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Abstract: Optical resolution of 2-methyl-2-nitrobut-3-en-1-ol has been accomplished 

using a “low-temperature lipase-catalyzed transesterification” carried out at −40 °C. 
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1. Introduction 

Chemo-enzymatic reaction protocols are now well recognized as a very useful means to prepare 

optically active compounds [1-3]. 2-Methyl-2-nitrobut-3-en-1-ol (±1) was prepared by a simple 

method using the nitroaldol reaction for nitroalkenes [4], and it has been expected to become a useful 

building block for the synthesis of various types of non-natural amino acids (A ~ E) or amino alcohols 

(F), as illustrated in Scheme 1. However, no one has yet succeeded in preparing optically pure nitro 

alcohol 1, so preparation of optically active 1 using a practical protocol has thus been strongly desired. 

Lipases have wide applicability for various types of substrates [1-3,5], however, it is generally not 

easy to use the lipase-mediated reaction for the kinetic resolution of a primary alcohol like alcohol 1, 

because the chiral carbon is remote from the reaction point in such a type of compound [2]. Since 

preparation of chiral compounds that have a quaternary stereocenter is an important challenge for 

modern organic synthesis, several examples have been demonstrated using enzymatic reactions [6-13]. 

OPEN ACCESS 



Molecules 2011, 16              

 

 

6748

Herein, we report the establishment of a protocol that affords both enantiomers of 2-methyl-2-nitrobut-

3-en-1-ol (1) using a lipase-catalyzed reaction; the “low-temperature lipase-catalyzed reaction” 

protocol [14-16] was shown to be the key technology to accomplish the desired reaction with sufficient 

enantioselectivity. 

Scheme 1. Multi-useful chiral building block for the synthesis of non natural amino acids 

and amino alcohols. 

 

2. Results and Discussion 

We initially attempted to resolve (±)-1 via lipase-catalyzed transesterification using vinyl acetate as 

acyl donor in diisopropyl ether (i-Pr2O) under standard reaction temperature at 35 °C (Scheme 2); 

however, after evaluating commercial lipases, we soon recognized that it would be a very tough task 

for us to find a suitable enzyme, as we were unsuccessful in finding an appropriate enzyme that could 

convert 1 to the corresponding acetate with acceptable enantioselectivity. Among the 17 types of 

commercial enzymes tested, only five lipases PS, SL-25, PL, Novozyme 435 and QLM gave the 

corresponding acetate, but all with insufficient enantioselectivity. Although lipases QLM and SL-25 

gave somewhat better results, the E values [17] of the reactions were 7.2 (QLM) and 6.0 (SL-25), 

respectively. Since lipase QLM gave the best E value, we next attempted to optimize the reaction 

condition using lipase QLM as a catalyst. 

Scheme 2. Kinetic resolution of (±)-1 using an enzymatic reaction. 
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It has long been believed that enantioselectivity of lipase-catalyzed reaction could be explained by 

the traditional three point attachment rule [2,18]. According to this rule, optimization of a substrate 

structure or protein engineering of lipases might be essential to control the enantioselectivity of the 

enzymatic reactions [2]. 

On the other hand, Ema et al. proposed that the enantioselectivity of the lipase-catalyzed reaction 

might be determined mainly by kinetic preference due to the conformational requirements and 

repulsive interaction on the transition state [19,20]. The model allows enhancement of the 

enantioselectivity of lipase-catalyzed reaction simply by changing the reaction temperature. Sakai and 

co-workers, in fact, demonstrated that efficient kinetic resolution of primary alcohols was realized 

using the “low-temperature transesterification method” [14-16]. Sakai showed that lipase-catalyzed 

transesterification of (2,2-dimethyl-1,3-dioxolan-4-yl)methanol in i-Pr2O proceeded even at −40 °C; 

the E value of the reaction at 30 °C was just 9, while it reached 55 when the reaction was conducted at 

−40 °C [16]. Therefore we decided to apply “the low-temperature method” to our lipase-catalyzed 

reaction (Scheme 1, and the results are summarized in Table 1). 

Table 1. Results of lipase QLM-catalyzed transesterification of (±)-1. 

Entry Temp Time 
% ee of acetate 

(R)-2 
a
(% yield) 

% ee of alcohol 

(S)-1 
b
 (% yield) 

% conv. E value 
c
 

1 35 10 min. 54 (35) 75 (28) 58 7.2 

2 20 25 min. 66 (24) 35 (53) 35 6.8 

3 0 25 min. 67 (37) 42 (50) 39 7.6 

4 −20 30 min. 76 (21) 24 (53) 24 9.3 

5 −40 25 min. 83 (22) 32 (69) 28 15 

6 −40 26 h 58 (44) 94 (27) 64 13 
a
 Determined by HPLC analysis using CHIRALCEL OB-H, hexane/i-PrOH = 19/1, 0.5 mL/min;  

b
 Determined by

 
HPLC analysis using CHIRALCEL AD-H, hexane/i-PrOH = 19/1, 0.5 mL/min.  

c
 E value was calculated by % ee of (R)-2 (eep) and % ee of (S)-1 (ees). E= ln[(1 − c (1 + eep)) /  

ln[(1 – c (1 − eep)); here, c means conv. which was calculated by the following formula according 

to reference [17]: c = ees / (eep + ees). 

Lipase QLM-catalyzed transesterification of (±)-1 proceeded very rapidly, and we obtained acetate  

(R)-2 in 35% yield with 54% ee, and unreacted alcohol (S)-1 was recovered from the reaction mixture 

in 28% yield with 75% ee after just 10 min of reaction (entry 1). Enantiomeric excess of the product 

and unreacted substrate were determined by HPLC analysis using a chiral column. A slightly enhanced 

enantioselectivity was recorded when the reaction was carried out at −20 °C (entry 4), and it finally 

reached E = 15 at −40 °C (entry 5). Since the reaction rate was very fast, we obtained (R)-2 with 83% 

ee when the reaction was stopped at 25 min (entry 5), while 94% ee of (S)-1 was obtained after 26 h of 

reactions (entry 6); no improved enantioselectivity was recorded when the reaction was conducted at 

−60 °C. Based on the results, we have developed a protocol providing (R)-2 and (S)-1 with high 

enantiomeric purities as illustrated in Scheme 3. 
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Scheme 3. Protocol of preparation of chiral 1 using “low-temperature lipase-catalyzed 

transesterification”. 

 

Racemic (±)-1 was subjected to lipase-QLM-catalyzed transesterification at −40 °C, after being 

stirred for 3 h, the reaction was stopped and the acetate (R)-2 (72% ee) and alcohol (S)-1 (31% ee) 

were separated. Enantiomeric purities of (R)-2 and (S)-1 were not sufficient at this stage, so (R)-2 was 

converted to (R)-1 by acid hydrolysis in 87% yield without any loss of the optical purity. The resulting 

72% ee of alcohol (R)-1 was subjected to a second transesterification. After 3 h reaction, optically pure 

(R)-2 (>99% ee) was obtained in 10% yield (the upper route in Scheme 3). (S)-1 (31% ee) was 

subjected to a second reaction for 24 h and 94% ee of (S)-1 was obtained in 9% yield (the bottom route 

in Scheme 3). Although the chemical yield of each reaction was insufficient, this protocol made it 

possible to provide (R)-2 and (S)-1 with high optical purity. After repeating the process, we succeeded 

in obtaining multiple grams of (R)-2 and (S)-1 with excellent optical purity (Scheme 3). 

Development of efficient means for preparing chiral compounds that have a quaternary chiral center 

has been a challenging area in the field of synthetic organic chemistry. In particular, it is difficult to 

achieve this aim by enzymatic reaction because hydrolytic enzymes are usually unable to accept 

sterically hindered substrates bearing fully substituted quaternary carbons [2]. It should be emphasized 

that the present “low-temperature lipase-catalyzed reaction” provides a possible solution to this problem. 
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3. Experimental 

3.1. General Procedures 

Reagents and solvents were purchased from common commercial sources and used as received or 

purified by distillation over appropriate drying agents. Reactions requiring anhydrous conditions were 

carried out under dry argon, freshly distilled solvents, and magnetic stirring. We tested the following 

commercial lipases: Lipase QL and QLM (Alcaligenes sp., Meito), Lipase SL and SL-25 (Burlholderia 

cepacia, Meito), Novozyme 435 (Candida antarctica, NOVO), Lipase OF (Candida rugosa lipase, 

Meito), Lipase PS (Burlholderia cepacia, Amano), Lipase AL (Acromobacter sp., Meito), Lipase PL 

(Alcaligenes sp, Meito), Lipase A (Aspergillus niger, Amano), Lipase AK (Pseudomonas fluorescens, 

Amano), Lipase D (Actinomadura sp., Meito), Lipase MY (Candida cylindracea, Amano), Lipase  

F-AP15 (Rhizopus oryzae, Amano), Lipase AY (Pseudomonas fluorescence), Lipase TL (Pseudomonas 

stutzeri, Amano), and PPL (Porcine pancreatin lipase, Sigma). Thin layer chromatography was 

performed with the indicated solvents and Wako gel B-5F. 
1
H-NMR spectra was recorded on JEOL 

(500 MHz). 
13

C-NMR spectra was recorded on JEOL (125, 100MHz). Chemical shifts are expressed in 

ppm downfield from tetramethylsilane (TMS) in CDCl3 as an internal reference. Optical rotation was 

measured with a JASCO DIP-370 digital polarimeter. The optical purity was determined by HPLC 

analysis using CHIRALCEL OB-H and AD-H (Daicel).  

3.2. Preparation of 2-methyl-2-nitrobut-3-en-1-ol (±1) (Scheme 4) [4] 

Nitroethane (22.6 g, 301 mmol) was reacted with acetaldehyde (25.5 mL, 451 mol) in the presence 

of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (2.0 mL, 13.3 mmol) at 0 °C and the mixture was stirred 

for 2 h at rt. The reaction was quenched by addition of 10 mL of 1 M HCl aqueous solution and 100 mL 

of diethyl ether, then the organic layer was washed with 1 M HCl (3 times) and brine (3 times) and 

dried over MgSO4. After evaporation, Kugelrohr distillation of the resulting oil gave 3-nitrobut-2-ol 

(3) (9.24 g, 77.6 mmol) in 26% yield. Nitroalcohol 3 (9.24 g, 77.6 mmol) was treated with acetic 

anhydride (7.8 mL, 82.5 mmol) in the presence of 5 drops of concd. sulfuric acid and the mixture was 

stirred at rt for 4 h. To this mixture was added 100 mL of diethyl ether and the resulting organic layer 

was washed with brine (5 times) and dried over NaSO4. After removal of the solvent by evaporation, 

the resulting oily product was mixed with sodium acetate (6.49 g, 79.1 mmol) and the acetate removed 

under reduced pressure at 1.0 Torr at 100 °C. After being cooled to rt, the resulting product was diluted 

with hexane (100 mL) and the organic layer was washed with water (3 times) and dried over NaSO4. 

Kugelrohr distillation gave 2-nitrobut-2-ene (4) (3.11 g, 30.8 mmol) in 40% yield. To an acetonitrile 

(100 mL) solution of 4 (1.10 mg, 10 mmol) was added formaldehyde (1.41 g, 16.4 mmol) and  

1,4-diazabicyclo[2.2.2]octane (DABCO) (150 mg, 1.3 mmol) and the mixture was stirred at rt for 24 h, 

then 1 M HCl (10 mL) and water (50 mL) were added. The mixture was extracted with ethyl acetate 

and the combined organic layer was washed with brine (3 times) and dried over NaSO4; evaporation 

and silica gel flash column chromatography (hexane: ethyl acetate = 10:1 to 5:1) then afforded  

(±)-1 (1.00 g, 8.30 mmol) in 76% yield. 
1
H-NMR (500 MHz, δ, CDCl3): 6.17–6.11 (1H, dd, J = 17.1 Hz, 

6.3 Hz), 5.49 (1H, d, J = 17.1 Hz), 5.43 (1H, d, J = 6.3 Hz), 4.12–4.09 (1H, m), 3.82–3.80 (1H, m), 
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2.54 (1H, OH, brs) 1.73 (3H, s); 
13

C-NMR (125 MHz, δ, CDCl3) 134.2, 119.0, 92.0, 67.5, 19.5; IR  

(neat, cm
−1

) 3415, 3098, 2997, 2881, 2946, 1732, 1545, 1461, 1419, 1380, 1349, 1059, 944. 

Scheme 4. 2-methyl-2-nitrobut-3-en-ol (±)-1. 

Me

OH

NO2

NO2

CH3CHO, DBU

0°C to rt 2h

OH

NO2

Ac2O, H2SO4, AcONa

neat , rt 4h

NO2

HCHO, DABCO

CH3CN, rt 24h

3

4 (±)-1Y= 76%

Y= 26%
Y= 40%

 

 

3.3. Lipase-Catalyzed Transesterification 

To a mixture of (±)-1 [4] (5.00 g, 38.2 mmol) and vinyl acetate (5.2 mL, 57 mmol) in i-Pr2O (200 mL) 

was added lipase QLM powder (2.5 g) and the mixture was stirred at −40 °C. After stirring for 3 h, the 

reaction mixture was filtered through a glass sintered filter with a Celite pad to remove the enzyme. 

The filtrate was evaporated and chromatographed on a silica gel flash column (hexane: ethyl acetate = 10:1 

to 5:1) to give (R)-2 (1.59 g, 9.17 mmol, 24%, 72% ee) and (S)-1 (3.40 g, 26.0 mmol, 68%, 31% ee). 

Optical purity was determined by HPLC analysis on a chiral column. For (R)-2: (CHIRALCEL OB-H, 

Daicel), hexane/i-PrOH = 19:1, 0.5 mL/ min. Rt of (R)-2 = 22.8 min; Rt of (S)-2 = 25.7 min.; For (S)-1: 

(CHIRALCEL AD-H, Daicel), hexane/i-PrOH = 19:1, 0.5 mL/ min. Rt of (R)-1 = 23.9 min; Rt of  

(S)-1 = 27.0 min. (R)-2: 
1
H-NMR (500 MHz, δ, CDCl3) 6.17–6.12 (1H, dd, J = 17.2 Hz, 6.3 Hz), 5.48 

(1H, d, J = 15.3 Hz), 5.45 (1H, d, J = 5.0 Hz), 4.58 (1H, d, J = 11.5 Hz), 4.40 (1H, d, J = 12.0 Hz), 2.01 

(3H, s), 1.73 (3H, s); 
13

C-NMR (125 MHz, δ, CDCl3) 169.9, 133.6, 119.4 89.2, 67.3, 20.5, 19.5; IR (neat, 

cm
−1

) 3000, 2955, 2887, 1753, 1550, 1231, 1051. The absolute configuration of (R)-1 was confirmed 

by comparison with the sign of specific rotation value of (R)-2-amino-2-methyl-4-(4-

(heptyloxy)phenyl)butan-1-ol (5) [21,22] ([α]D −14.4 (c 0.03, CHCl3), lit [21] −14.0 (CHCl3)) which 

was derived from our compound (R)-1 (96% ee). The results agree with the established  

enantio-favoritism of lipase QL-catalyzed transesterification [23]. 

3.4. Synthesis of (R)-2-Amino-2-methyl-4-(4-(heptyloxy)phenyl)butan-1-ol ((R)-5) (Scheme 5) 

(R)-benzyl (2-methyl-2-nitrobut-3-en-1-yl) carbonate ((R)-6): DMAP (2.45 g, 20.06 mmol) and 

iPr2NEt (5.1 mL, 30.0 mmol) were added to a solution of (R)-1 (2.62 g, 19.98 mmol, 96% ee) in 

CH2Cl2 (30 mL). A solution of cbz-Cl (3.5 mL, 24.5 mmol) in CH2Cl2 (10 mL) was added to the 

solution dropwise. The mixture was stirred at room temperature for 48 h, then poured into 1 M HCl 

(20 mL). The organic layer was separated and the water layer was extracted with CH2Cl2 (3 × 30 mL). 

The organic phases were combined and dried over Na2SO4. After filtration, the filtrate was 

concentrated and the residue was purified by flash chromatography (hexane-EtOAc 3:1) to give (R)-6 
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in 95% yield (5.05 g) Oil. The enantiomeric excess of (R)-6 was determined by HPLC analysis, tR 23.9 

min ((R)-6), tR 27.0 min ((S)-6) [CHIRALCEL AD-H (0.46 cm × 25 cm) (from Daicel Chemical Ind., 

Ltd.) hexane/i-PrOH, 95/5, 0.5 mL/min] as 96% ee: [α]D +24.8 (c 1.67, CHCl3);  
1
H-NMR (500 MHz, δ, CDCl3) 7.39–7.34 (m, 5H), 6.11 (dd, J = 17.4, 10.9 Hz, 1H), 5.46 (d, J = 10.9 Hz, 

1H), 5.46 (d, J = 17.4 Hz, 1H), 5.16 (s, 2H), 4.69 (d, J = 11.7 Hz, 1H), 4.42 (d, J = 11.7 Hz, 1H), 1.75 

(s, 3H); 
13

C-NMR (126 MHz, δ, CDCl3) 154.43, 134.79, 133.54, 128.87, 128.77, 128.55, 120.00, 

89.18, 70.52, 70.35, 19.61; Anal. Calcd. for C13H15NO5: C, 58.86; H, 5.70; N, 5.28. Found: C, 58.75; 

H, 5.77; N, 5.26. 

(R,E)-benzyl (4-(4-(heptyloxy)phenyl)-2-methyl-2-nitrobut-3-en-1-yl) carbonate ((R)-8): A solution of 

(R)-6 (200.0 mg, 0.754 mmol) in dry CH3CN (4 mL) was purged by N2 and NaOAc (188.0 mg,  

2.292 mmol), Pd2dba3 (35.0 mg, 0.038 mmol) and p-C7H15OC6H4N2BF4 (7) [24] (464.0 mg, 1.516 mmol) 

were added. The resulting mixture was stirred at room temperature for 48 h. The reaction mixture was 

concentrated and the residue was subjected to flash chromatography (silica gel/hexane-EtOAc 12:1 then 

10:1 then 6:1) to give (R)-8 in 63% yield (216.0 mg). [α]D +80.2 (c 0.46, CHCl3). 
1
H-NMR (500 MHz, 

δ, CDCl3) 7.41–7.35 (m, 5H), 7.32 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 8.2 Hz, 2H), 6.70 (d, J = 16.0 Hz,  

1H), 6.24 (d, J = 16.8 Hz, 1H), 5.17 (s, 2H), 4.80 (d, J = 11.3 Hz, 1H), 4.48 (d, J = 11.0 Hz, 1H), 3.96 

(t, J = 6.6 Hz, 2H), 1.85 (s, 3H), 1.82–1.75 (m, 2H), 1.51–1.25 (m, 8H), 0.90 (t, J = 6.8 Hz, 3H);  
13

C-NMR (126 MHz, δ, CDCl3) 160.10, 154.54, 134.27, 128.86, 128.78, 128.56, 128.48, 121.48, 

114.83, 89.30, 70.90, 70.30, 68.16, 31.80, 29.22, 29.08, 26.00, 22.63, 19.89, 14.12; HRMS (ESI M+H) 

m/z 456.2404. Calcd for C26H34NO5 456.2386. 

Preparation of (R)-2-amino-2-methyl-4-(4-(heptyloxy)phenyl)butan-1-ol ((R)-5): (R)-8 (199 mg, 

0.0437 mmol) was dissolved in MeOH (3 mL) and Pd-C (10%, 20 mg) was added. The mixture was 

placed autoclave and stirred at room temperature under hydrogen atomosphere at 5 MPa for 50 h. After 

filtration, the filtrate was concentrated to give (R)-5 (130 mg) in 97% yield. Absolute configuration of 

(R)-5 was confirmed by comparison with the sign of specific rotation value of that reported:  

([α]D −14.4 (c0.03, CHCl3), lit [21] −14). 
1
H-NMR (500 MHz, δ, CD3OD) 7.10 (d, J = 8.5 Hz, 2H), 

6.80 (d, J = 8.6 Hz, 2H), 3.92 (t, J = 6.4 Hz, 2H), 3.39 (d, J = 10.6 Hz, 1H), 3.36 (d, J = 10.9 Hz, 1H), 

2.57 (ddd, J = 2.4, 7.9, 10.2 Hz, 2H), 1.81–1.69 (m, 2H), 1.69–1.58 (m, 2H), 1.52–1.42 (m, 2H),  

1.42–1.27 (m, 6H), 1.09 (s, 3H), 0.91 (t, J = 6.4 Hz, 3H); 
13

C-NMR (126 MHz, δ, CD3OD) 157.36, 

134.55, 128.85, 114.12, 69.52, 67.65, 52.42, 41.22, 31.70, 29.19, 29.01, 28.94, 25.86, 22.78, 22.38, 

13.15; HRMS (ESI M+H) m/z 413.1642. Calcd for C23H27NO4S 413.1661. 
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Scheme 5. (R)-2-amino-2-methyl-4-(4-(heptyloxy)phenyl)butan-1-ol (5). 
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3.5. Conversion of (R)-2 to (R)-1 by Acid Hydrolysis 

To a THF (3.0 mL) solution of (R)-2 (250 mg, 1.44 mmol) was added 1 M aqueous HCl solution 

(3.0 mL) at rt and the mixture was stirred for 3 h at rt, and then concd. HCl (3.0 mL) was added and 

the mixture was further stirred for 72 h at rt. The reaction mixture was neutralized carefully with 

saturated sodium bicarbonate aqueous solution and extracted with dichloromethane. The combined 

organic layer was dried under MgSO4 and the solvent removed by evaporation. (R)-1 (164 mg, 1.25 mmol) 

was obtained in 87% yield after silica gel flash column chromatography (hexane: ethyl acetate = 10:1 

to 5:1). 

3.6. Preparation of Optically Pure (R)-2 (The Upper Route in Scheme 2) 

To a mixture of (R)-1 (72% ee, 1.50 g, 8.67 mmol) and vinyl acetate (1.0 mL, 13 mmol) in i-Pr2O 

(60 mL) was added lipase QLM powder (0.75 g) and the mixture was stirred at −40 °C. After being 

stirred for 3 h, the reaction mixture was filtered through a glass sintered filter with a Celite pad to 

remove the enzyme. The filtrate was evaporated and chromatographed on a silica gel flash column 

(hexane: ethyl acetate = 10:1 to 5:1) to give (R)-2 (150.6 mg, 0.870 mmol, 10%, >99% ee) and (R)-1 

(1.05 g, 6.07 mmol, 70%, 69% ee): (R)-2: [α]
26

D −16.5 (c 0.57, CDCl3), >99% ee. 

3.7. Preparation of (S)-1 with High Optical Purity (Bottom Route in Scheme 3) 

To a mixture of (S)-1 (31% ee, 3.40 g, 25.9 mmol) and vinyl acetate (3.5 mL, 39 mmol) in i-Pr2O 

(120 mL) of was added lipase QLM powder (1.70 g) and the mixture was stirred at −40 °C. After being 

stirred for 24 h, the reaction mixture was filtered through a glass sintered filter with a Celite pad to 

remove the enzyme. The filtrate was evaporated and chromatographed on a silica gel flash column 

(hexane: ethyl acetate = 10:1 to 5:1) to give (S)-2 (3.41 g, 19.6 mmol, 76%, 18% ee) and (S)-1 (305.5 mg, 

2.33 mmol, 9%, 94% ee): (S)-1: [α]
26

D +76.8 (c 0.26, CDCl3), 94% ee. (S)-2 was converted to (S)-1 

(18% ee) by acid hydrolysis and the resulting (S)-1 (2.34 g) was combined with (R)-1 (1.05 g), which 
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was obtained by the upper route in Scheme 2, to prepare low % ee substrate alcohol 1 (3.39 g, 7.4% ee 

(R)), then used for the next cycle of the lipase-catalyzed reaction. 

4. Conclusions 

In summary, we established a convenient protocol to prepare both enantiomers of 2-methyl-2-

nitrobut-3-en-1-ol (1) with over 94% ee using lipase-catalyzed transesterification under low 

temperature reaction conditions. It was possible to apply the reaction protocol to the multi gram scale 

preparation and we succeeded in preparing the desired compounds easily. Synthetic application of a 

medicinal compound using optically active 1 is now ongoing in our laboratory. 

Acknowledgment 

The present work was supported by a Grant-in-Aid for Environmental Research from Tottori 

Prefecture, Japan. 

Conflict of Interest 

The authors declare no conflict of interest. 

References and Notes 

1. Wong, C.-H.; Whitesides, G.M. Enzymes in Synthetic Organic Chemistry; Elsevier Science Ltd: 

Pergamon, Oxford, UK, 1994. 

2. Faber, K. Biotransformations in Organic Chemistry, 6th ed.; Springer-Verlag Berlin: Heidelberg, 

Germany, 2011. 

3. Matsuda, T., Ed. Future Directions in Biocatalysis; Elsevier: Amsterdam, The Netherlands, 2007. 

4. Ono, N.; Hamamoto, I.; Kamimura, A.; Kaji, A.; Tamura, R. Reaction of carbanions derived  

from alpha,BETA-unsaturated nitrocompounds with electrophiles to give alpha,beta-substituted 

products. Synthesis 1987, 3, 258-260. 

5. Itoh, T. Future Directions in Biocatalysis; Matsuda, T., Ed.; Elsevier: Amsterdam, The 

Netherlands, 2007; Chapter 1, pp. 3-20. 

6. Lalonde, J.J.; Bergbreiter, D.E.; Wong, C.-H. Enzymatic kinetic resolution of α-nitro α-methyl 

carboxylic acids. J. Org. Chem. 1988, 53, 2323-2327. 

7. Im, D.S.; Cheong, C.S.; Lee, S.H. Lipase-catalyzed remote kinetic resolution of quaternary 

carbon-containing alcohols and determination of their absolute configuration. Bull. Korean Chem. 

Soc. 2003, 24, 1269-1275. 

8. Im, D.S.; Cheong, C.S.; Lee, S.H. Lipase-catalyzed remote kinetic resolution of arylic nitriles 

with adjacent quaternary chiral center and the determination of their absolute configuration.  

J. Mol. Catal. B: Enzym. 2003, 26, 131-143. 

9. Angoli, M.; Barilli, A.; Lesma, G.; Passarella, D.; Riva, S.; Silvani, A.; Danieli, B. Remote 

stereocenter discrimination in the enzymatic resolution of piperidine-2-ethanol. Short 

enantioselective synthesis of sedamine and allosedamine. J. Org. Chem. 2003, 68, 9525-9527. 



Molecules 2011, 16              

 

 

6756

10. Irimescu, R.; Saito, T.; Kato, K. Enzymatic kinetic resolution of primary alcohols by direct 

esterification in solvent-free system. J. Mol. Catal. B: Enzym. 2004, 27, 69-73. 

11. Solares, L.F.; Brieva, R.; Quiro, M.; Llorente, I.; Bayodb, M; Gotor, V. Enzymatic resolution of a 

quaternary stereogenic centre as the key step in the synthesis of (S)-(+)-citalopram. Tetrahedron 

Asymmetry 2004, 15, 341-345. 

12. Recuero, V.; Ferrero, M.; Gotor-Fernández, V.; Brieva, R.; Gotor, V. Enzymatic resolution of 

hindered cyanohydrins, key precursors of muscarinic receptor antagonists. Tetrahedron 

Asymmetry 2007, 18, 994-1002. 

13. Felluga, F.; Ghelfi, F.; Pitacco, G.; Roncaglia, F.; Valentin, E.; Venneri, C.D. Esterase-mediated 

synthesis of optically active GABA analogues containing a stereogenic all-carbon quaternary 

carbon atom. Tetrahedron Asymmetry 2010, 21, 2183-2191. 

14. Sakai, T. Future Directions in Biocatalysis; Matsuda, T., Ed.; Elsevier: Amsterdam, The 

Netherlands, 2007; Chapter 2, pp. 21-50. 

15. Sakai, T.; Kawabata, I.; Kishimoto, T.; Ema, T.; Utaka, M. Enhancement of the enantioselectivity 

in lipase-catalyzed kinetic resolutions of 3-phenyl-2H-azirine-2-methanol by lowering the 

temperature to −40 °C. J. Org. Chem. 1997, 62, 4906-4907. 

16. Sakai, T.; Kishimoto, I.; Ema, T.; Utaka, M. Low-temperature method for enhancement of 

enantioselectivity in the lipase-catalyzed kinetic resolutions of solketal and some chiral alcohols. 

Tetrahedron Lett. 1998, 39, 7881-7884. 

17. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic 

resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294-7298. 

18. Jones, J.B. Applications of Biochemical Systems in Organic Chemistry; Jones, J.B., Shi, C.J., 

Perlman, D., Eds.; Wiley: New York, NY, USA, 1976; pp. 1-46. 

19. Ema, T.; Kobayashi, J.; Maeno, S.; Sakai, T.; Utaka, M. Origin of the enantioselectivity of lipases 

explained by a stereo-sensing mechanism operative at the transition state. Bull. Chem. Soc. Jpn. 

1998, 71, 443-453. 

20. Ema, T. Rational strategies for highly enantioselective lipase-catalyzed kinetic resolutions of very 

bulky chiral compounds: Substrate design and high-temperature biocatalysis. Tetrahedron 

Asymmetry 2004, 15, 2765-2720. 

21. Hinterding, K.; Albert, R.; Cottens, S. First asymmetric synthesis of chiral analogues of the novel 

immunosuppressant FTY720. Tetrahedron Lett. 2002, 43, 8095-8097. 

22. Nakamura, T.; Tsuji, T.; Iio, Y.; Miyazaki, S.; Takemoto, T.; Nishi, T. Asymmetric synthesis of 

a,a-disubstituted a-amino alcohol derivatives. Tetrahedron Asymmetry 2006, 17, 2781-2792. 

23. Itoh, T.; Ishida, N.; Mitsukura, K.; Hayase, S.; Ohashi, K. Synthesis of optically active  

gem-difluorocyclopropanes through a chemo-enzymatic reaction strategy. J. Fluorine Chem. 

2004, 125, 775-783. 

24. Felpin, F. X.; Coste, J.; Zakri, C.; Fouquet, E. Preparation of 2-quinolones by sequential Heck 

Reduction-Cyclization (HRC) reactions by using a multitask palladium catalyst. Chem. Eur. J. 

2009, 15, 7238-7245. 



Molecules 2011, 16              

 

 

6757

Sample availability: not available 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


