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Abstract: In the present study, the anti-influenza A (H2N2) virus activity of patchouli 
alcohol was studied in vitro, in vivo and in silico. The CC50 of patchouli alcohol was above 
20 µM. Patchouli alcohol could inhibit influenza virus with an IC50 of 4.03 ± 0.23 µM. 
MTT assay showed that the inhibition by patchouli alcohol appears strongly after 
penetration of the virus into the cell. In the influenza mouse model, patchouli alcohol 
showed obvious protection against the viral infection at a dose of 5 mg/kg/day. Flexible 
docking and molecular dynamic simulations indicated that patchouli alcohol was bound to 
the neuraminidase protein of influenza virus, with an interaction energy of –40.38 kcal mol–1. 
The invariant key active-site residues Asp151, Arg152, Glu119, Glu276 and Tyr406 
played important roles during the binding process. Based on spatial and energetic criteria, 
patchouli alcohol interfered with the NA functions. Results presented here suggest that 
patchouli alcohol possesses anti-influenza A (H2N2) virus properties, and therefore is a 
potential source of anti-influenza agents for the pharmaceutical industry. 
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1. Introduction  

The influenza virus, which is one of the main causes of acute respiratory infections in humans, can 
lead to annual epidemics and infrequent pandemics. The two influenza pandemics of the 20th century, 
“Asian Influenza (1957/H2N2)” and “Hong Kong Influenza (1968/H3N2)” resulted in the deaths of an 
estimated 2–3 million people globally [1,2]. Today, their descendants continue to cause the majority of 
influenza infections in humans [3]. So far as it is learned that the most effective antiviral drug is the 
neuraminidase (NA) inhibitor, which target the NA glycoproteins of influenza A and B virus [4,5]. 

The release of new virions from the infected cell is a key step in the influenza life cycle and need 
neuraminidase (NA) to cleave the α-ketosidic linkage between terminal sialic acid and an adjacent 
sugar residue [6]. The NA inhibitors were designed to prevent the key step by blocking the active site 
of enzyme and thus allow sufficient time for the host immune systems to remove infected viruses [7]. 
Consistent efforts have been devoted to the development of NA inhibitors, using the crystal structure 
of the N2 sub-type NA protein [8-15]. Indeed, oseltamivir (Tamiflu) is the representative NA inhibitor 
that has proven to be uniquely applicable oral drug in clinical practice for the treatment of influenza 
infection [4,8,9]. However, with an increase in medical use, the oseltamivir-resistant strains have been 
found and probably lead to a large scale outbreak of novel pandemic flu [16,17]. 

Patchouli alcohol (Figure 1) has been well known for over a century. It is a major constituent of the 
pungent oil from the East Indian shrub Pogostemon cablin (Blanco) Benth, and widely used in 
fragrances. Patchouli oil is an important essential oil in the perfume industry, used to give a base and 
lasting character to a fragrance [16,17]. The essential oil is very appreciated for its characteristic 
pleasant and long lasting woody, earthy, and camphoraceous odor, as well as for its fixative properties, 
being suitable for use in soaps and cosmetic products [16,17]. The aerial part of Pogostemon cablin 
has wildly been used for the treatment of the common cold and as an antifungal agent in China [16,17]. 
Moreover, the plant is widely used in Traditional Chinese Medicine as it presents various types of 
pharmacological activity according to the composition of the oil [16,17]. Patchouli alcohol, as the 
major volatile constituent of patchouli oil, has been found to strongly inhibit H1N1 replication and 
weakly inhibit B/Ibaraki/2/85 replication [18].  

Figure 1. Chemical (A) and stereo (B) structures of patchouli alcohol. 
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To the best of our knowledge, the anti-influenza virus (H2N2) activities of patchouli alcohol have 
not been evaluated yet. Therefore, the aim of the present study was to evaluate the anti-influenza A 
virus (H2N2) activity of patchouli alcohol by MTT assay and mouse influenza model. On such basis, 
explicitly solvated docking and molecular dynamic (MD) methods were applied to investigative the 
binding mode involving patchouli alcohol with influenza virus NA protein. We anticipate that the 
insight into the understanding of inhibiting mechanism will be of value in the rational design of novel 
anti-influenza drugs.  

2. Results and Discussion  

2.1. Effect of patchouli alcohol against influenza A (H2N2) virus by MTT assay in vitro 

First the efficacy of patchouli alcohol on influenza A (H2N2) virus replication and cell viability 
were examined. CC50 was used to express the cytotoxicity of patchouli alcohol on MDCK. The CC50 
of patchouli alcohol was above 20 mM, which indicated that patchouli alcohol did not affect the 
growth of MDCK (Table 1). Thus, it seems that the antiviral effects of patchouli alcohol were not due 
to the cytotoxicity.  

Table 1. Anti-influenza A (H2N2) virus activity of patchouli alcohol compared with oseltamivir. 

Compound CC50 a (µM) 
Influenza A (A/Udorn/307/72)  

IC50
b (µM) SI c 

Patchouli alcohol >20.0 4.03 ± 0.23 * >4.96 
Oseltamivir >20.0 0.031 ± 0.012 >645.16 

Values in this table represent the mean values (±SD) of three independent experiments (P < 0.01). 
a Cytotoxic effect was determined by MTT assay. CC50 was the concentration that showed 50% 
cytotoxic effects in MDCK cells; b Antiviral activity was determined by MTT assay. IC50 was the 
concentration that inhibited 50% of Influenza A [(Leningrad/134/17/1957) (H2N2)] virus 
replication in MDCK; c The selective index (SI) was calculated as CC50/IC50. The symbol * indicate 
a very significant difference p < 0.01 with respect to positive control (oseltamivir). 
 

Moreover, patchouli alcohol was found to inhibit influenza A (H2N2) virus with an IC50 of  
4.03 ± 0.23 µM. Based on the IC50 and CC50 values, the selectivity index (SI) was calculated as >4.96. 
It is reported that a SI of 4 or more is appropriate for an antiviral agent [18], suggesting that patchouli 
alcohol can be judged to have anti-influenza A (H2N2) virus activity. 

Until now, it has been found that patchouli alcohol showed dose-dependent anti-influenza virus 
(A/PR/8/34, H1N1) activity, with an IC50 value of 2.635 µM. Furthermore, it showed weak activity 
against B/Ibaraki/2/85 (IC50 = 40.82 µM) [19]. With the addition of the above H2N2 inhibitory activity, 
we have a comprehensively view of the anti-influenza activity of patchouli alcohol. 

2.2. Mode of anti-influenza A (H2N2) activity 

Cells were pretreated with patchouli alcohol prior to virus infection (pretreatment cells), viruses 
were pretreated prior to infection (pretreatment virus), and patchouli alcohol was added during the 
adsorption period (adsorption) or after penetration of the viruses into cells (replication). Experiments 
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were repeated independently three times and data presented are the average of three experiments. The 
symbols * indicated very significant difference p < 0.01 with respect to other mode (pretreatment virus, 
adsorption and pretreatment cell). 

As shown in Figure 2, patchouli alcohol showed anti-influenza A (H2N2) virus activity in a time-
dependent manner. It showed best antiviral activity when added at a concentration of 8 µM during the 
replication period with inhibition of the viral replication of 97.68% ± 2.09% for influenza A (H2N2) at 
72 h. However, no significant effect was detected when patchouli alcohol was used for pretreatment of 
cells or viruses or when patchouli alcohol was only added during the adsorption phase. These results 
suggested that the inhibition of influenza A (H2N2) virus by patchouli alcohol appears to occur much 
more strongly after penetration of the virus into the cell. Besides, biochemical studies have indicated 
that the bioactivity of NA protein is essential determinant after the replication of influenza A (H2N2) 
virus [20-22]. Hence, we conclude that the function of NA protein may be suppressed by  
patchouli alcohol. 

Figure 2. Antiviral effect of patchouli alcohol against influenza A (H2N2) virus by 
incubation at different periods of time during infection. 

 

2.3. Anti-influenza A (H2N2) efficacy in mouse influenza model 

To evaluate the toxicity of patchouli alcohol, the mean value of body weight of mice in each group 
was statistically analyzed. The mean weights of mice administered at the 2 mg/kg/dose oseltamivir,  
2 mg/kg/dose patchouli alcohol and 10 mg/kg/dose of patchouli alcohol one time daily for 7 days were 
not significantly different compared with the normal control mice, showing no toxicity of patchouli 
alcohol and oseltamivir within the testing concentration (P > 0.05). Physiological status was observed 
in virus infection mice. Three days after viral infection, some mice, especially mice in the H2N2 
infected control group showed changes in behavior, such as a tendency to huddle, diminished vitality, 
and ruffled fur, etc. In the mouse influenza model, viral infection leads to loss of body weight and high 
mortality. Therefore, the efficacy of patchouli alcohol and oseltamivir were evaluated on the basis of 
survival rate measured for 15 days post-infection, for treated infected animals relative to untreated 
infected (control) animals. A comparison of efficacy of patchouli alcohol and oseltamivir in vivo 
mouse influenza model (oral treatment) showed that at a dose of 5 mg/kg/day, patchouli alcohol 
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showed obvious protection against the influenza virus, as the mean day to death was detected as  
11.8 ± 1.1 (Table 2). When the dose was lowered to 1 mg/kg/day, patchouli alcohol showed weaker 
protection (measured by Survivors/total) than that of 5 mg/kg/day, the mean day to death was  
7.5 ± 1.8. Whereas oseltamivir at this dose level (1 mg/kg/day) showed 50% protection (measured by 
survivors/total) against the influenza virus. In the H2N2 infected control group, there were no 
survivors. In view of both in vitro and in vivo data, we conclude that patchouli alcohol could be used in 
the treatment of human influenza virus infections. 

Table 2. Comparison of efficacy of patchouli alcohol with oseltamivir in the in vivo mouse 
influenza model (oral treatment). 

Group Dose, mg/kg/day 
(q.d.) Survivors/total Mean day to death 

Patchouli alcohol 5 7/10 * 11.8 ± 1.1 * 
1 2/10 * 7.5 ± 1.8 * 

Oseltamivir 1 5/10* 9.1 ± 0.3 * 
Control - 10/10 - 
H2N2 infected control - 0/10 5.2 ± 1.6 

* p < 0.001 versus H2N2 infected control; a Mean day to death of mice dying prior to day 15. 

2.4. In silico inhibition mechanism of patchouli alcohol 

Based on the above experiment data, patchouli alcohol is determined to be bound within NA 
protein. As the total energies and backbone root-mean-square-deviations (RMSD) in Figure 3 indicate, 
the energy-minimized patchouli alcohol-NA complex has been in equilibrium since about 0.5 ns, and 
then retains quite stable in the last 19.5 ns. It is consistent with the previous MD results of other NA 
inhibitors [23-28]. Accordingly, the geometric and energetic analyses were made on the average 
structures of 0.5~20.0 ns MD trajectories, where the system has been already at equilibrium.  

Figure 3. The total energies of ensemble (Total energies, A) and time-evolution  
backbone-atom root mean square deviations (RMSD, B) during the molecular dynamic 
(MD) simulations for the NA protein complexed with patchouli alcohol. 
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The interaction energy (Einter) of patchouli alcohol with NA was calculated at −40.38 kcal mol−1, 
where the vdW rather than electrostatic interactions were found to play a dominant role, contribute to 
about 72% (−29.18 kcal mol−1). As shown in Figure 4, the patchouli alcohol was bound at the active 
site which also bound to oseltamivir and zanamivir [28]. As Figure 5 shows, the oxygen atom of 
patchouli alcohol was oriented towards the sidechains of residues Glu119 and Tyr406, with one  
H-bond formed with each residue. The values of distances in Figure 6 further reveal that the docked 
complex remains rather stable throughout the simulation, with the average distances of Glu119:OE2 — 
patchouli alcohol:O and Tyr406:OH — patchouli alcohol:O less than 2.8 Å. The sum contributions 
(Esum) of residues Glu119 and Tyr406 amounted to −8.46 and −7.37 kcal mol−1, respectively (Table 3). 
Besides, patchouli alcohol was stabilized by residues Arg118, Asp151, Arg152, Trp178, Ala246, 
Glu276, Arg292, Asn294 and Gln347, especially residues Asp151, Arg152 and Glu276 (Figure 5 and 
Table 3). As a matter of fact, residues Asp151, Arg152, Glu119, Glu276 and Tyr406 of the NA protein 
have already received enough attention from rational drug designs [14,30,31]. The catalytic residues 
Asp151, Arg152 and Glu276 are crucial to the NA functions and the residues Glu119 and Tyr406 are 
important to stabilize the NA active sites [32,33]. It suggests that the NA functions will be affected by 
the presence of patchouli alcohol, consistent with the above experiments. Patchouli alcohol matches 
with the NA active site and has an acceptable interaction energy. Considering the obvious structure 
discrepancies against current NA inhibitors, it represents an ideal lead compound for the designs of 
novel anti-influenza agents. 

Figure 4. Patchouli alcohol bound at the NA active site. The Connolly surfaces of the NA 
active site (in grey) are created using the InsightII 2005 scripts. The patchouli alcohol is 
represented by ball and stick model. Ribbon colors: Helices, beta sheets, turns and random 
coils are in red, cyan, green and white, respectively. 
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Figure 5. View of the binding mode of patchouli alcohol with the NA active-site residues. 
Key residues are represented by stick models. Patchouli alcohol is represented by ball and 
stick model. The hydrogens were avoided for readability. The important H-bonds are 
labeled in the dashed gold lines. 

 

Figure 6. Some time-evolution distances between patchouli alcohol and NA residues. 
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Table 3. The vdW, electrostatic and sum interaction energies (EvdW, Eele and Esum) between 
patchouli alcohol and the key active-site residues of NA protein a. 

Residue EvdW Eele Esum 
Arg118 −2.03 0.63 −1.40 
Glu119 −2.18 −6.28 −8.46 
Asp151 −2.08 −0.53 −2.61 
Arg152 −3.01 0.46 −2.55 
Trp178 −1.83 0.01 −1.82 
Ala246 −1.47 0.12 −1.35 
Glu276 −2.04 −0.28 −2.32 
Arg292 −3.51 1.10 −2.41 
Asn294 −0.92 0.16 −0.76 
Gln347 −1.91 0.07 −1.84 
Tyr406 −3.07 −4.30 −7.37 

a Energy units in kcal mol−1. 

3. Experimental 

3.1. Materials 

Patchouli alcohol and oseltamivir were obtained from Sigma Chemical Co. (St. Louis, MO, USA, 
purity > 99%) and was stored in glass vials with Teflon sealed caps at −20 ± 0.5 °C in the absence  
of light. 

3.2. Cell cultures 

MDCK (Madin-Darby canine kidney) was purchased from Harbin Veterinary Research Institute 
(Harbin, Heilongjiang, China). The cells were grown in monolayer culture with Eagle’s minimum 
essential medium (EMEM) supplemented with 10% fetal calf serum (FCS), 100 U/mL penicillin and 
100 μg/mL streptomycin. The monolayers were removed from their plastic surfaces and serially 
passaged whenever they became confluent. Cells were plated out onto 96-well culture plates for 
cytotoxicity and anti-influenza assays, and propagated at 37 °C in an atmosphere of 5% CO2. 

3.3. Viruses 

The influenza strain A/Leningrad/134/17/1957 H2N2) was purchased from National Control 
Institute of Veterinary Bioproducts and Pharmaceuticals (Beijing, China). Virus was routinely grown 
on MDCK cells. The stock cultures were prepared from supernatants of infected cells and stored at  
−80 °C. 

3.4. Cytotoxicity assay 

The cellular toxicity of patchouli alcohol on MDCK cells was assessed by the MTT method. 
Briefly, cells were seeded on a microtiter plate in the absence or presence of various concentrations  
(20 µM – 0.0098 µM) of patchouli alcohol (eight replicates) and incubated at 37 °C in a humidified 
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atmosphere of 5% CO2 for 72 h. The supernatants were discarded, washed with PBS twice and MTT 
reagent (5 mg/mL in PBS) was added to each well. After incubation at 37 °C for 4 h, the supernatants 
were removed, then 200 μL DMSO was added and incubated at 37 °C for another 30 min. After that 
the plates were read on an ELISA reader (Thermo Molecular Devices Co., Union City, USA) at 
570/630 nm. The mean OD of the cell control wells was assigned a value of 100%. The maximal  
non-toxic concentration (TD0) and 50% cytotoxic concentration (CC50) were calculated by linear 
regression analysis of the dose-response curves generated from the data. 

3.5. Anti-influenza A (H2N2) activity in vitro 

Inhibition of virus replication was measured by the MTT method. Serial dilution of the treated virus 
was adsorbed to the cells for 1 h at 37 °C. The residual inoculum was discared and infected cells were 
added with EMEM containing 2% FCS. Each assay was performed in eight replicates. After incubation 
for 72 h at 37 °C, the cultures were measured by MTT method as described above. The concentration 
of patchouli alcohol and oseltamivir which inhibited virus numbers by 50% (IC50) was determined 
from dose-response curves. 

3.6. Mode of anti-influenza A (H2N2) activity 

Cells and viruses were incubated with patchouli alcohol at different stages during the viral infection 
cycle in order to determine the mode of antiviral action. Cells were pretreated with patchouli alcohol 
before viral infection, viruses were incubated with patchouli alcohol before infection and cells and 
viruses were incubated together with patchouli alcohol during adsorption or after penetration of the 
virus into the host cells. Patchouli alcohol was always used at the nontoxic concentration. Cell 
monolayers were pretreated with patchouli alcohol prior to inoculation with virus by adding patchouli 
alcohol to the culture medium and incubation for 1 h at 37 °C. The compound was aspirated and cells 
were washed immediately before the influenza A (H2N2) inoculum was added. For pretreatment virus, 
Influenza A (H2N2) was incubated in medium containing patchouli alcohol for 1h at room temperature 
prior to infection of MDCK cells. For analyzing the anti-influenza A (H2N2) inhibition during the 
adsorption period, the same amount of influenza A (H2N2) was mixed with the drug and added to the 
cells immediately. After 1 h of adsorption at 37 °C, the inoculum was removed and DMEM 
supplemented with 2 % FCS were added to the cells. The effect of patchouli alcohol against influenza 
A (H2N2) was also tested during the replication period by adding it after adsorption, as typical 
performed in anti-influenza A (H2N2) susceptibility studies. Each assay was run in eight replicates.  

3.7. Anti-influenza A (H2N2) efficacy in mouse influenza model 

Kunming mice, weighing 18–22 g (6 weeks of age) were purchased from Harbin Veterinary 
Research Institute Animal Co., Ltd. (Harbin, Heilongjiang, China). First, the toxicity of patchouli 
alcohol and oseltamivir was assessed in the healthy mice by the loss of body weight compared with  
the control group (2% DMSO in physiological saline). The mice were orally administered with  
10 mg/kg/dose patchouli alcohol, 2 mg/kg/dose patchouli alcohol or 2 mg/kg/dose oseltamivir 
(dissolved in 2% DMSO in physiological saline) one time daily for 7 days. The weight of mice was 
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determined daily. We conducted procedures according to Principle of Laboratory Animal Care  
(NIH Publication No. 85 – 23, revised 1985) and the guidelines of the Peking University Animal  
Research Committee.  

Kunming mice were anesthetized with isoflurane and exposed to virus (A/Leningrad/134/17/1957) 
by intranasal instillation. Drugs were prepared in 2% DMSO in physiological saline and administered 
4 h prior to virus exposure and continued daily for 5 days. All mice were observed daily for changes in 
weight and for any deaths. Parameters for evaluation of antiviral activity included weight loss, 
reduction in mortality and/or increase in mean day to death (MDD) determined through 15 days. 

3.8. Computational methods 

The N2 sub-type neuraminidase crystal structure (PDB code 1IVD) was obtained from the RCSB 
Protein Data Bank [34]. For convenience, the structure is named as NA hereafter. Geometry and partial 
atomic charges of the patchouli alcohol (Figure 1) were calculated with the Discover 3.0 module 
(Insight II 2005) [35] by applying the BFGS algorithm [36] and the consistent-valence force-field 
(CVFF), with a convergence criterion of 0.01 kcal mol−1 Å−1. The docking and molecular dynamics 
(MD) simulations were performed by the general protocols in the Insight II 2005 software packages, 
consistent with the previous literatures [24,26,28,35,37-39]. During the MD simulations, the canonical 
ensemble (NVT) was employed at normal temperature (300 K). The MD temperature was controlled 
by the velocity scaling thermostat [40]. Integrations of the classical equations of motion were achieved 
using the Verlet algorithm. The systems were solvated in a large sphere of TIP3P water molecules [40] 
with the radius of 35.0 Å, which is enough to hold the ensembles [40]. The MD trajectories were 
generated using a 1.0-fs time step for a total of 20.0 ns, saved at 5.0-ps intervals. The interaction 
energies of patchouli alcohol with NA and the respective residues at the NA active site were calculated 
by the Docking module [35], over the 0.5~20.0 ns MD trajectories.  

3.9. Statistical analysis 

All results are expressed as mean values ± standard deviations (SDs) (n = 3). The significance of 
difference was calculated by one-way analysis of variance, and values p < 0.001 were considered to  
be significant. 

4. Conclusions 

In conclusion, patchouli alcohol possesses anti-influenza A (H2N2) virus activity via interference 
with the NA function that cleaves the α-glycosidic bond between sialic acid and glycoconjugate. Our 
results provide the promising information for the potential use of patchouli alcohol in the treatment of 
influenza A (H2N2) virus infectious disease. Further mechanistic studies on the anti-influenza A virus 
activity are needed to support this point of view.  
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