathrm{RhCl}_{2}(\kappa-3 a) .{ }^{\text {a }}$

$\mathrm{Rh}-\mathrm{C} 1$	$1.93(1)[1.89(1)]$	$\mathrm{Rh}-\mathrm{N} 1$	$2.05(1)[2.06(1)]$
$\mathrm{Rh}-\mathrm{Cl} 1$	$2.340(4)[2.334(4)]$	$\mathrm{Rh}-\mathrm{N} 2$	$2.05(1)[2.09(1)]$
$\mathrm{Rh}-\mathrm{Cl} 2$	$2.334(4)[2.351(4)]$	$\mathrm{Rh}-\mathrm{N} 3$	$2.21(1)[2.27(1)]$
		$\mathrm{C} 4-\mathrm{O} 3$	$1.25(3)[1.27(4)]$
$\mathrm{Cl}-\mathrm{Rh}-\mathrm{N} 3$	$175.2(6)[178.0(5)]$	$\mathrm{N} 1-\mathrm{Rh}-\mathrm{N} 3-\mathrm{C} 2$	$54(1)[90(1)]$
$\mathrm{Cl1-Rh}-\mathrm{Cl} 2$	$178.0(2)[177.2(2)]$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-175(2)[19(3)]$
$\mathrm{N} 1-\mathrm{Rh}-\mathrm{N} 2$	$158.4(5)[157.6(5)]$		

${ }^{\text {a }}$ Bond distances and angles of the second molecule are given in brackets.

2.2. Phebox-Rh(III)-Catalyzed Enantioselective Addition of Allyltributyltin to Amino Aldehydes

We also examined the Phebox-Rh(III)-catalyzed reaction of amino aldehydes and allyltributyltin. Allyltributyltin (4a) was added to a suspension of $4 \AA$ molecular sieves (MS 4A), amino aldehydes $\mathbf{3 b}-\mathbf{e}$ and $5-10 \mathrm{~mol} \%$ of (S, S)-(Phebox) $\mathrm{RhX}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ complexes $(\mathbf{1}$ or 2$)$ in dichloromethane at $25^{\circ} \mathrm{C}$ for 24 h . These results are summarized in Table 3. First, the reaction of pyridine-2-carboxaldehyde (3b) proceeded smoothly, but the isolated yield of the allylated product $5 \mathbf{b}$ was only 14% after purification of the crude material by silica gel chromatography (Entry 1). This result indicates that the alkoxystananne $\mathbf{5 b} \mathbf{b} \mathbf{- S n}$ formed in the reaction mixture is stable and hardly hydrolyzed under the usual workup process (see Experimental section). Consequently, we adopted a new procedure for conversion of $\mathbf{5 b} \mathbf{-} \mathbf{- S n}$ to the acetate derivative $\mathbf{5 b}$-Ac by treatment with acetic anhydride (Scheme 3). In this manner, $\mathbf{5 b}$-Ac was obtained in good to high yields and with moderate enantioselectivity (Entries 2, 3, 5, and 6). The absolute configuration of $\mathbf{5 b}$-Ac obtained by (S, S)-Phebox-derived Rh (III) complexes was determined to be S by comparison of the optical rotation value with literature data [23]. In the case of the reaction using (S, S)-Ph-1, however, $c a .50 \%$ of $\mathbf{3 b}$ was recovered after silica gel chromatography and (R)-5b-Ac was formed as a major enantiomer (Entry 4). Finally, an enantioselectivity of up to 59% ee was achieved using $10 \mathrm{~mol} \%$ of the $i-\mathrm{Pr}$ - and Me-Phebox-derived dibromide complexes (Entries 5 and 6). In the cases of the other aldehydes $\mathbf{3 c - e}$, the products were obtained as a homoallylic alcohol in good to high yields. The reactions of 6-methyl-2-pyridinecarboxaldehyde (3c) and 4-dimethylaminocinnamaldehyde (3e) afforded the corresponding amino alcohols $\mathbf{5 c}$ and $\mathbf{5 e}$ with good
enantioselectivity by using the dibromide complexes (5c: 84% ee with $\mathrm{Ph}-\mathbf{2}$, and 5 e : 88% ee with Bn-2, respectively) (entries 9 and 15). In sharp contrast, the dichloride complexes showed higher enantioselectivity (84% ee for $\mathrm{Me}-\mathbf{1}$, and 81% ee for $s-\mathrm{Bu}-\mathbf{1}$, respectively) than the parent dibromide one (72% ee for $\mathrm{Me}-2$) in the allylation reaction of 4-dimethylamino- benzaldehyde (3d) (Entries 10-12). We also examined the reaction of 3-pyridinecarboxaldehyde (3a), however, no allylated product was obtained and the amine complex, ($i-\mathrm{Pr}-\mathrm{Phebox}) \mathrm{RhCl}_{2}(\kappa-3 a)$, free $\mathbf{3 a}$, and allyltributyltin (4a) were detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude material.

Scheme 3. Conversion of $\mathbf{5 b} \mathbf{- S n}$ to $\mathbf{5 b} \mathbf{- A c}$ by treatment with $\mathrm{Ac}_{2} \mathrm{O}$.

Table 3. Enantioselective addition of allyltributyltin $\mathbf{4 a}$ to amino aldehydes $\mathbf{3 b}-\mathbf{e}{ }^{\text {a }}$

${ }^{\text {a }}$ All reactions were carried out using 0.5 mmol of $\mathbf{3}, 0.75 \mathrm{mmol}$ of $\mathbf{4}$, and $0.025 \mathrm{mmol}(5 \mathrm{~mol} \%)$ of $\mathbf{1}$ or $0.05 \mathrm{mmol}(10 \mathrm{~mol} \%)$ of $\mathbf{2}$ in 2 mL of dichloromethane in the presence of MS $4 \mathrm{~A}(250 \mathrm{mg})$ at $25{ }^{\circ} \mathrm{C}$ for 24 h ; ${ }^{\text {b }}$ Determined by chiral HPLC analysis using Daicel CHIRALCEL OD; ${ }^{\text {c }}$ Assignment by comparison of the sign of optically rotation with reported value; ${ }^{\text {d }} 0.6 \mathrm{mmol}$ of acetic anhydride was added; ${ }^{\text {e }}$ Assignment by analogy.

2.3. Phebox-Rh(III)-Catalyzed Enantioselective Addition of Methallyltributyltin to Amino Aldehydes

Table 4 summarizes the results obtained for the methallylation of amino aldehydes $\mathbf{3 b}-\mathbf{e}$ catalyzed with Phebox-Rh(III) complexes in dichloromethane in the presence of MS 4 A at $25^{\circ} \mathrm{C}$ for 24 h . In the reactions of pyridinecarboxaldehydes $\mathbf{3 b}$ and $\mathbf{3 c}$, the enantiomeric excesses of the methallylated products $\mathbf{6 b}-\mathbf{A c}$ and $\mathbf{6 c}$ were moderate (51% ee for $\mathbf{6 b}-\mathbf{A c}$, and 45% ee for $\mathbf{6 c}$, respectively) (Entries 1-10). Similar to the reaction of pyridine-2-carboxaldehyde $\mathbf{3 b}$ and allyltributyltin (Table 2, Entry 4), (S,S)-Ph-1 afforded the opposite (R)-6b-Ac as a major enantiomer (Entry 3). Compared to the reactions with pyridinecarboxaldehydes $\mathbf{3 b}$ and $\mathbf{3 c}$, the (S, S)-Phebox-Rh-catalyzed reactions of 4-dimethyl-aminobenzaldehyde (3d) and 4-dimethylaminocinnamaldehyde (3e) with methallyltributyltin (4b) afforded the corresponding (S)-products with good to high enantioselectivity (90% ee for $\mathbf{6 d}$ and 94% ee for $\mathbf{6 e}$, respectively) (Entries 11-17). Incidentally, the Phebox-Rh(III) aqua complexes $\mathbf{1}$ and 2 can be recovered almost quantitatively from the reaction media by silica gel column chromatography.

Table 4. Enantioselective addition of methallyltributyltin $\mathbf{4 b}$ to amino aldehydes $\mathbf{3 b}-\mathbf{e} .{ }^{\text {a }}$

Entry	Aldehyde	Catalyst	Product	\% Yield	\% ee ${ }^{\text {b }}$ (config.) ${ }^{\text {c }}$
$1{ }^{\text {d }}$		$\mathrm{Bn}-1$	6b-Ac	79	15 (S)
$2^{\text {d }}$		$\mathrm{Me}-1$	6b-Ac	76	41 (S)
$3{ }^{\text {d }}$		Ph-1	6b-Ac	18	24 (R)
$4{ }^{\text {d }}$		s-Bu-1	6b-Ac	52	$<2(-)$
$5{ }^{\text {d }}$		Me-2	6b-Ac	48	45 (S)
$6{ }^{\text {d }}$		s-Bu-2	6b-Ac	22	51 (S)
7		Me-1	6c	60	45 (S) ${ }^{\text {e }}$
8		s-Bu-1	6 c	36	$11(S)^{\text {e }}$
9		Me-2	6c	21	$10(S)^{\text {e }}$
10		s-Bu-2	6c	26	$26(S)^{\text {e }}$
11		$i-\mathrm{Pr}-1$	6d	84	85 (S) ${ }^{\text {e }}$
12		Bn-1	6d	79	$90(S)^{\text {e }}$
13		$s-\mathrm{Bu}-1$	6 d	68	$87(S)^{\text {e }}$
14		$\mathrm{Bn}-2$	6d	52	63 (S) ${ }^{\text {e }}$
15		$i-\mathrm{Pr}-1$	6 e	52	80 (S) ${ }^{\text {e }}$
16		s-Bu-1	6 e	74	$84(S)^{\text {e }}$
17		s-Bu-2	6 e	20	$94(S)^{\text {e }}$

${ }^{\text {a }}$ All reactions were carried out using 0.5 mmol of $3,0.75 \mathrm{mmol}$ of 4 , and $0.025 \mathrm{mmol}(5 \mathrm{~mol} \%)$ of $\mathbf{1}$ or $0.05 \mathrm{mmol}(10 \mathrm{~mol} \%)$ of 2 in 2 mL of dichloromethane in the presence of MS 4A (250 mg) at $25{ }^{\circ} \mathrm{C}$ for $24 \mathrm{~h} ;{ }^{\text {b }}$ Determined by chiral HPLC analysis using Daicel CHIRALCEL OD; ${ }^{c}$ Assignment by comparison of the sign of optically rotation with reported value; ${ }^{\text {d }} 0.6 \mathrm{mmol}$ of acetic anhydride was added; ${ }^{\mathrm{e}}$ Assignment by analogy.

3. Experimental

3.1. General

Anhydrous dichloromethane was purchased from Kanto Chemical Co. Carbon tetrabromide, all aldehydes and allyltributyltin were purchased from Tokyo Chemical Industry Co., Ltd. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a VARIAN Inova-400 (400 MHz) spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$) chemical shifts were described in parts per million downfield from tetramethylsilane used as an internal standard $(\delta=0)$ in CDCl_{3}, unless otherwise noted. ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ chemical shifts were expressed in parts per million with reference to the residual solvent peak as an internal standard ($\delta=77.1$ for CDCl_{3}), unless otherwise noted. IR spectra were measured on a JASCO FT/IR-230 spectrometer. Melting points were measured on a Yanaco MP-J3 apparatus. Elemental analyses were measured on a Yanaco CHN CORDER MT-6 instrument. High performance liquid chromatography (HPLC) analyses were performed with a JASCO PU-980 HPLC pump, UV-975 and 980 UV/VIS detector, and CO-966 column thermostat (at $25^{\circ} \mathrm{C}$) using a Daicel CHIRALCEL OD column. Optical rotations were measured on a JASCO DIP-140 polarimeter. Column chromatography was performed with silica gel (Merck, Art. No. 7734). Analytical thin-layer chromatography (TLC) was performed on glass plates and aluminum sheets pre-coated with silica gel (Merck, Kieselgel 60 F-254, layer thicknesses 0.25 and 0.2 mm , respectively). Visualization was accomplished by UV light (254 nm), anisaldehyde, and phosphomolybdic acid. All reactions were carried out under a nitrogen or argon atmosphere. (Phebox) SnMe_{3}, (Phebox) $\mathrm{RhCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathbf{1}$ and ($\mathrm{Bn}-\mathrm{Phebox}^{\prime} \mathrm{RhBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ ($\mathrm{Bn}-2$) were prepared by our method $[16,18,24]$. [(c-octene $\left.)_{2} \mathrm{RhCl}\right]_{2}$ [25] and methallyltributyltin [26] were prepared by the literature methods.

3.2. General Procedure for the Synthesis of (Phebox) $\mathrm{RhBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ Complexes

To a stirred solution of (R-Phebox) SnMe_{3} and $\left[(c \text {-octene })_{2} \mathrm{RhCl}\right]_{2}$ in dichloromethane was added tetrabromomethane [ca. 8 equivalents with respect to ($\mathrm{R}-\mathrm{Phebox}$) SnMe_{3}] at ambient temperature for 24 h. Then the reaction mixture was concentrated under reduced pressure. Purification of the residue by silica gel chromatography gave (R-Phebox) $\mathrm{RhBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{R}-2)$.
(i-Pr-Phebox) $\mathrm{RhBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (i-Pr-2). 51% yield. Pale yellow solid. mp. $167{ }^{\circ} \mathrm{C}$ (decomp); IR (KBr) v 3474, 2959, 1622, 1485, 1391, 961, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.96(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.42(\mathrm{qqd}, J=7.0,6.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{bs}, 2 \mathrm{H}), 4.30(\mathrm{td}, J=8.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.71$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 15.4,19.6$, $29.1,67.5,71.3,123.1,128.1,131.5,170.9\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=4.1 \mathrm{~Hz}\right), 178.8\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{c}}=24.2 \mathrm{~Hz}\right)$; Anal. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}_{2} \mathrm{Rh}$: Found C 37.31, H 4.33, N 4.74\%; Calcd C 37.27, H 4.34, N 4.83\%.
(Me-Phebox) $\mathrm{RhBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{Me}-2) .58 \%$ yield. Orange solid; mp. $>300^{\circ} \mathrm{C}$ (decomp); IR (KBr) v 3397, $3009,2822,1617,1485,1397,1148,958,739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.50(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$, 3.32 (bs, 2H), 4.34 (ddq, $J=8.8,7.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.45 (dd, $J=8.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{dd}, J=8.8,8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 19.3,58.6,77.7$,
122.3, 126.9, 132.4, 171.1 ($\mathrm{d}, J_{\text {Rh-C }}=3.7 \mathrm{~Hz}$), $182.2\left(\mathrm{~d}, J_{\text {Rh-C }}=20.0 \mathrm{~Hz}\right.$); Anal. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}_{2} \mathrm{Rh}$: Found C 32.04, H 3.39, N 5.27\%; Calcd C 32.09, H 3.27, N 5.35\%.
(Ph-Phebox) $\mathrm{RhBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{Ph}-2) .37 \%$ yield. Pale yellow solid. mp. $189{ }^{\circ} \mathrm{C}$ (decomp); IR (KBr) v 3452, 2980, 2825, 1613, 1485, 1326, 1149, $968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.79$ (bs, 2H), 4.58 (dd, $J=10.4,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{dd}, J=10.2,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{dd}, J=10.4,10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.46$ $(\mathrm{m}, 7 \mathrm{H}), 7.46-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 31.7,67.1,76.8,123.3$, $128.5,128.8,128.9,131.4,137.4,172.5\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=4.2 \mathrm{~Hz}\right), 180.4\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=21.1 \mathrm{~Hz}\right)$; Anal. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}_{2} \mathrm{Rh}$: Found C 44.48, H 3.19, N 4.30\%; Calcd C 44.47, H 3.27, N 4.32\%.
(s-Bu-Phebox) $\mathrm{RhBr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (s-Bu-2). 21% yield. Pale yellow solid. mp. $119{ }^{\circ} \mathrm{C}$ (decomp); IR (KBr) v $3448,2968,2822,1617,1484,1394,1145,963 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{bs}, 2 \mathrm{H}), 4.34$ (ddd, $J=9.9,6.7,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=8.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=9.9,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{3} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.0,12.8,35.8,66.4,71.4,77.4,123.4,128.2$, $131.4,170.7\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=4.2 \mathrm{~Hz}\right), 176.9\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=24.5 \mathrm{~Hz}\right)$; Anal. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br} 2 \mathrm{Rh}$: Found C $39.51, \mathrm{H}$ 4.73, N 4.63\%; Calcd C 39.50, H 4.81, N 4.61\%.

3.3. General Procedure for the Catalytic Enantioselective Addition of Allyl- or Methallyltributyltin to Aldehydes Catalyzed with (Phebox)RhX $2_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ Complexes

To a suspension of MS 4A (250 mg) in dichloromethane (2 mL) was added (Phebox) $\mathrm{RhX}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ complex ($0.025-0.05 \mathrm{mmol}, 5-10 \mathrm{~mol} \%$), amino aldehyde (0.5 mmol) and allyl- or methallyltributyltin $(0.75 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After it was stirred for 24 h at that temperature, the reaction mixture was concentrated under reduced pressure. Purification of the residue by silica gel chromatography gave homoallylic alcohol: the enantioselectivity was determined by chiral HPLC analysis.

1-(2-Pyridyl)-3-buten-1-ol (5b) [4,5]. [$\alpha]_{\mathrm{D}}{ }^{20}-27.1^{\circ}$ (c 1.22, CHCl_{3}) for 42% ee: lit. $4[\alpha]_{\mathrm{D}}{ }^{23}-32.5^{\circ}$ (c $3.5, \mathrm{EtOH}$) for $\geq 99 \%$ ee, $1 S$; IR (neat) $v 3267,2922,1733,1699,164,1562,1474,1066,702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.48$ (ddddd, $\left.J=14.5,7.3,6.9,1.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.63$ (ddddd, $J=14.5,6.9,4.7$, $1.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{bs}, 1 \mathrm{H}), 4.81(\mathrm{bs}, 1 \mathrm{H}), 5.09$ (dddd, $J=10.1,2.0,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (dddd, $J=17.2,2.0,1.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dddd}, J=17.2,10.1,7.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.5,4.9,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, J=7.8,1.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=7.8,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.54$ (ddd, $J=4.9,1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 43.0,72.3,118.1,120.5,122.4,134.2,136.7,148.4$, 161.4. Enantiomeric excess was determined by after conversion to the corresponding acetate $\mathbf{5 b}-\mathrm{Ac}$.

1-Acetoxy-1-(2-pyridyl)-3-butene (5b-Ac) [23]. IR (neat) v 1738, 1592, 1372, 1235, 1047, $921 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.69$ (ddddd, $\left.J=14.3,7.5,6.9,1.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.76$ (ddddd, $J=14.3,7.1,5.8,1.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (dddd, $J=10.2,1.9,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (dddd, $J=17.2$, $1.9,1.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (dddd, $J=17.2,10.2,7.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (ddd, $J=7.6,4.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=7.9,1.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (ddd, $J=7.9,7.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.60(\mathrm{ddd}, \mathrm{J}=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.2,39.2,75.7,118.2,121.3,122.8$, $133.2,136.7,149.5,158.9,170.4 ;[\alpha]_{\mathrm{D}}{ }^{20}-40.8^{\circ}\left(\mathrm{c} \mathrm{1.10}, \mathrm{CHCl}_{3}\right)$ for 59% ee: lit. $[\alpha]_{\mathrm{D}}{ }^{25}+75^{\circ}$ (c 2.01 ,
CHCl_{3}) for 92% ee, $1 R$ [23]; Daicel CHIRALCEL OD, UV Detector 254 nm , hexane $/ \mathrm{i}-\mathrm{PrOH}=9: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=10.2 \mathrm{~min}(R), 12.8 \mathrm{~min}(S)$.

1-(6-Methyl-2-pyridyl)-3-buten-1-ol (5c). IR (neat) v 3417, 2907, 1642, 1594, 1459, 1066, $799 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.45(\mathrm{dtt}, J=14.2,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{dddt}, J=14.2,6.9,4.8,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dt}, J=7.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{ddt}, J=10.1,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.12 (ddt, $J=17.1,2.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.4,43.1,71.9,117.3,117.8$, $121.9,134.5,136.9,157.1,160.5$; Anal. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$: Found C 73.69, H 8.15, N 8.49\%; Calcd C 73.59, H 8.03, N $8.58 \% ;[\alpha]_{D}{ }^{25}-14.7^{\circ}$ (c $0.95, \mathrm{CHCl}_{3}$) for 84% ee; Daicel CHIRALCEL OD, UV Detector 254 nm , hexane $/ i-\mathrm{PrOH}=30: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=12.0 \mathrm{~min}(R), 13.8 \mathrm{~min}(S)$.

1-(p-Dimethylaminophenyl)-3-buten-1-ol (5d) [7]. IR (neat) v 3435, 2802, 1614, 1522, 1348, 1162, $1052,915,819 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.89(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H})$, 4.65 (ddd, $J=7.1,6.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dm}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (dddd, $J=17.2,10.2,7.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 40.7,73.4,112.6,117.9,126.9,131.9,135.1,150.3 ;[\alpha]_{\mathrm{D}}{ }^{24}-51.8^{\circ}\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right)$ for 84% ee; Daicel CHIRALCEL OD, UV Detector 254 nm , hexane $/ \mathrm{i}-\mathrm{PrOH}=9: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$. $t_{\mathrm{R}}=15.9 \mathrm{~min}$ (minor), 18.5 min (major).
(E)-1-(p-Dimethylaminophenyl)-1,5-hexadien-3-ol (5e). IR (neat) v 3674, 1730, 1610, 1522, 1437, $1352,968,806 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.75(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (ddddd, $J=14.0,7.4,6.9,1.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (ddddd, $J=14.0,6.8,5.4,1.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 ($\mathrm{s}, 6 \mathrm{H}$), 4.31 (dddd, $J=7.2,6.9$, $5.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (dddd, $J=10.2,2.1,1.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dddd, $J=17.1,2.1,1.4,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.86 (dddd, $J=17.1,10.2,7.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 40.6,42.2$, $72.4,112.5,118.2,125.1,127.2,127.5,130.8,134.5,150.3$; Anal. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$: Found C 77.30, H 8.89, N 6.44%; Calcd C $77.38, \mathrm{H} 8.81$, N $6.45 \% ;[\alpha]_{\mathrm{D}}{ }^{25}-21.5^{\circ}\left(\mathrm{c} 1.08, \mathrm{CHCl}_{3}\right)$ for 88% ee; Daicel CHIRALCEL OD, UV Detector 254 nm , hexane $/ \mathrm{i}-\mathrm{PrOH}=9: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=20.0 \mathrm{~min}$ (minor), 21.1 min (major).

1-Acetoxy-1-(2-pyridyl)-3-methyl-3-butene (6b-Ac). IR (neat) v 3076, 2933, 1742, 1651, 1591, 1472, 1236, $894 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{bs}, 1 \mathrm{H})$, $4.79(\mathrm{bs}, 1 \mathrm{H}), 5.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (td, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, \mathrm{J}=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.1,22.6,74.7,113.7$, 121.2, 122.8, 136.7, 141.2, 149.5, 159.3, 170.4; Anal. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$: Found C 70.29, H 7.29, N 6.76\%; Calcd C 70.22, H 7.37, N $6.82 \% ;[\alpha]_{D}{ }^{26}-37.5^{\circ}\left(\mathrm{c} 1.08, \mathrm{CHCl}_{3}\right)$ for 51% ee; Daicel CHIRALCEL OD, UV Detector 254 nm , hexane $/ \mathrm{i}-\mathrm{PrOH}=50: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=17.8 \mathrm{~min}(R), 21.0 \mathrm{~min}(S)$.

1-(6-Methyl-2-pyridyl)-3-methyl-3-buten-1-ol (6c). IR (neat) v 3399, 2924, 1645, 1591, 1458, 1156, $889 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.82(\mathrm{bs}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=14.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=14.0$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{bs}, 1 \mathrm{H}), 4.85(\mathrm{dt}, J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (bs, 1H), $7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}\right) \delta 22.7,24.4,47.4,70.9,113.6,117.3,121.9,136.9,142.5,157.2$, 161.1; Anal. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}:$ Found C 74.58, H 8.53 , N 7.80%; Calcd C 74.54, H 8.53 , N 7.90%; $[\alpha]_{\mathrm{D}}{ }^{20}-29.1^{\circ}$ (c $1.37, \mathrm{CHCl}_{3}$) for 45% ee; Daicel CHIRALCEL OD, UV Detector 254 nm , hexane $/ \mathrm{i}-\mathrm{PrOH}=30: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$. $t_{\mathrm{R}}=12.5 \mathrm{~min}(R), 13.5 \mathrm{~min}(S)$.

1-(p-Dimethylaminophenyl)-3-methyl-3-buten-1-ol (6d). White solid. mp. $28-30^{\circ} \mathrm{C}$; IR (neat) v 3251, 2886, 2800, 1524, 1442, 1350, 1162, 1054, $816 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.79(\mathrm{bs}, 3 \mathrm{H}), 1.98(\mathrm{bs}, 1 \mathrm{H})$, $2.39(\mathrm{dd}, J=14.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=14.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 4.74$ (ddd, $J=9.2,4.4$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{bs}, 1 \mathrm{H}), 4.90(\mathrm{bs}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 22.5,40.8,48.0,71.4,112.6,113.7,126.9,132.0,142.9$; Anal. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$: Found C 76.07, H 9.29, N 6.77%; Calcd C 76.06, H 9.33, N 6.82%; $[\alpha]_{\mathrm{D}}{ }^{19}-55.7^{\circ}$ (c 1.41, CHCl_{3}) for 90% ee; Daicel CHIRALCEL OD, UV Detector 254 nm , hexane $/ \mathrm{i}-\mathrm{PrOH}=9: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=15.0 \mathrm{~min}$ (R), $17.4 \mathrm{~min}(S)$.
(E)-1-(p-Dimethylaminophenyl)-3-methyl-1,5-hexadien-3-ol (6e). IR (neat) v 3631, 3397, 2926, 2801, 1611, 1447, 1167, 965, $804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.79(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{bs}, 3 \mathrm{H}), 2.34$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 4.40(\mathrm{tdd}, J=6.6,6.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{bs}, 1 \mathrm{H}), 4.90(\mathrm{bs}, 1 \mathrm{H}), 6.03$ $(\mathrm{dd}, J=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.7,40.6,46.5,70.6,112.5,113.6,125.3,127.6,130.0,130.5$, 142.4, 150.3; Anal. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$: Found C 76.07, H 9.29, N 6.77%; Calcd C 76.06, H 9.33, N 6.82\%; $[\alpha]_{\mathrm{D}}{ }^{20}-30.2^{\circ}\left(\mathrm{c} 1.66, \mathrm{CHCl}_{3}\right)$ for 84% ee; Daicel CHIRALCEL OD, UV Detector 254 nm , hexane $/ i-\mathrm{PrOH}=9: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=20.0 \mathrm{~min}(R), 21.1 \mathrm{~min}(S)$.

3.4. Synthesis and X-ray Analysis of (i-Pr-Phebox) RhCl_{2} ($\kappa-3 \mathbf{3}$)

(i-Pr-Phebox) $\mathrm{RhCl}_{2}(\kappa-\mathbf{3 a})$. To a stirred solution of $i-\operatorname{Pr}-\mathbf{1}(200 \mathrm{mg}, 0.41 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added $3 \mathbf{a}(39 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ at ambient temperature. After it was stirred for 2 h , the mixture was concentrated under reduced pressure. Purification of the residue by silica gel chromatography (dichloromethane/ether $=1: 1$) gave ($i-\operatorname{Pr}-\mathrm{Phebox}$) $\mathrm{RhCl}_{2}(\kappa-3 a)$ in 84% yield $(200 \mathrm{mg})$. Orange solid. mp. 203-205 ${ }^{\circ} \mathrm{C}$ (decomp); IR ($\mathrm{KBr)}$ v 2958, 1711, 1620, 1485, 1394, 1214, 963, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.37$ (dsept, $J=2.8$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04$ (ddd, $J=10.0,6.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=8.8,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=10.0$, $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=7.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{dd}$, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.07(\mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}), 10.30(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 15.1,19.2,29.4,66.9,71.1,123.3,125.2,128.1,131.6,132.6,136.6,155.1$, $157.2,172.4\left(J_{\mathrm{Rh}-\mathrm{C}}=3.4 \mathrm{~Hz}\right), 185.9\left(J_{\mathrm{Rh}-\mathrm{C}}=19.7 \mathrm{~Hz}\right), 189.8$; Anal. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Rh}$: Found C 49.62, H 4.86, N 7.22%; Calcd C 49.67, H 4.86, N 7.24%. X-ray-quality crystals of (i-Pr-Phebox) $\mathrm{RhCl}_{2}(\kappa-3 a)$ was obtained from benzene-ether-hexane at room temperature and mounted in glass capillary. Diffraction experiments were performed on a Rigaku AFC-7R four-circle diffractometer equipped with graphite-monochromated Mo $K<$ radiation; $L=0.71069 \AA$. The lattice parameters and an orientation matrix were obtained and refined from 25 machine-centered reflections with $29.82<2\left(<29.97^{\circ}\right.$. Intensity data were collected using a $7-2 \backslash$ scan technique, and three standard reflections were recorded
every 150 reflections. The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods [27] and expanded using Fourier techniques [28]. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of fullmatrix least-squares refinement was based on 5306 observed reflections $\left(I>3 \int(I)\right.$) and 598 variable parameters. Neutral atom scattering factors were taken from Cromer and Waber [29]. All calculations were performed using the teXsan crystallographic software package [30]. Final refinement details are collected in Table 5 and the numbering scheme employed is shown in Figure 2, which was drawn with ORTEP at 30% probability ellipsoid. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-826794. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Table 5. Crystallographic data and structure refinement for (i-Pr-Phebox) $\mathrm{RhCl}_{2}(\kappa-3 a)$.

Empirical Formula	$\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{Cl}_{4} \mathrm{Rh}_{2}$	Temperature	$23.0{ }^{\circ} \mathrm{C}$
Formula Weight	1178.65	Scan type	$\omega-2 \theta$
Crystal Dimensions	$0.15 \times 0.5 \times 0.5 \mathrm{~mm}$	Scan Width	-94 ${ }^{-3} \tan \theta \mathrm{deg}$
Crystal System	monoclinic	$2 \theta_{\text {max }}$	55.0 deg
Lattice Type	C-centered	No. of Reflection	Total: 6787
Lattice Parameters: a	18.307(4) Å	measured	
b	14.886(5) A	No. of Unique data	$6581\left(R_{\text {int }}=0.018\right)$
c	$21.056(4) \AA$	Structure Solution	Direct methods
Volume β	$106.55(2) \mathrm{deg}$	Refinement	Full-matrix
Space Group	$\begin{aligned} & 5500(2) A^{\prime} \\ & C 2(\# 5) \end{aligned}$	No. of Observations	least squares $5306 \text { (I }>3 \sigma(\mathrm{I}))$
Z value	4	No. of Variables	598
$D_{\text {calcd }}$	$1.423 \mathrm{~g} / \mathrm{cm}^{3}$	Reflection/Parameter	8.87
$F(000)$	2408.00	Ratio	
$\mu(\mathrm{Mo} \mathrm{K} \alpha$)	$8.44 \mathrm{~cm}^{-1}$	Residuals: R; $R_{\text {w }}$	0.058; 0.077
λ	0.71069 A		

4. Conclusions

In this paper, we have described the catalytic enantioselective addition of allyl- and methallyltributyltin reagents to amino aldehydes catalyzed with air-stable and water tolerant chiral Phebox-Rh(III) aqua complexes. The reactions proceed under mild conditions to afford the corresponding homoallylic alcohols with modest to good enantioselectivity (up to 94% ee), and these aqua complexes can be recovered from the reaction media by column chromatography. We have clarified that the chiral (Phebox) $\mathrm{Rh} \mathrm{X}_{2}$ fragments $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$, generated by releasing water molecule from (Phebox) $\mathrm{RhX}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, capture amino aldehydes at the carbonyl oxygen and the reaction proceeded via a Lewis acid mechanism.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

References and Notes

1. Roush, W.R. Allyl Organometallics. In Comprehensive Organic Synthesis; Trost, B.M., Fleming, I., Heathcock, C.H., Eds.; Pergamon Press: Oxford, UK, 1991; Volume 2, pp. 1-55.
2. Yamamoto, Y.; Asao, N. Selective Reactions using Allylic Metals. Chem. Rev. 1993, 93, 2207-2293.
3. Yanagisawa, A. Allylation of Carbonyl Groups. In Comprehensive Asymmetric Catalysis; Jacobsen, E.N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Heidelberg, Germany, 1999; Volume 2, pp. 965-982.
4. Racherla, U.S.; Liao, Y.; Brown, C.H. Chiral Synthesis via Organoboranes. 36. Exceptionally Enantioselective Allylboration of Representative Heterocyclic Aldehydes at $-100{ }^{\circ} \mathrm{C}$ under Salt-Free Conditions. J. Org. Chem. 1992, 57, 6614-6617.
5. Chen, W.; Liu, Y.; Chen, Z. A Highly Efficient and Practical New Allylboronate Tetramide for the Asymmetric Allylboration of Achiral Aldehydes. Eur. J. Org. Chem. 2005, 1665-1668.
6. Denmark, S.E.; Coe, D.M.; Pratt, N.E.; Griedel, B.D. Asymmetric Allylation of Aldehydes with Chiral Lewis Bases. J. Org. Chem. 1994, 59, 6161-6163.
7. Costa, A.L.; Piazza, M.G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. Catalytic Asymmetric Synthesis of Homoallylic Alcohols. J. Am. Chem. Soc. 1993, 115, 7001-7002.
8. Motoyama, Y.; Nishiyama, H. Asymmetric Reactions with Chiral Bis(oxazolinyl)phenyl-Rh, -Pt, and -Pd Complexes and Their Lewis Acid Activity. In Latest Frontiers of Organic Synthesis; Kobayashi, Y., Ed.; Research Signpost: Kerala, India, 2002; pp. 1-24.
9. Nishiyama, H. Synthesis and Use of Bisoxazolinyl-phenyl Pincers. Chem. Soc. Rev. 2007, 36, 1133-1141.
10. Stark, M.A.; Richards, C.J. Synthesis and Application of Cationic 2,6-Bis(2oxazolilyl)phenylpalladium(II) Complexes. Tetrahedron Lett. 1997, 38, 5881-5884.
11. Denmark, S.E.; Stavenger, R.A.; Faucher, A.-M.; Edwards, J.P. Cyclopropanation with Diazomethane and Bis(oxazoline)palladium(II) Complexes. J. Org. Chem. 1997, 62, 3375-3389.
12. Stol, M.; Snelders, D.J.M.; de Pater, J.J.M.; van Klink, G.P.M.; Kooijman, H.; Spek, A.L.; van Koten, G. Organometallics 2005, 24, 743-749.
13. Kimura, T.; Uozumi, Y. Synthesis of [2,6-Bis(2-oxazolinyl)phenyl]palladium Complexes via the Ligand Introduction Route. Organometallics 2008, 27, 5159-5162.
14. Chuchuryukin, A.V.; Huang, R.; Lutz, M.; Chadwick, J.C.; Spek, A.L.; van Koten, G. NCNPincer Metal Complexes (Ti, Cr, V, Zr, Hf, and Nb) of the Phebox Ligand (S,S)-2,6-Bis(4'-isopropyl-2'-oxazolinyl)phenyl. Organometallics 2011, 30, 2819-2830.
15. Motoyama, Y.; Narusawa, H.; Nishiyama, H. Chiral Bis(oxazolinyl)phenylrhodium(III) Complexes as Lewis Acid Catalysts for Enantioselective Allylation of Aldehydes. Chem. Commun. 1999, 131-132.
16. Motoyama, Y.; Okano, M.; Narusawa, H.; Makihara, N.; Aoki, K.; Nishiyama, H. Bis(oxazolinyl)phenylrhodium(III) Aqua Complexes: Synthesis, Structure, Enantioselective Allylation of Aldehydes and Mechanistic Studies. Organometallics 2001, 20, 1580-1591.
17. Motoyama, Y.; Nishiyama, H. Bis(oxazolinyl)phenylrhodium(III) Aqua Complex: Efficiency in Enantioselective Addition of Methallyltributyltin to Aldehydes under Aerobic Conditions. Synlett 2003, 1883-1885.
18. Motoyama, Y.; Koga, Y.; Nishiyama, H. Asymmetric Hetero Diels-Alder Reaction of Danishefsky's Dienes and Glyoxylates with Chiral Bis(oxazolinyl)phenylrhodium(III) Aqua Complexes, and Its Mechanistic Studies. Tetrahedron 2001, 57, 853-860.
19. Motoyama, Y.; Koga, Y.; Kobayashi, K.; Aoki, K.; Nishiyama, H. Novel Asymmetric Michael Addition of α-Cyanopropionates to Acrolein by the Use of a Bis(oxazolinyl)phenylstannaneDerived Rhodium(III) Complex as a Chiral Lewis Acid Catalyst. Chem. Eur. J. 2002, 8, 2968-2975.
20. Furukawa, J.; Kobayashi, E.; Nagata, S.; Moritani, T. C-13 NMR Spectroscopy of Acrylic Monomer and Lewis Acid Complexes. J. Polym. Sci. A. Polym. Chem. 1974, 12, 1799-1807.
21. Kuran, W.; Pasynkiewicz, S.; Florjanczyk, K.; Lusztyk, E. Vinyl Monomer Complexes in Copolymerization Processes - Studies on Complexes of Acrylonitrile and Methyl Methacrylate with Lewis Acids. Macromol. Chem. 1976, 177, 2627-2635.
22. Childs, R.F.; Mulholland, D.L.; Nixon, A. The Lewis Acid Complexes of α, β-Unsaturated Carbonyl and Nitrile Compounds 1. A Nuclear Magnetic-Resonance Study. Can. J. Chem. 1982, 60, 801-808.
23. Uenishi, J.; Hiraoka, T.; Hata, S.; Nishiwaki, K.; Yonemitsu, O.; Nakamura, K.; Tsukube, H. Chiral Pyridines: Optical Resolution of 1-(2-Pyridyl)- and 1-[6-(2,2'-Bipyridyl)]ethanols by Lipase-Catalyzed Enantioselective Acetylation. J. Org. Chem. 1998, 63, 2481-2487.
24. Motoyama, Y.; Kawakami, H.; Shimozono, K.; Aoki, K.; Nishiyama, H. Synthesis and X-ray Crystal Structures of Bis(oxazolinyl)phenyl-Derived Chiral Palladium(II) and Platinum(II) and -(IV) Complexes and Their Use in the Catalytic Asymmetric Aldol-Type Condensation of Isocyanides and Aldehydes. Orgnometallics 2002, 21, 3408-3414.
25. van der Ent, A.; Onderdelinden, A.C. Chlorobis(cyclooctene)rhodium(I) and Chlorobis(cyclooctene)iridium(I) Complexes. Inorg. Synth. 1990, 28, 90-92.
26. Still, W.C. Stannylation/Destannylation. Preparation of α-Alkoxy Organolithium Reagents and Synthesis of Dendrolasin via a Carbonyl Carbanion Equivalent. J. Am. Chem. Soc. 1978, 100, 1481-1487.
27. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori, G.; Camalli, M. SIR92: A new tool for crystal structure determination and refinement. J. Appl. Crystalogr. 1994, 27, 435.
28. Beurskens, P.T.; Admiraal, G.; Beurskens, G.; Bosman, W.P.; Garcia-Granda, S.; Gould, R.O.; Smits, J.M.M.; Smykalla, C. DIRDIF92: The DIRDIF Program System; Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.
29. Cromer, D.T.; Waber, J.T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, UK, 1974; Volume 4.
30. teXane: Crystal Structure Analysis Package; Molecular Structure Corporation: The Woodlands, TX, USA, 1985 \& 1992.

Sample availability: Samples of the complexes $\mathbf{1}$ and $\mathbf{2}$ are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

