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Abstract: Plant extracts are a valuable source of novel antibacterial compounds to combat 
pathogenic isolates of methicillin−resistant Staphylococcus aureus (MRSA), a global 
nosocomial infection. In this study, the alcoholic extract from Thai mango (Mangifera 
indica L. cv. ‘Fahlun’) seed kernel extract (MSKE) and its phenolic principles (gallic acid, 
methyl gallate and pentagalloylglucopyranose) demonstrated potent in vitro antibacterial 
activity against Staphylococcus aureus and 19 clinical MRSA isolates in studies of disc 
diffusion, broth microdilution and time−kill assays. Electron microscopy studies using 
scanning electron microscopy and transmission electron microscopy revealed impaired cell 
division and ultra−structural changes in bacterial cell morphology, including the thickening 
of cell walls, of microorganisms treated with MSKE; these damaging effects were 
increased with increasing concentrations of MSKE. MSKE and its phenolic principles 
enhanced and intensified the antibacterial activity of penicillin G against 19 clinical MRSA 
isolates by lowering the minimum inhibitory concentration by at least 5−fold. The major 
phenolic principle, pentagalloylglucopyranose, was demonstrated to be the major contributor 
to the antibacterial activity of MSKE. These results suggest that MSKE may potentially be 
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useful as an alternative therapeutic agent or an adjunctive therapy along with penicillin G 
in the treatment of MRSA infections. 

Keywords: Mangifera indica L.; methicillin−resistant Staphylococcus aureus; 
pentagalloylglucopyranose; pseudomulticellular bacteria; penicillin G 

 

1. Introduction 

The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is an important pathogen that can 
cause life-threatening bacterial infections, such as pneumonia, meningitis, osteomyelitis, endocarditis 
and toxic shock syndrome [1]. The introduction of β-lactam antibiotics has greatly improved the 
prognosis of patients with severe staphylococcal infections; however, the resistance of S. aureus to 
wide spectrum β-lactam antibiotics, such as penicillin G, methicillin and oxacillin, has emerged in 
several countries [2]. Methicillin-resistant Staphylococcus aureus (MRSA) has become a worldwide 
public health problem and is a major cause of both nosocomial and community infections. Although 
the glycopeptide antibiotic, vancomycin, is considered indispensable for the treatment of MRSA 
infections, the first MRSA strain to acquire resistance to vancomycin was isolated from a Japanese 
patient in 1996, and this was followed by reports of similar resistant strains from the USA, France, 
Korea, South Africa, and Brazil [3]. Under these circumstances, the development of new antibacterial 
agents to control MRSA is urgently needed. 

Plants are rich in a wide variety of secondary metabolites, including alkaloids, terpenes, flavonoids 
and tannins, all of which are known to possess antibacterial activity [4]. The ethanolic extract of Thai 
mango (Mangifera indica L. cv. ‘Fahlun’, Anacardiaceae) seed kernels (MSKE) contains a relatively 
high phenolic content of pentagalloylglucopyranose (PGG) (61.28%) and relatively smaller amounts of 
methyl gallate (MG) (0.68%) and gallic acid (GA) (0.44%) [5]. MSKE and its principles have been 
pharmacologically documented to have antioxidant, anti-tyrosinase, anti–inflammatory, and 
hepatoprotective activities [5,6] as well as anti-enzymatic activities against snake venom [7,8]. The 
objectives of this study were to investigate the inhibitory potential of MSKE and its isolated phenolic 
principles against MRSA and the capacity of these principles to modulate β-lactam resistance in 
MRSA. In addition, the effect of MSKE and PGG on the bacterial structure was observed using 
electron microscopy.  

2. Results and Discussion  

2.1. Disc Diffusion Method 

The MSKE displayed antimicrobial activity against both S. aureus ATCC 25923 and all of the 19 
tested MRSA strains as shown by the presence of inhibition zones in the disc diffusion study in  
Table 1. 
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Table 1. Antibacterial activity of MSKE against S. aureus ATCC 25923 and 19 clinical 
MRSA isolates (nz = no inhibition zone, a mean values ± S.D. of triplicate results, b mean 
values ± S.D. from 19 MRSA strains, *no significant difference from S. aureus ATCC 
25923 at p > 0.01). 

Bacterial 
strains 

Mean diameter of inhibition zone (mm)a 
Control 

(solvents) 
MSKE Vancomycin 

30 µg/disc 0.625 mg/disc 1.25 mg/disc 2.50 mg/disc 5.00 mg/disc 
S. aureus 

ATCC 25923 
nz 11.44 ± 0.59 14.81 ± 0.49 13.94 ± 1.34 17.06 ± 3.23 18.31 ± 0.52 

Clinical MRSA strains 
M 01 nz 12.00 ± 0.14 14.08 ± 0.25 14.17 ± 0.23 18.25 ± 1.14 21.00 ± 0.33 
M 02 nz 12.03 ± 0.19 14.11 ± 0.46 17.20 ± 2.31 17.92 ± 1.53 20.44 ± 2.50 
M 03 nz 11.92 ± 0.68 15.58 ± 0.51 15.53 ± 0.90 20.50 ± 2.28 22.89 ± 2.01 
M 04 nz 11.28 ± 0.38 14.08 ± 0.82 14.56 ± 0.55 18.19 ± 1.61 19.67 ± 0.33 
M 05 nz 11.58 ± 0.52 13.69 ± 0.35 13.20 ± 0.52 16.03 ± 0.20 19.78 ± 0.19 
M 06 nz 11.92 ± 0.82 14.89 ± 0.71 14.50 ± 1.65 18.78 ± 2.67 19.33 ± 0.67 
M 07 nz 10.92 ± 0.46 14.28 ± 0.57 14.33 ± 0.71 18.53 ± 0.91 20.89 ± 0.84 
M 08 nz 11.31 ± 0.51 14.36 ± 0.27 15.59 ± 0.52 19.34 ± 0.54 19.78 ± 0.69 
M 09 nz 10.39 ± 0.46 13.08 ± 0.76 13.36 ± 0.51 17.97 ± 0.20 20.44 ± 1.95 
M 10 nz 12.44 ± 0.51 15.72 ± 1.50 14.52 ± 0.35 18.36 ± 0.20 18.33 ± 0.58 
M 11 nz 8.17 ± 0.29 10.06 ± 0.10 12.17 ± 0.76 13.56 ± 0.51 18.61 ± 0.54 
M 12 nz 10.33 ± 0.44 12.11 ± 0.10 14.11 ± 0.25 15.72 ± 0.10 19.11 ± 1.07 
M 13 nz 9.11 ± 0.10 10.72 ± 0.59 12.72 ± 0.69 14.72 ± 0.86 18.33 ± 1.04 
M 14 nz 8.56 ± 0.35 10.56 ± 0.35 13.00 ± 0.17 14.61 ± 0.54 21.89 ± 1.95 
M 15 nz 10.44 ± 0.67 12.39 ± 0.54 14.22 ± 1.51 16.83 ± 1.09 20.61 ± 1.69 
M 16 nz 9.56 ± 0.25 11.00 ± 0.29 13.67 ± 0.33 15.39 ± 0.38 19.67 ± 0.73 
M 17 nz 10.28 ± 0.19 11.61 ± 0.42 13.61 ± 0.69 15.39 ± 0.54 19.28 ± 0.54 
M 18 nz 9.44 ± 1.08 10.83 ± 0.60 12.61 ± 0.92 15.00 ± 0.76 20.44 ± 1.80 
M 19 nz 9.94 ± 1.55 11.28 ± 1.44 12.89 ± 1.55 15.06 ± 1.40 18.72 ± 0.92 

Mean MRSA 
(n = 19) b 

nz 10.61 ± 1.25* 12.87 ±1.82* 14.00 ±1.21* 16.85 ±1.94* 19.96 ± 1.20* 

The mean diameter of the inhibition zone was increased from 11.44 ± 0.59 to 14.81 ± 0.49,  
13.94 ± 1.34 and 17.06 ± 3.23 mm for S. aureus ATCC 25923 over an increase in concentration of 
0.625 to 1.25, 2.50 and 5.00 mg/disc, respectively. The uneven increase trend in the inhibition zones 
could be a result of uneven drug diffusion from the paper disc to agar plate.  

At the same concentration range, similar mean inhibition zones (10.61 ± 1.25 to 12.87 ± 1.82,  
14.00 ± 1.21 and 16.85 ± 1.94 mm) were found for all 19 clinical MRSA isolates. There was no 
significant difference between the mean inhibition zone of the reference MSSA strain and the MRSA 
strains (p > 0.01). The solvent used, 10% DMSO, produced no visible inhibition zone in this study, 
whereas the positive control, vancomycin at 30 μg/disc, produced mean inhibition zones of  
18.31 ± 0.52 mm for the standard MSSA strain and 19.96 ± 1.20 mm for the 19 MRSA strains. 
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2.2. The Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations 
(MBCs) 

Table 2 shows the MIC and MBC values of MSKE and its phenolic principles (PGG, GA, MG) 
against S. aureus ATCC 25923 and 19 clinical MRSA isolates as compared to the reference antibiotics. 
The MIC and the MBC values of these phenolic principles against the standard MSSA strain were 
lower than those generated by MSKE.  

The order of potency for MICs was PGG (0.13 ± 0.00 mg/mL) < GA (0.19 ± 0.00 mg/mL) < MG 
(0.38 ± 0.00 mg/mL) < MSKE (0.47 ± 0.00 mg/mL). The order of potency for MBCs was PGG  
(0.50 ± 0.00 mg/mL) < GA (0.75 ± 0.00 mg/mL) < MG (1.00 ± 0.00 mg/mL) < MSKE (1.88 ± 0.00 mg/mL). 
For the 19 clinical MRSA isolates, the MICs of MSKE and its phenolic principles against these  
MRSA strains ranged from 0.13 ± 0.00 to 0.25 ± 0.00 mg/mL for PGG, 0.47 ± 0.00 mg/mL for MSKE, 
0.19 ± 0.00 to >3.00 ± 0.00 mg/mL for GA, and 0.75 ± 0.00 to 2.50 ± 0.87 mg/mL for MG.  

The MBC values were as follows: PGG 1.00 ± 0.00 to >1.00 ± 0.00 mg/mL, MG 1.00 ± 0.43 to 
2.50 ± 0.87 mg/mL, GA 0.38 ± 0.00 to >3.00 ± 0.00 mg/mL and MSKE 0.94 ± 0.00 to  
3.75 ± 0.00 mg/mL. For the reference antibiotics, vancomycin exhibited both lower MIC  
(0.78 ± 0.00 µg/mL) and MBC (3.13 ± 0.00 µg/mL) values than penicillin G (MIC and  
MBC = 41.67 ± 18.04 µg/mL) against the standard MSSA strain. All 19 MRSA isolates were resistant 
to penicillin G with MIC and MBC values ranging from 125.00 ± 0.00 to 8,000.00 ± 0.00 µg/mL. The  
19 MRSA isolates were susceptible to vancomycin with MIC and MBC values ranging from  
1.56 ± 0.00 to 6.25 ± 0.00 µg/mL and 3.13 ± 0.00 to 12.50 ± 0.00 µg/mL, respectively. 

These broth microdilution results agreed with the disc diffusion assays, which demonstrated that the 
antibacterial activity of MSKE against the standard MSSA strain and all of the clinical MRSA strains 
were not significantly different (p > 0.01) as shown by their similar MBC mean values (1.88 ± 0.00 
and 1.83 ± 0.79 mg/mL, respectively) and equivalent MIC value (0.47 ± 0.00 mg/mL) (Table 2). 
Among the phenolic principles of MSKE, PGG exhibited the most potent antibacterial activity against 
both the standard MSSA strain and all 19 clinically isolated strains, exhibiting the lowest mean  
MIC values (0.13 ± 0.00 and 0.16 ± 0.03 mg/mL, respectively) compared to GA (0.19 ± 0.00 and  
>1.07 ± 1.19 mg/mL, respectively) and MG (0.38 ± 0.00 and 1.33 ± 0.34 mg/mL, respectively).  

We observed that the mean MIC of PGG against all tested strains was approximately 3−fold lower 
than that of MSKE. Similarly, PGG also exhibited lower mean MBC values (>1.00 ± 0.00 mg/mL) 
against all 19 MRSA strains compared to GA (>1.25 ± 1.09 mg/mL) and MG (1.42 ± 0.32 mg/mL). 
Because PGG is the major principle of MSKE, present at the highest concentration at approximately 
65% and GA and MG are present at only trace levels (0.88 and 0.62%, respectively), the data imply 
that PGG may be the major contributor to the antibacterial activity of MSKE; there may also be other 
unidentified constituents of MSKE that possess lower antibacterial potencies than PGG that have not 
yet been isolated.  
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Table 2. The mean MICs and MBCs of MSKE and its phenolic principles against S. aureus ATCC 25923 and 19 clinically isolated MRSA 
strains (a mean values ± S.D. of triplicate results, b mean values ± S.D. from 19 MRSA strains). 

Bacterial  

strains 

Susceptibility of Bacteriaa 

MSKE (mg/mL) PGG (mg/mL) MG (mg/mL) GA (mg/mL) Vancomycin (µg/mL) Penicillin G (µg/mL) 

MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC 

S. aureus 

ATCC 25923 
0.47 ± 0.00 1.88 ± 0.00 0.13 ± 0.00 0.50 ± 0.00 0.38 ± 0.00 1.00 ± 0.00 0.19 ± 0.00 0.75 ± 0.00 0.78 ± 0.00 3.13 ± 0.00 41.67 ± 18.04 41.67 ± 18.04 

Clinical MRSA strains 

M 01 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 1.25 ± 0.43 1.50 ± 0.00 0.25 ± 0.11 0.75 ± 0.00 1.56 ± 0.00 6.25 ± 0.00 2,000.00 ± 0.00 8,000.00 ± 0.00 

M 02 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 1.00 ± 0.43 1.25 ± 0.43 0.38 ± 0.00 0.63 ± 0.22 1.56 ± 0.00 6.25 ± 0.00 2,000.00 ± 0.00 5,333.33 ± 2,309.40 

M 03 0.47 ± 0.00 1.88 ± 0.00 0.13 ± 0.00 1.00 ± 0.00 1.25 ± 0.43 1.25 ± 0.43 0.38 ± 0.00 0.63 ± 0.22 1.56 ± 0.00 6.25 ± 0.00 2,000.00 ± 0.00 4,000.00 ± 0.00 

M 04 0.47 ± 0.00 1.88 ± 0.00 0.13 ± 0.00 1.00 ± 0.00 1.25 ± 0.43 1.25 ± 0.43 0.25 ± 0.11 0.50 ± 0.22 1.56 ± 0.00 6.25 ± 0.00 1,333.33 ± 577.35 2,666.67 ± 1,154.70 

M 05 0.47 ± 0.00 1.88 ± 0.00 0.13 ± 0.00 1.00 ± 0.00 1.25 ± 0.43 1.50 ± 0.00 0.38 ± 0.00 1.00 ± 0.43 1.56 ± 0.00 6.25 ± 0.00 2,000.00 ± 0.00 5,333.33 ± 2,309.40 

M 06 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 1.25 ± 0.43 1.25 ± 0.43 0.25 ± 0.11 0.38 ± 0.00 1.56 ± 0.00 12.50 ± 0.00 1,666.67 ± 577.35 4,000.00 ± 0.00 

M 07 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 1.25 ± 0.43 1.75 ± 1.15 0.63 ± 0.22 0.75 ± 0.00 1.56 ± 0.00 6.25 ± 0.00 2,000.00 ± 0.00 8,000.00 ± 0.00 

M 08 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 >1.00 ± 0.00 1.25 ± 0.43 1.25 ± 0.43 0.38 ± 0.00 0.38 ± 0.00 1.56 ± 0.00 6.25 ± 0.00 1,666.67 ± 577.35 4,000.00 ± 0.00 

M 09 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 1.25 ± 0.43 1.25 ± 0.43 0.38 ± 0.00 0.38 ± 0.00 1.56 ± 0.00 12.50 ± 0.00 1,666.67 ± 577.35 4,000.00 ± 0.00 

M 10 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 >1.00 ± 0.00 1.25 ± 0.43 1.50 ± 0.00 0.63 ± 0.22 0.75 ± 0.00 1.56 ± 0.00 6.25 ± 0.00 1,666.67 ± 577.35 8,000.00 ± 0.00 

M 11 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 1.50 ± 0.00 1.50 ± 0.00 >3.00 ± 0.00 >3.00 ± 0.00 1.56 ± 0.00 12.50 ± 0.00 2,000.00 ± 0.00 8,000.00 ± 0.00 

M 12 0.47 ± 0.00 3.75 ± 0.00 0.13 ± 0.00 >1.00 ± 0.00 2.50 ± 0.87 2.50 ± 0.87 >3.00 ± 0.00 >3.00 ± 0.00 1.56 ± 0.00 12.50 ± 0.00 4,000.00 ± 0.00 8,000.00 ± 0.00 

M 13 0.47 ± 0.00 3.75 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.43 0.25 ± 0.11 0.75 ± 0.00 6.25 ± 0.00 12.50 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 

M 14 0.47 ± 0.00 0.94 ± 0.00 0.13 ± 0.00 1.00 ± 0.00 1.25 ± 0.43 1.25 ± 0.43 0.63 ± 0.22 0.75 ± 0.00 3.13 ± 0.00 12.50 ± 0.00 4,000.00 ± 0.00 8,000.00 ± 0.00 

M 15 0.47 ± 0.00 0.94 ± 0.00 0.13 ± 0.00 1.00 ± 0.00 1.50 ± 0.00 1.50 ± 0.00 >3.00 ± 0.00 >3.00 ± 0.00 3.13 ± 0.00 12.50 ± 0.00 125.00 ± 0.00 125.00 ± 0.00 

M 16 0.47 ± 0.00 0.94 ± 0.00 0.25 ± 0.00 1.00 ± 0.00 1.50 ± 0.00 1.50 ± 0.00 >3.00 ± 0.00 >3.00 ± 0.00 3.13 ± 0.00 12.50 ± 0.00 4,000.00 ± 0.00 8,000.00 ± 0.00 

M 17 0.47 ± 0.00 0.94 ± 0.00 0.13 ± 0.00 1.00 ± 0.00 1.00 ± 0.43 1.00 ± 0.43 0.31 ± 0.11 0.75 ± 0.00 3.13 ± 0.00 12.50 ± 0.00 125.00 ± 0.00 125.00 ± 0.00 

M 18 0.47 ± 0.00 0.94 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 1.50 ± 0.00 1.50 ± 0.00 0.19 ± 0.00 0.38 ± 0.00 3.13 ± 0.00 12.50 ± 0.00 2,000.00± 0.00 8,000.00 ± 0.00 

M 19 0.47 ± 0.00 1.88 ± 0.00 0.17 ± 0.07 1.00 ± 0.00 1.50 ± 0.00 1.50 ± 0.00 >3.00 ± 0.00 >3.00 ± 0.00 1.56 ± 0.00 3.13 ± 0.00 2,000.00± 0.00 8,000.00 ± 0.00 

Mean MRSA 

(n = 19) b 
0.47 ± 0.00 1.83 ± 0.79 0.16 ± 0.03 >1.00 ± 0.00 1.33 ± 0.34 1.42 ± 0.32 >1.07 ± 1.19 >1.25 ± 1.09 2.22 ± 1.20 9.38 ± 3.45 2,328.95 ± 1,729.87 5,767.54 ± 2,748.78 
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2.3. Time–Kill Curves 

The bactericidal effects of MSKE and its phenolic principles against standard MSSA strain are 
shown in Figures 1A–1E. The time−kill curves of MSKE and its principles against the M03 MRSA 
strain are shown in Figures 1F−1J.  

Figure 1. Time–kill curves of S. aureus ATCC 25923 (A–E) and the M03 MRSA strain 
(F–J) after treatment with MSKE (A and F), PGG (B and G), MG (C and H), GA (D and I) 
and vancomycin (E and J). Each symbol indicates the mean ± S.D. for at least  
duplicate samples. 
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Using concentrations of 4 and 8 MICs; we showed that for the treatment of standard MSSA 
(Figures 1A–1E), MSKE, PGG and GA induced complete cell death within 8, 6 and 2 h, respectively, 
whereas vancomycin exhibited complete eradication within 4 h. MG was able to kill MSSA cells 
completely within 24 and 16 h at concentrations of 4 and 8 MICs, respectively. Treatment of M03 
MRSA (Figures 1F–1J) with either MSKE or PGG at 4 and 8 MICs exerted the most bactericidal 
activity (≥5 log10–fold decrease) within 24 h, whereas treatment with MG using the same concentration 
range resulted in complete cell death within 16 and 8 h, respectively. GA produced no bactericidal 
effects on the M03 MRSA strain at any time and exerted only a 1–2 log10 reduction within 8 h 
compared with controls (Figure 1I). In the case of vancomycin, a bacteriostatic effect on M03 MRSA 
was detected by 24 h after incubation at 4 MICs, whereas a bactericidal effect was observed at 8 MICs 
within 24 h. 

The ability of MSKE, PGG and GA to kill the standard MSSA strain at 4 and 8 MICs occurred in a 
time–dependent manner, whereas the bactericidal activity of MG demonstrated a concentration− and 
time−dependent pattern. Although the killing rate of GA against the standard MSSA strain at 4 and 8 
MICs was time−dependent, GA failed to inhibit the growth of the M03 MRSA strain at either 
concentration, which is not in agreement with the MBC values. This finding implied that the MIC and 
MBC values resulting from the broth microdilution study that provided a static view may disagree with 
the results from the time–kill assays that measured the killing rates of the microorganism in a dynamic 
manner [9]. This phenomenon may also be explained by the survival of adaptive, resistant forms such 
as those that have been observed after incubating Enterococcus faecalis with the chloroform fraction 
of rhizomes from Aristolochia paucinervis Pomel [10]. 

2.4. Electron Microscopy 

Scanning electron microscopy (SEM) images of the standard MSSA strain are shown in Figure 2. 
The SEM images revealed that MSKE and PGG induced an alteration in cell morphology. Control 
cells in the presence of 1% DMSO showed a spherical shape in grapelike clusters (Figure 2A). In 
contrast, cells treated with either MSKE or PGG at a MIC of 4 displayed clusters of non–separated 
cells (Figures 2B and 2C).  

Figure 2. Scanning electron micrographs of S. aureus ATCC 25923 at 12 h after treatment 
with (A) 1% DMSO (control), (B) MSKE at 4 MICs and (C) PGG at 4 MICs. 

 

The SEM images indicated an impaired cell division of the tested microorganisms after treatment 
with MSKE and were in agreement with the results obtained from transmission electron microscopy 
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(TEM) images, which demonstrated ultra–structural changes in the tested MSSA cells (Figures 3B–3D) 
and M09 MRSA cells (Figures 3F–3H) after treatment with MSKE. At the MIC of MSKE, the 
separation of daughter cells was severely inhibited as demonstrated by the incomplete septum 
formation; this phenomenon is demonstrated by the pseudomulticellular appearance and asymmetrical 
initiation of septum formation that are visible in groups of non–separated cells (Figures 3B and 3F, arrows).  

In addition, the thickness of the bacterial cell walls was significantly increased following treatment. 
These damaging effects and the observed ultra–structural changes appeared to be more prominent with 
the increase in MSKE concentration from 1 to 2 or 4 MICs. The splitting of cell materials to the outer 
surface of the disrupted membrane (Figures 3C, 3D, 3G and 3H) and the fibrous matrix extending from 
the surface of the treated cells (Figure 3G, arrow) are obviously seen. The untreated cells of both 
standard MSSA and M09 MRSA strains showed symmetrical initiation and completed septum 
formation (Figures 3A and 3E, arrows). These results were similar to the ultra–structural changes 
observed in the MRSA strains treated with Quercus infectoria extract, tannic acid [11] or green tea 
extract (Camellia sinensis) [12]. Since polyphenols are known to form complexes with proteins and 
polysaccharides [13], bacterial surfaces have the ability to bind large amounts of polyphenols [14,15]. 
The inhibitory mechanism of MSKE and its phenolic principles against MSSA and MRSA strains may 
therefore be due to the damage to the bacterial membrane. This leads to permeability of the outer and 
inner membranes of treated cells and disruption of membranes, resulting in the release of small cellular 
molecules. This hypothesis is in accordance with the inhibitory mechanism of tea polyphenols towards 
Pseudomonas aeruginosa suggested by Yi et al. [16]. 

Figure 3. Transmission electron micrographs of S. aureus ATCC 25923 (A–D) and the 
M09 MRSA strain (E–H) 12 h after treatment with different concentrations of MSKE,  
1 MIC (B, F) 2 MICs (C, G) and 4 MICs (D, H), when compared to the control, 1% 
DMSO, (A, E). 
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2.5. The Enhancing Effects of MSKE and Its Phenolic Principles on the Antibacterial Activity of 
Penicillin G 

Table 3 demonstrates the capabilities of MSKE and its phenolic principles to enhance the 
antibacterial activity of penicillin G. It was found that the addition of MSKE at 0.25 or 0.5 MIC to 
penicillin G led to a marked reduction in the MIC of penicillin G against the standard MSSA strain 
from 41.67 ± 18.04 to 3.91 ± 0.00 and 1.95 ± 0.00 µg/mL, respectively. The MIC of penicillin G was 
also reduced when it was combined with 0.25 and 0.5 MICs of the phenolic principles, showing 
reductions from 41.67 ± 18.04 to 7.81 ± 0.00 µg/mL at both concentrations for PGG, to 15.63 ± 0.00 
and 7.81 ± 0.00 µg/mL, respectively, for GA and to 31.25 ± 0.00 and 15.63 ± 0.00, respectively, for 
MG. A similar enhancement effect was also observed in the antibacterial activity of penicillin G 
against 19 clinical MRSA strains when it was combined with 0.25 and 0.5 MICs of MSKE and its 
phenolic principles. The mean MIC of penicillin G against the 19 MRSA strains at the two 
concentrations was reduced at least 5–fold from 2,328.95 ± 1,729.87 µg/mL to 361.84 ± 159.45 and 
309.21 ± 145.05 µg/mL, respectively, for MSKE, to 409.95 ± 300.04 and 324.42 ± 222.60 µg/mL, 
respectively, for PGG, to 250.41 ± 439.73 and 9.16 ± 28.08 µg/mL, respectively, for MG and to 
244.04 ± 205.36 and 237.46 ± 207.16 µg/mL, respectively, for GA. It was noted that the addition of 
MG at 0.5 MIC dramatically reduced the mean MIC of penicillin G against the 19 clinical MRSA 
strains of approximately 254−fold from 2,328.95 ± 1,729.87 to 9.16 ± 28.08 µg/mL. These results 
suggest that despite the weak antimicrobial effects of MG against MRSA and MSSA, MG may have 
the capacity to enhance the bacterial susceptibility to penicillin G similarly to the alkyl gallates, which 
have been shown to dramatically intensify susceptibility to β–lactams in MSSA and MRSA strains [17]. 

These results imply that the enhancing ability of MSKE on the antibacterial activity of penicillin G 
against MRSA strains may be due to the major phenolic principle, PGG, as the capacity of PGG to 
reduce the mean MIC of penicillin G against MRSA strains was close to the capacity of MSKE at both 
0.25 and 0.5 MICs. Although MG and GA alone exhibited lower antibacterial activity than PGG, GA 
and MG at 0.25 and 0.5 MICs in combination with penicillin G demonstrated higher capacities to 
reduce the mean MIC of penicillin G against MRSA strains than the addition of PGG at the same 
concentration (Table 3). This finding suggests that the enhancing capacity of MSKE and its phenolic 
principles may not be related only to their antibacterial activity. 

Moreover, the combination of 0.5 or 1 MIC of MSKE with penicillin G did not enhance the 
bactericidal activity of penicillin G against the 19 clinical MRSA isolates. Their mean MBCs were 
5,767.54 ± 2,748.78 for penicillin G alone, 5,907.89 ± 2,757.52 when 0.5 MIC of MSKE was added 
and 5,907.89 ± 2,757.52 µg/mL when 1 MIC of MSKE was added (Table 4). For the standard MSSA 
strain, the mean MBC of penicillin G was reduced from 41.67 ± 18.04 to 31.25 ± 0.00 µg/mL with the 
addition of either 0.5 or 1 MIC of MSKE. This result implies that MSKE can enhance the antibacterial 
activity of penicillin G against MRSA with a bacteriostatic effect but not a bactericidal effect. 
However, the enhancing mechanism of MSKE and its phenolic principles on the antibacterial activity 
of penicillin G against MRSA and MSSA has not been elucidated, but it could be similar to 
tellimagrandin I and corilagin, which enhanced the antibacterial activity of β−lactam antibiotics by 
inactivating the penicillin−binding protein and suppressing the activity of β−lactamase [18]. 
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Table 3. The enhancing effects of MSKE and its phenolic principles on the antibacterial activities of penicillin G against S. aureus ATCC 
25923 and 19 clinical MRSA isolates (a mean values ± S.D. of triplicate results, b mean values ± S.D. from 19 MRSA strains). 

Bacterial  

strains 

MIC of Penicillin G (µg/mL)a 

Penicillin G alone +MSKE 0.25MIC +MSKE 0.5MIC +PGG 0.25MIC +PGG 0.5MIC +MG 0.25MIC +MG 0.5MIC +GA 0.25MIC +GA 0.5MIC 

S. aureus  

ATCC 25923 
41.67 ± 18.04 3.91 ± 0.00 1.95 ± 0.00 7.81 ± 0.00 7.81 ± 0.00 31.25 ± 0.00 15.63 ± 0.00 15.63 ± 0.00 7.81 ± 0.00 

Clinical MRSA strains 

M 01 2,000.00 ± 0.00  500.00  ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 62.50 ± 0.00 1.95 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 02 2,000.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 125.00 ± 0.00 1.95 ± 0.00 250.00 ± 0.00 125.00 ± 0.00 

M 03 2,000.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 1,000.00 ± 0.00 500.00 ± 0.00 125.00 ± 0.00 1.95 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 04 1,333.33 ± 577.35 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 125.00 ± 0.00 1.95 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 05 2,000.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 125.00 ± 0.00 1.95 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 06 1,666.67 ± 577.35 250.00 ± 0.00 250.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 62.50 ± 0.00 1.95 ± 0.00 3.91 ± 0.00 3.91 ± 0.00 

M 07 2,000.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 125.00 ± 0.00 1.95 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 08 1,666.67 ± 577.35 250.00 ± 0.00 250.00 ± 0.00 1,000.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 125.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 09 1,666.67 ± 577.35 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 3.91 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 10 1,666.67 ± 577.35 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 125.00 ± 0.00 125.00 ± 0.00 3.91 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 11 2,000.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 3.91 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 12 4,000.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 1,000.00 ± 0.00 1,000.00 ± 0.00 2,000.00 ± 0.00 3.91 ± 0.00 1,000.00 ± 0.00 1,000.00 ± 0.00 

M 13 8,000.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 3.91 ± 0.00 125.00 ± 0.00 125.00 ± 0.00 

M 14 4,000.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 3.91 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 15 125.00 ± 0.00 62.50 ± 0.00 62.50 ± 0.00 7.80 ± 0.00 7.80 ± 0.00 3.91 ± 0.00 0.06 ± 0.00 3.91 ± 0.00 3.91 ± 0.00 

M 16 4,000.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 3.91 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 17 125.00 ± 0.00 62.50 ± 0.00 62.50 ± 0.00 31.25 ± 0.00 31.25 ± 0.00 3.91 ± 0.00 0.06 ± 0.00 3.91 ± 0.00 3.91 ± 0.00  

M 18 2,000.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 62.50 ± 0.00 3.91 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

M 19 2,000.00 ± 0.00 500.00 ± 0.00 500.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 62.50 ± 0.00 3.91 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 

Mean MRSA 

(n = 19) b 
2,328.95 ± 1,729.87 361.84 ± 159.45 309.21 ±145.05 409.95 ± 300.04 324.42 ± 222.60 250.41 ± 439.73 9.16 ± 28.08 244.04 ± 205.36 237.46 ± 207.16 
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Table 4. Effects of MSKE and its phenolic principles on the MBCs of penicillin G against 
S. aureus ATCC 25923 and clinical MRSA strains (a mean values ± S.D. of triplicate 
results, b mean values ± S.D. from 19 MRSA strains). 

Bacterial  
strains 

MBC of Penicillin G (µg/mL) a 

Penicillin G alone with MSKE 0.5 MIC with MSKE 1 MIC 

S. aureus  
ATCC 25923 

41.67 ± 18.04 31.25 ± 0.00 31.25 ± 0.00 

Clinical MRSA strains 
M 01 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 02 5,333.33 ± 2,309.40 4,000.00 ± 0.00 4,000.00 ± 0.00 
M 03 4,000.00 ± 0.00 4,000.00 ± 0.00 4,000.00 ± 0.00 
M 04 2,666.67 ± 1,154.70 4,000.00 ± 0.00 4,000.00 ± 0.00 
M 05 5,333.33 ± 2,309.40 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 06 4,000.00 ± 0.00 4,000.00 ± 0.00 4,000.00 ± 0.00 
M 07 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 08 4,000.00 ± 0.00 4,000.00 ± 0.00 4,000.00 ± 0.00 
M 09 4,000.00 ± 0.00 4,000.00 ± 0.00 4,000.00 ± 0.00 
M 10 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 11 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 12 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 13 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 14 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 15 125.00 ± 0.00 125.00 ± 0.00 125.00 ± 0.00 
M 16 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 17 125.00 ± 0.00 125.00 ± 0.00 125.00 ± 0.00 
M 18 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 
M 19 8,000.00 ± 0.00 8,000.00 ± 0.00 8,000.00 ± 0.00 

Mean MRSA  
(n = 19) b 

5,767.54 ± 2,748.78 5,907.89 ± 2,757.52 5,907.89 ± 2,757.52 

3. Experimental  

3.1. Materials 

3.1.1. Test Materials  

Gallic acid (GA; ≥98% purity) and methyl gallate (MG; ≥98% purity) were purchased from Fluka 
(Buchs, Switzerland). Pentagalloylglucopyranose (PGG; >95% purity) was purchased from Endotherm 
BmbH (Germany). Penicillin G (1651 U/mg) was USP grade and was purchased from Bio Basic Inc. 
(Canada). Vancomycin for injection (1,055 µg/mg) was obtained from CJ Cheiljedang Corp 
(Kyunggi−Do, Korea). Reference discs of vancomycin were produced by Oxoid (Basingstoke, UK). 
Other chemicals and solvents were of analytical grade and obtained from local distributors. 
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3.1.2. Plant Material and Preparation of Plant Extract 

Fully grown, unripened Thai mango fruits (Mangifera indica L. cv. ‘Fahlun’, Anacardiaceae) were 
purchased from a local market. The seed kernels were removed and extracted following the method of 
Nithitanakool et al. [5]. Briefly, the kernels were homogenised in hot ethanol (80 °C) and defatted with 
hexane. After the solvents were evaporated, the remaining aqueous residue was freeze–dried to 
generate a crude mango seed kernel extract (MSKE) with a yield of 6.69% w/w (on the basis of wet 
weight). MSKE and its isolated compounds were dissolved in 10% aqueous dimethyl sulfoxide 
(DMSO) before use. 

3.1.3. Standardisation 

The MSKE was standardised with regard to the content of its three polyphenolic compounds (PGG, 
GA and MG) using the thin layer chromatographic (TLC)−UV densitometric method [5]. Briefly, an 
aliquot of MSKE (25 mg/mL) was applied to TLC plates together with serial dilutions of the standard 
solutions of PGG, GA and MG. The TLC plates were then developed in a pre-saturated TLC  
tank containing CHCl3/ethanol/formic acid (3:5:1, v/v/v) as the mobile phase for PGG and 
CHCl3/methanol/ethyl acetate/ethyl methyl ketone/formic acid (6:1.6:2:2:5, v/v/v/v/drop) for GA and 
MG. The developed TLC plates were scanned using a TLC densitometer at 286 nm, and the amount of 
each compound in the MSKE (PGG 65.61 ± 0.95%, GA 0.88 ± 0.16% and MG 0.62 ± 0.09% w/w 
based on dry weight) was calculated from the calibration curves. 

3.1.4. Bacterial Strains Tested 

A total of 20 microbial cultures (both standard and clinical strains) were used in this study. 
Nineteen strains of clinical MRSA isolates cultured from patient samples were kindly provided by 
Ramathibodi Hospital and Nakhon Pathom Hospital, Thailand. Pathogen purification and identification 
were confirmed using a microbial identification system at the Department of Microbiology, Faculty  
of Pharmacy, Mahidol University, Thailand. The standard strain of S. aureus, ATCC 25923 
(methicillin−sensitive Staphylococcus aureus, MSSA), was obtained from the Thailand National 
Institutes of Health and was used as a control strain.  

The microorganisms were maintained in a mixture of tryptic soy broth (TSB; Becton Dickinson & 
Co., France) and 30% w/v glycerol at −80 °C until use. For experiments, all of the bacterial strains 
were grown separately on tryptic soy agar (TSA; Becton Dickinson & Co., France) at 37 °C for 18–24 h. 
The isolated bacterial colonies of actively growing cultures from agar plates were transferred to a  
test tube with TSB and incubated at 37 °C for 24 h in shaker. The culture turbidity was adjusted 
spectrophotometrically at 600 nm to obtain an optical density (OD) of 0.2 (approximately  
106–107 CFU/mL) before use as an inoculum in the antimicrobial susceptibility test.  
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3.2. Antimicrobial Susceptibility Test 

3.2.1. Disc Diffusion Method 

The antimicrobial activity of the MSKE was screened for its inhibitory activity by the disc diffusion 
test following the procedures recommended by the Clinical and Laboratory Standards Institute (CLSI) 
with slight modifications [19]. Briefly, the following concentrations of MSKE were prepared by serial 
dilution in 10% aqueous DMSO: 500, 250, 125 and 62.5 mg/mL. Each prepared inoculum was 
swabbed on TSA and air−dried at room temperature (25 °C). A 6-mm sterile paper disc was loaded 
with 10 μL of the prepared MSKE solution, and the disc was placed on the agar plate. The plates were 
left to dry and then were incubated at 37 °C for 24 h under aerobic conditions. A negative control was 
prepared using the same solvents employed to dissolve the MSKE, and vancomycin (30 µg/disc) was 
used as a positive control. All disc diffusion tests were performed in triplicate, and the antibacterial 
activity was expressed as the mean of the inhibition diameter (mm). 

3.2.2. Determination of the MICs and MBCs  

The broth microdilution method was used to determine the MIC of MSKE and its phenolic 
principles. Serial two–fold dilutions of test compounds were mixed with TSB at a 1:1 ratio (v/v) in 96-
well sterile microtitre plates to obtain final concentrations of 0.06–3.75 mg/mL for MSKE,  
0.02–1.00 mg/mL for PGG and 0.05–3.00 mg/mL for GA and MG. Then, 50 μL of a 1:5 dilution of the 
prepared inoculum was added to TSB supplemented with the test compounds to obtain a 100 μL final 
volume in each well. The microtitre plates were then incubated at 37 °C overnight under aerobic 
conditions. In each test, the following controls were used: (1) a negative control including the test 
sample but not the organism; and (2) a positive control without the test sample but containing the 
organism. Vancomycin and penicillin G were used as reference standards. The MIC was defined as the 
lowest concentration at which no bacterial growth was observed by the unaided eye. The amount of 
growth in the wells containing test samples was compared with the amount of growth in the control 
wells when determining the growth endpoints. To establish the MBC, 20 µL of each culture medium 
was removed from wells with no visible growth and inoculated on TSA plates. After aerobic 
incubation at 37 °C overnight, the number of surviving organisms was determined. The MBC was 
defined as the lowest concentration that produced a complete suppression of visible colony growth. 
Each sample was tested in triplicate in separate experiments. The enhancing effects of MSKE and its 
phenolic principles on the antibacterial activity of penicillin G were evaluated by the broth 
microdilution method. The MIC and MBC values of penicillin G were determined in combination with 
0.25, 0.5 or 1 MIC of the test compounds. 

3.2.3. Time−Kill Assay 

The bactericidal activities of MSKE and its phenolic principles were determined according to the 
time–kill assay of Chusri et al. [20] with slight modification. The bacterial suspension (100 µL, 
approximately 106 CFU/mL) was added to TSB (900 µL) containing the test sample at 4 and 8 MICs. 
After incubation at 37 °C, sample (100 µL) was collected at different time intervals (0, 2, 4, 6, 8, 12, 
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16 and 24 h) and a ten–fold serial dilution was prepared in sterile saline (0.9% w/v NaCl). Thereafter, 
25 µL of each dilution was placed on a TSA plate and incubated at 37 °C for 24 h. A count for 
viability was performed, and the number of CFU/mL was recorded. A bacterial growth control was 
included in each assay and consisted of 1% DMSO without the addition of test samples. Vancomycin 
was also used as the reference antibiotic. All experiments were carried out at least in duplicate.  
Time–kill curves were constructed by plotting log10 CFU/mL against time. Bactericidal activity was 
defined as a ≥3 log10–fold decrease in the number of survivors at each time point compared with the 
number inoculated at time zero. This activity was equivalent to 99.9% killing of the inoculum [9]. 

3.3. Electron Microscopy 

3.3.1. SEM 

The prepared inoculum (200 µL) of S. aureus ATCC 25923 was transferred into TSB (1.8 mL) 
containing MSKE or PGG at a MIC of 4. Bacterial growth controls were performed with the addition 
of 1% DMSO without the test samples. After the suspensions were incubated at 37 °C for 12 h, 
bacterial cells were collected by centrifugation at 3,000 rev/min for 10 min. Samples were then fixed 
in 2.5% w/v of glutaraldehyde at 4 °C for at least 2 h. The cells were washed with 0.1 M phosphate 
buffer solution (PB, pH 7.2) and postfixed in 1% w/v osmium tetroxide in 0.1 M PB for 1–2 h. Cells 
were dehydrated using serial concentrations of ethanol (35, 50, 70, 95, and 100%). After critical  
point drying and coating with gold sputter, samples were examined using a Hitachi S501 scanning 
electron microscope.  

3.3.2. TEM 

The prepared inoculum (200 µL) of S. aureus ATCC 25923 and the M09 MRSA strain were 
transferred into TSB (1.8 mL) supplemented with MSKE at 1, 2 or 4 MICs. Bacterial growth controls 
were performed with the addition of 1% DMSO without the test samples. The suspensions were 
incubated at 37 °C for 12 h. The bacterial cells were then harvested by centrifugation at 3,000 rev/min 
for 10 min. The samples were fixed in 2.5% w/v of glutaraldehyde at 4 °C for at least 2 h and postfixed 
in 1% w/v osmium tetroxide in 0.1 M PB for 1–2 h. The bacterial cells were dehydrated using serial 
concentrations of ethanol (35, 50, 70, 95, and 100%) and embedded in Spurr’s resin. The samples were 
cut with an ultramicrotome (LKD, Sweden) and stained with uranyl acetate and lead citrate. The 
ultrathin sections were examined under a transmission electron microscope (JEM−200CX, JEM−2100, 
JEOL, Japan). 

3.4. Statistical Analysis 

All experimental results were expressed as mean ± standard deviation (S.D.). All statistical analyses 
were carried out using SPSS (version 16.0 for Windows). Analysis of variance was performed by 
ANOVA. Significant differences between the means were determined using Tukey’s pairwise 
comparison test at a significance level of p < 0.01. 
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4. Conclusions 

MSKE and its phenolic principles exhibited potent inhibitory effects against the standard MSSA 
strain and clinical MRSA isolates. PGG, the major phenolic principle of MSKE, appeared to be the 
major contributor to the inhibitory potency of MSKE. Damaging effects on the cell membrane that led 
to the alteration in cell morphology and interference with bacterial division were possible inhibitory 
mechanisms. MSKE at 0.25 and 0.5 MICs displayed a remarkable capacity to enhance the antibacterial 
activity of penicillin G by lowering the MIC of penicillin G by 10−20 fold. Despite the weak 
antimicrobial effects of MG against MRSA and MSSA, MG demonstrated the capacity to enhance the 
bacterial susceptibility to penicillin G of approximately 254−fold. Together, these results indicate that 
MSKE may potentially be useful as an alternative natural therapeutic agent or as an adjunctive therapy 
along with penicillin G against MRSA infections. 
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